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An Efficient Context-Based BPGC
Scalable Image Coder

Rong Zhang, Qibin Sun, and Wai-Choong Wong

Abstract—In this brief, we present an image entropy coder, con-
text-based bit-plane Golomb coder (CB-BPGC), for wavelet-based
scalable image coding. CB-BPGC follows the idea of the
state-of-the-art image coding standard JPEG2000 entropy
coding to apply the rate-distortion optimization algorithm after
block coding. However, it explores a more efficient block coding
where statistical properties of the block coefficients are consid-
ered. Compression ratio and error resilience performances of the
proposed coder are evaluated, and the experimental results show
that, compared with the JPEG2000, it achieves better lossless
and lossy coding performance with lower complexity and greater
resilience to transmission errors when simulated on the wireless
Rayleigh fading channel.

Index Terms—Bit-plane Golomb coding, error resilience, image
scalable coding, JPEG2000.

I. INTRODUCTION

AVELET-BASED image coding is widely used in

modern multimedia applications. It is often combined
with bit-plane coding techniques to achieve an embedded
bitstream which provides better bit-rate control and distortion
scalability. Successful examples of these coders include the
embedded zerotree wavelet coding (EZW) [1], the set parti-
tioning in hierarchical trees (SPIHT) [2], and the embedded
block coding with optimal truncation (EBCOT) [3].

EZW and SPIHT exploit the structures of the wavelet mul-
tiscale coefficients (zerotree in EZW and partitioned sets in
SPIHT) and adaptively encode them to capture the interscale
and intrascale dependencies, while EBCOT divides subbands
to code blocks, and each block is independently and adaptively
coded based on its context. Although EBCOT exploits only
the intrascale dependencies, it owns attractive features such as
resolution/quality scalability and error resilience. With good
compression ratio and rich functionalities, EBCOT now serves
as the entropy coder in the JPEG2000 standard (Part 1) [4].

In EBCOT Tier I block coding, as shown in Fig. 1, bit planes
are finely modeled by image context modeling techniques,
and each bit in the bit plane is fractional bit-plane coded by a
binary adaptive arithmetic coder (the MQ coder) [3]. In Tier 2,
the post-compression rate-distortion optimization algorithm
(PCRD) is applied to organize codestreams in an optimal way
to generate the final bitstream according to bit-rate and dis-
tortion constraints [3]. As robust transmission of compressed
data over error-prone channels has become an increasingly
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Fig. 1. Image encoding, transmission, and decoding of JPEG2000.
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important requirement, error-resilient tools are adopted in
JPEG2000 at both the entropy coding level and the packet level.
When detecting errors, the decoder replaces the current and the
following bit planes by zeros to prevent error propagation [4].
Extension work on error resilience is still ongoing in the new
standard JPEG2000 for wireless applications (JPWL) [5].

For wavelet-based bit-plane coding, many coders adopt adap-
tive coding to capture the bit-plane correlations, but it is still in-
efficient in certain cases. For example, bits in some lower order
bit planes are often uniformly distributed, where the MQ coder
sometimes causes expansion rather than compression, i.e., di-
rect transmission is more efficient than adaptive coding. Al-
though EBCOT specifies a bypass mode to output raw bits of
the lower bit planes, it has no systematic way to tell from which
bit plane direct output is more efficient. In addition, for those
low-resolution blocks with few coefficients and those texture-
like blocks, the MQ coders sometimes cannot adapt to the local
properties well and therefore lose some efficiency. Additionally,
error resilience in JPEG2000 can also be improved. Bilgin ez al.
[6] point out there are dependencies among the coding passes
of a code block, where partial decoding of a corrupted bitstream
can be used to decode the bitstream as much as possible and thus
improve the PSNR.

In this brief, we study the use of the context-based bit-plane
Golomb coder (CB-BPGC) for image coding. By combining
the BPGC [7], an embedded coding strategy for Laplacian
distributed sources such as wavelet coefficients in HL, LH,
and HH subbands, with image context modeling techniques,
CB-BPGC provides better compression performance and is
more resilient to errors compared with EBCOT. This brief
is organized as follows. Implementation of the CB-BPGC
is introduced in Section II. In Section IIl, we present the
details of the error-resilient techniques used in CB-BPGC.
Experimental results and the conclusions are then discussed in
Sections IV and V, respectively.

II. PROPOSED ENTROPY CODER

The embedded coding strategy BPGC is first presented in [7],
which is now successfully implemented in the MPEG-4 Audio
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Scalable Lossless Coding (SLS) Standard [8]. We start this sec-
tion with a brief review of the algorithm, followed by our im-
plementation details for scalable image coding.

A. Bit-Plane Golomb Coding

Consider a Laplacian distributed source X, which has the
probability density function given by

Fx(z) = e~ 1#V2® 1\/952 (1)

where the magnitude of each sample X;(i = 1,2,...N) is
binary represented by bit planes and the sign is uniformly
distributed. If the source X is independent and identically
Laplacian distributed (i.i.d.), the approximate probability of the
bit b, ; in bit plane B;(j = 1,2, ...m) can be described as

L 1@ +27L), i>L
Q= {1/2, j<L @
L = min {L' e Z|2V+IN > A} 3)

where m is the most significant bit plane, IV is the number of
samples, and A is the absolute sum of the samples. By calcu-
lating N and A, parameter L can be easily obtained. L divides
the bit planes into two parts: lazy bit planes where bits 0 and 1
have a probability of 1/2 and can be directly output, and non-
lazy bit planes (the m bit plane to the L bit plane), whose skew
probabilities are specified by the distance to the lazy bit plane
D2L : j — L, and these bits are coded by the static arithmetic
coder [7].

B. Context Modeling

Although BPGC is designed for Laplacian distributed data,
it is not directly practical for coding wavelet coefficients. For
audio scalable coding, the good performance of BPGC is based
on the constraint that the coding source is i.i.d. and the fact that
the audio signal is a one-dimensional (1-D) signal. As spatial
dependencies of image wavelet coefficients are quite high, the
BPGC static probability model where probability is specified
only by D2 would obviously lose some coding efficiency. Bits
in the wavelet coefficient bit planes are significantly affected by
the neighbors. For example, it is more likely for the current bit to
be “1” when most bits of the corresponding neighbor bit planes
are “1.”

Fortunately, BPGC can be easily combined with image con-
text modeling techniques, by which bit probabilities differ from
each other according to both D2L and neighborhood contexts
ctzt. The seven D2L contexts used in CB-BPGC are listed in
Table 1. Context 0 is for the lazy bit planes where raw bits are
output without compression. There are also bit-plane coding ex-
amples in the table listing the corresponding D2L context for
each bit plane. For the neighborhood contexts ctxt, part of the
contexts in EBCOT, which is widely used for image coding [9],
is adopted [4]: nine contexts for the coefficients which are about
to be significant in the current bit plane; three contexts for those
already significant in previous coded bit planes. To reduce com-
plexity, the sign bits are output directly while five contexts are

TABLE I
DESCRIPTION OF D2L CONTEXTS O~ 6 AND EXAMPLES OF BIT PLANE CODING
(FROM BIT PLANE M TO BIT PLANE 0)

D2L contexts (j—L) | 0 (<-3) Il | 2ch |30 40| 50
Example 1: m:8 L:6 | 0,1,2.3 4 5 6 7 8
Example 22 m:9L:6 | 0,1,2,3 4 5 6 7 8 9

Example 3: m:7 L:4 0,1 2 3 4 5 6 7

6 =3)

Code block l
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Fig. 2. CB-BPGC encoding a block.

used for sign coding in EBCOT. Codebooks of bit probabili-
ties can be trained offline and presaved in both the encoder and
decoder.

C. CB-BPGC

CB-BPGC uses the same PCRD algorithm as in EBCOT
Tier 2 to pack the bitstream after block coding. Fig. 2. illustrates
the block encoding process of CB-BPGC.

As shown in Fig. 2, after finding parameter L, there is a block
classification procedure which is applied to model the coeffi-
cient local properties in a better way. Observation shows that
blocks with L < 0 (LOWE blocks), most of which are in the
very low-entropy high-frequency subbands, have quite different
D2L and ctxt related bit probabilities compared with those
blocks with I, > 0 (SIG blocks). Table II tabulates the different
bit probabilities of SIG and LOWE blocks for the nine signif-
icant coding ctxts when D2L = 3. In addition, for the SIG
blocks, three different classes appear with distinct bit probabil-
ities as illustrated in Fig. 3. The three 64 x 64 blocks have the
same most significant bit plane m = 6 and the same lazy bit
plane L = 3, but the left one is smooth, the middle one seems
more textural, and the right one contains an obvious edge. If
each block is divided to smaller 8 x 8 subblocks (the number
in the subblock area subm, , indicates the most significant bit
plane in the current subblock, and = and y are the subblock hor-
izontal and vertical indices), we can see that the smooth block
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TABLE II
PROBABILITY COMPARISON OF SIG AND LOWE BLOCKS FOR NINE
SIGNIFICANT CODING CONTEXTS WHEN D2L = 3

cixt. 0 1 2 3 4 5 6 7 8
SIG 0.006 | 0.066 | 0.233 | 0.054 | 0.148 | 0.222 | 0.214 | 0.200 | 0.500
LOWE | 0.011 | 0.118 | 0.263 | 0.076 | 0.152 | 0.333 | 0.242 | 0.341 | 0.300

515/ 5514655 312/ 2 5[6/6] 32 11111116
6| S| 5| 55555 6/ 3] 455434 IININININIDINIES
6| 6| 5| 5/ 5[6/55 4] 5/ 6/ 6|6/ 3] 34 I I 11 1]6]6
6| 5| 6] 5| 5555 4] 2] 5/ 5/3/ 4[5 3 202/ 1] 1] 1] 2] 6] 6
6| 6| 5/ 6/ 5555 31 5[5/ 5[3/6/5 6 212/ 2[2[ 1] 6] 6] 6
6| 5| 6] 6/ 5] 5] 65 2| 6| 5/ 4|5 6/6/ 4 2| 2/ 4/ 3] 6] 6/ 6|6
S5/ 5[5[56]6]5 316/ 5/ 5[5/5/6]6 2| 2| 5[ 6] 6] 6] 6] 6
516l 6l 51 6/ 555 2| 3/ 4 6| 6] 6] 5] 6 4] 3/ 6| 6] 6] 6] 6] 6
Class 0: ¢ = 0.487 Class 1. 6 = 1.333 Class 2: 6 =2.254

Fig. 3. SIG block classification example (three SIG blocks, 64 X 64, m = 6,
L = 3. Left: class 0, smooth; middle: class 1, textual; right: class 2, edge).

has a smaller o, the textual block has a median o, and the edge
block has a larger o, where o is the standard deviation of the
subm array given by

ﬁ Z(submmyy — subm,)? 4)

T,y

g =

where subm is the mean value of the subm array. Similarly,
LOWE blocks can also be divided to two classes (smooth and
edge) according to o. We can train the thresholds of the param-
eter o to classify all of the blocks. Blocks with the same class
share the same codebook. A memory of about 3.7 KB is used
for the codebooks in CB-BPGC.

After classification, CB-BPGC applies the three fractional
bit-plane coding passes to these nonlazy bit planes. The static
binary arithmetic coder compresses these bits with the lookup
probabilities from the codebooks according to the parameters
L, D2L, 0, and ctxt. In order to decode correctly, the parame-
ters L and o are transmitted as side information in the bitstream
packet header.

III. ERROR RESILIENCE

Similar with JPEG2000, CB-BPGC hierarchically organizes
the codestreams by subbands, blocks, and bit planes for resyn-
chronization at the packet level to prevent error propagation.
Fig. 4 illustrates the error-resilient strategies used in CB-BPGC.
The static arithmetic coder terminates at each fractional bit
plane to stop error propagation, followed by the segment marker
“1010” after the coding pass 3, which is also the end of the
current bit plane, and segment marker “10” after the coding
passes 1 and 2. Whenever a mistake appears in decoding these
markers, an error is detected.
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Fig. 4. Error-resilient segment markers.

In the decoder, CB-BPGC conducts the partial decoding [6]
for the following bit planes of the corrupted blocks.
Case 1) Error detected in coding pass 1.
No further coding passes 1 and 3 can be decoded, but
coding pass 2 in the current bit plane can proceed.
Case 2) Error detected in coding pass 2.
No further coding pass 2 can be decoded, but coding
passes 1 and 3 in the current and the following bit
planes can proceed.
Case 3) Error detected in coding pass 3.
No further coding passes 1, 2, and 3 can be decoded.
Note that the error-resilient PSNR gain reported in [6] is
based on the assumption that there is an external error-detection
mechanism to tell the decoder from which byte in a fractional
bit plane is corrupted, which leads to more complicated partial
decoding applied on the fractional bit-plane level instead of
the bit-plane level, i.e., additional information outside of the
decoder helps to guide the decoding of the corrupted code-
stream. Our test results show that, by only using the internal
error-detection method in CB-BPGC, substantial PSNR im-
provement can be obtained when the image is transmitted
through a Rayleigh channel.

IV. EXPERIMENTAL RESULTS

The proposed coder is implemented with the Java implemen-
tation of JPEG2000 (.J.J2000). The codebooks are trained from
a large set of grayscale natural images taken by the authors. Ten
typical grayscale JPEG2000 test images (such as café, fruits,
and Lena) are used to evaluate the coding and error resilience
performance.

A. Coding Performance

Table III shows the lossless compression ratio of five-level de-
composition at different block sizes (64 x 64 and 16 X 16) with
areversible 5/3 filter. The numbers of bits per pixel for losslessly
compressed images by JPEG2000 and the proposed CB-BPGC
are listed. The positive numbers in the Perc. column are the
percentages of CB-BPGC better than JPEG2000 and the neg-
ative ones are inverse. The average results show that CB-BPGC
is more efficient than JPEG2000, especially for those images
which seem harder to compress, e.g., baboon and café, where
the adaptive coder probably fails to learn the complicated tex-
ture-like blocks well. In addition, JPEG2000 loses more effi-
ciency in the case of smaller code block size where the number
of the wavelet coefficients is small and the adaptive coder may
end coding before it adapts to the context well, e.g., when the
code block size is 16 x 16, CB-BPGC is 2.56% better on av-
erage. Fig. 5 gives an example for the bit-plane coding com-

![Online]. Available: http://jj2000.epfl.ch/
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TABLE III
LOSSLESS PERFORMANCE FOR 5/3 REVERSIBLE DWT (bpp)

. 64x64 16x16
Image Size J2K %](3}-3 Perc. J2K %1(33-3 Perc.
baboon 500x480 6.166  6.020 2.36% | 6.626 6412  3.22%
barb 720x576 6.249 6.143 1.69% 6.728 6.553 2.61%
fruits 640x512 4.149 4168 -0.46% | 4.538 4.451 1.91%
goldhill 720x576 4.645 4.609 0.78% 5.058 4937 2.39%
lena 512x512 4.620 4.568 1.12% 5.022 4.871 3.01%
monarch | 768x512 3.845 3894 -128% | 4237 4150 2.04%
woman 512x640 4238 4234 0.10% | 4619 4532  1.89%
café 1024x1280 | 5.673 5570 1.80% | 6.148 5966  2.95%
tool 1280x1024 | 4.402 4414 -028% | 4.826 4708 2.44%
actors 1280x1024 5.408 5.320 1.62% 5.873 5.690 3.12%
average 4957 4894  0.75% | 5390 5227  2.56%
T q level 0~4, 31 blocks (Café, 512%640, 5
t"- - HLS level wavelet decomposition, blk size 64*64)
—1—] HL Nq. Byte Average
THz | of saved saved
BPs byte/BP
all bit planes | 230 | 1655 7.196
LHy HH,4 non-lazy BPs | 159 [ 1235 | 7.767
lazy BPs 71 420 5.920

Fig. 5. Lossless compression comparison of image café for all of the code
blocks in levels 0~4 between JPEG2000 and CB-BPGC.

TABLE IV
AVERAGE L0ssY PSNR PERFORMANCE (dB)

bpp 0.125 [ 025 0.5 1 2 4
JPEG2000 | 2592 | 2825 | 3125 | 35.18 | 4051 | 47.69
CB-BPGC | 2590 | 2828 | 3132 | 3531 | 4076 | 48.09

parison results of levels 0~4 coefficients of image café. For
the nonlazy bit planes, CB-BPGC removes more redundancy
and therefore saves some bytes. The lazy bit-plane performance
also shows that it is more efficient to output raw bits in these bit
planes instead of adaptive coding them.

The average scalable coding performances of the images
(9/7 filter, 5 level decomposition, block size: 16 x 16) are
given in Table IV, which shows that CB-BPGC outperforms
JPEG2000 in terms of PSNR except at very low bit rates. The
PSNR increase is about 0.1 dB for a bi trate of 1 bpp and about
0.25 dB for a bit rate of 2 bpp on average. However, at low
bit rates, JPEG2000 is better. This is probably because these
LL subband coefficients, whose coding results affect the lossy
coding performance a lot at the lower bit rates, are more like
Rayleigh distributed, whereas BPGC is suitable for Laplacian
distribution and cannot model them well. Another reason may
be that we sacrifice some coding efficiency for the sign bits by
direct transmission where in low-frequency subbands sign bits
are compressible.

B. Error Resilience Performance

Fig. 6 shows the CB-BPGC average PSNR improvements
of the ten images compared to JPEG2000 (5 level 9/7 filter,
block size: 64 x 64) for different bit rates. Both of them are

36
- -0 - -BPGC BER 10-4 o
N N - PR
34| - - & --BPGC BER 10-3 o
- = & - -BPGC BER 6*10-3 L
32| ——J2K BER 10-4 Lo
—%— J2K BER 10-3 ’
& 30 1| —+—J2K BER 6*10-3
z
x 28
=z
n
o 26
24
22
20 T - T T r : .
0.0625 0.125 0.25 0.5 1 2 3 4

Bit rate (bpp)

Fig. 6. Comparison of error resilience performance between JPEG2000 (solid
lines) and CB-BPGC (dashed lines) at channel BERs of 10—, 103, and 6 x
10-3.

simulated though a wireless Rayleigh fading channel at bit error
rates (BERs) of 1074, 1073, and 6 x 1073 (the corresponding
channel Eb_No parameters are 0.6, 1.3, and 2.1 dB, respec-
tively; a detailed description of the channel conditions can
be found in [10]). Each image is simulated over the Rayleigh
channel 1000 times. CB-BPGC uses the error-resilient tools
described in Section III, and EBCOT is set with the entropy
level properties BYPASS, RESET, CAUSAL, ERTERM,
SEGMARK, and RESTART. For both bitstreams, LL subband
layers are protected from error corruption, which is the most
important information and often assumed to be transmitted
through a more reliable channel. As shown in Fig. 6, CB-BPGC
is more resilient to errors with improved PSNR for all the bit
rates on averages at 0.731, 1.514, and 2.097 dB for BERs at
10=%,1073, and 6 x 1073, respectively. It should be noted that,
at higher BERs, both CB-BPGC and JPEG2000 have almost
constant decoded image quality across all bit rates. This is
probably because, when BER is high enough, almost all of the
blocks are damaged from the most significant bit planes and,
thus, the bit-rate increase cannot improve image quality [11].
Subjective results of the images woman, Lena, and peppers at
a BER of 1073 and 1 bpp are shown in Fig. 7. Comparing the
decoded images, we can see that CB-BPGC gains not only a
better PSNR in decibels but also a substantial improvement of
subjective visual effect.

The improvement of CB-BPGC error-resilient performance
is not only gained by partial bit-plane decoding, but also by the
more efficient scalable coding. As the PCRD algorithm orga-
nizes codestreams according to the contribution of reducing dis-
tortion, i.e., in decreasing order, more efficient compression en-
ables CB-BPGC to consume less bytes to embed the codestream
while still providing the equivalent distortion reduction. Hence,
when a transmission error occurs, it corrupts the less important
bitstream of CB-BPGC and, thus, the PSNR result is better. Di-
rect output of lazy bit planes also improves error resilience per-
formance. Although errors may occur in certain lazy bit plane,
we can further decode the remaining because the errors are iso-
lated to certain coefficients instead of propagating to the others.
In addition, CB-BPGC uses partial decoding to fully decode the
corrupted codestream. Further improvement of error resilience
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Fig. 7. Subjective results of (a)—(c) Lena, (d)—(f) bike, and (g)—(i) peppers at a
bit rate of 1 bpp and a channel BER of 10 ~3. (a) Error-free woman (256 X 256).
(b) JPEG2000 (34.065 dB). (c) CB-BPGC (34.997 dB). (d) Error-free Lena (256
X 256). (e) JPEG2000 (32.153 dB). (f) CB-BPGC (34. 080 dB). (g) Error-free
peppers (256 x 256). (h) JPEG2000 (27.251 dB). (i) CB-BPGC (29.254 dB).

can be achieved by applying some error concealment techniques
such as edge-based concealment [12].

C. Complexity Analysis

CB-BPGC also has a lower complexity than JPEG2000. As
mentioned in Section II, CB-BPGC and EBCOT differ mainly
in the entropy coding Tier I block coding, which is the most
time-consuming part in JPEG2000 (the runtime percentages of
grayscale image lossless and lossy encoding are about 71.63%
and 52.26%, respectively [13]). Experimental results show that
CB-BPGC consumes about 84.58% of the runtime of JPEG2000
Tier 1 block coding for the lossless mode and 82.74% for the
lossy mode, which means that about 11.04% of the lossless en-
coding time and 9.02% of the lossy encoding time are saved for
grayscale images. The possible reasons for the lower complexity
are as follows.

Direct output of the sign bits and bits in the lazy bit planes
reduces some burden of the context modeling in CB-BPGC. As
shown in the cafe example in Fig. 5, for the levels 0~4 code
blocks, 30.9% of the bit planes are lazy bit planes (D2L < 3).
We can further let more bit planes be lazy bit planes, for ex-
ample, bit planes with D2L < —1, where 57.8% of the bit
planes can be directly output. Experiments show that the av-
erage lossless coding performance is still better than JPEG2000
by 0.73% and 2.49% for block sizes 64 x 64 and 16 x 16, re-
spectively. This tells us that, by sacrificing a little coding ef-
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ficiency, computation complexity could be further reduced on
these bit planes.

In addition, the static arithmetic coder is always simpler with
lower computational complexity than the adaptive arithmetic
coders by avoiding the probability adaptive procedure. A re-
cent arithmetic coding complexity study [14] shows that the en-
coding time of a static arithmetic coder is about 58.6% of the
MQ coder. Since a static arithmetic coder is used in CB-BPGC
while JPEG2000 uses the adaptive MQ coder, the reduction of
computation complexity of CB-PBGC is also achieved.

V. CONCLUSION

In this brief, we proposed a wavelet-based scalable image
entropy coder, namely, CB-BPGC. By judiciously combining
the embedded bit-plane coder BPGC, which explores the statis-
tical characteristics of the wavelet coefficients, with image con-
text modeling techniques, CB-BPGC outperforms JPEG2000
for both lossless and lossy coding performance. In addition,
a lower complexity is also achieved. In addition, because of
the partial decoding, direct transmission of lazy bit planes, and
better compression ratio leading to corruptions of less important
bitstreams, CB-BPGC is more resilient to transmission errors
compared with the JPEG2000 standard.
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