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Minimum-Phase FIR Filter Design
Using Real Cepstrum

Soo-Chang Pei, Fellow, IEEE, and Huei-Shan Lin

Abstract—The real cepstrum is used to design an arbitrary
length minimum-phase finite-impulse response filter from a
mixed-phase prototype. There is no need to start with the
odd-length equiripple linear-phase filter first. Neither the
phase-unwrapping nor root-finding procedure is needed. Only two
fast Fourier transforms and a recursive procedure are required
to find the filter’s impulse response from its real cepstrum. The
resulting filter’s magnitude response is exactly the same as the
original one even when the filter is of very high order.

Index Terms—Minimum-phase finite-impulse response (FIR)
filter, phase unwrapping, real cepstrum, root finding.

1. INTRODUCTION

N MANY low-delay applications of finite-impulse re-
I sponse (FIR) filter design such as data communication
system, linear-phase characteristic is not necessary, and
minimum-phase design can preserve the desired magnitude
response and has the advantage of minimum delay over other
counterparts with the same magnitude response.

Many methods have been developed to design min-
imum-phase FIR filters, especially the one proposed by
Herrmann and Schuessler [1]. It starts with an odd-length
linear-phase equiripple FIR filter and shifts it up by one-half the
stopband’s peak-to-peak ripple, which results in second-order
zeros on the unit circle. The zeros inside the unit circle and each
simple zero out of each pair of double unit-circle zeros are then
retained to obtain the minimum-phase filter with half the degree.
However, the difficulty of root-finding procedure for high-order
filters limits this method, and the magnitude response becomes
approximately the square root of the original one. Therefore,
later research works resorted to other methods to avoid the
root-finding procedure. Mian and Nainer [2] utilized the com-
plex cepstrum to extract the minimum-phase component. In this
method, only two fast Fourier transforms (FFTs) are required,
but the cumbersome process of phase unwrapping is required.
To avoid phase unwrapping, Pei and Lu [3] applied differential
cepstrum to design the equiripple minimum-phase FIR filter,
but three FFTs are required. Rather than using cepstrum, an
approach based on the Newton—Raphson iterative algorithm
[4] was recently recommended to find the minimum-phase
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spectral factor of polynomials. This brief emphasizes on its
better accuracy than what could be obtained by root finding
when there are no zeros on the unit circle. If there are, indeed,
double zeros on the unit circle, however, precision will be lost.

All the aforementioned methods are aimed at designing a
linear-phase equiripple FIR filter first. If this linear-phase filter
is not equiripple in the stopband, we cannot merely shift up
its magnitude response to get the linear-phase sequence. More-
over, the minimum-phase filter’s magnitude response becomes
the square root of the original one by keeping half the unit-circle
zeros and all the zeros inside the unit circle. Recently, a different
approach based on root moments was proposed to design min-
imum-phase FIR filters [5] that preserve the same magnitude re-
sponse. However, it needs to start from a linear-phase FIR filter
due to the complex conjugate relation between its zeros. More-
over, we need to select a proper radius of integration contour in
advance to calculate moments accurately.

From the previous works of Mian and Nainer [2], we can ex-
tend it and avoid phase unwrapping by using real cepstrum. This
benefits from the problem itself, that is, constructing the min-
imum-phase counterpart from its magnitude. It is known that a
minimum-phase sequence’s magnitude determines its phase [6].
Through several deductions, we will find that real cepstrum de-
termines a sequence’s minimum-phase component. Moreover,
in our works, the minimum-phase filter will retain the original
magnitude response exactly.

This brief is organized as follows. We first discuss several
basic related concepts in Section II. Next, the formal steps for
minimum-phase sequence construction using real cepstrum is
summarized in Section III. We then refer to this method in an
alternative viewpoint by treating it as passing the original se-
quence through an allpass filter in Section IV. Furthermore, sev-
eral design examples are depicted to illustrate the effectiveness
of this approach in Section V. In Section VI, we compare our
proposed design method with several ones in the open literature
[1]-[5], beside which there are still other approaches for min-
imum-phase filter design in recent years [7]-[10]. Finally, we
make the conclusion in Section VII.

II. BASIC CONCEPTS ON CEPSTRUM

A. Complex Cepstrum and Real Cepstrum

Let i(n) be a real sequence with H (e/*) as its Fourier trans-
form. Its complex cepstrum A(n) and real cepstrum ¢é(n) are
defined as

H(e’*) = log [H(e')]
= log|H(ejw)|—|—jarg [H(ej“)] 1

O(e7%) = Re {f[(ej“’)} = log | H(e*)] @)
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h(n) = F~1 {I:I(ej“’)} 3)
i) =F{C(e)} 0

where F'~! denotes the inverse Fourier transformation.

Note that in (1) and (3), to compute complex cepstrum, we
need to perform logarithm on a complex number. The imaginary
part of the complex logarithm must be continuous and without
its linear-phase term to avoid ambiguity. To achieve this, we can
first compute the principal value of the phase (between —7 and
m), then unwrap the phase to a continuous one and remove the
linear-phase term.

B. Properties of Minimum/Maximum-Phase Sequence and
Its Complex Cepstrum

From [6], there are two useful properties.

1) If h(n) is a minimum-phase sequence, its complex cep-
strum h(n) will be a causal sequence. That is, A(n) = 0
forn < 0.

2) If h(n) is a maximum-phase sequence, its complex cep-

strum /(n) will be an anticausal sequence. That is, h(n) =
0 forn > 0.

C. Explicit Formula Between Minimum-Phase Sequence and
Its Complex Cepstrum

An arbitrary sequence h(n) and its complex cepstrum h(n)
has an implicit recursive relation [6] as

eﬂ(o), n=20
M) =0 S (B hkhn—k), nt0. O
k=—oc0

Further, if (n) is a finite minimum-phase sequence, the sum-
mation stated above can be reduced to finite terms as

e 0), n=20
hn) =19 s (E) h(k)h(n — k), n>0. ©
k=0

D. Reconstruction of a Causal Sequence From Its Even Part

If h(n) is a causal sequence and h.(n) = [h(n) + h(—n)]/2
is the even part sequence of 4(n), h(n) can be recovered simply
by he(n) as

0, n<0
h(n) = he(n)ug(n), where uy (n) = { 1, n=0 (7)
2, n>0.

E. Fourier Transform Pair Between Time- and
Frequency-Domain

Let h.(n) and h,(n) be the even part and the odd part of
sequence h(n), respectively. In another aspect, let Hp(e/*) and
Hip(e’*) denote the real part and the imaginary part of H (e/*),
which is the Fourier transform of A(n).

If h(n) is a real sequence, we have the following Fourier
transform relations:

he(n) = F~' {Hp(e’*)} (3)
ho(n) = F~' {jHr(e’)} ©)
where F'~1 denotes the inverse Fourier transformation.
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Fig. 1. Cepstrum relations among mixed-phase sequence, minimum-phase se-
quence, and allpass filter sequence. (a) Even part of the complex cepstrum is
actually the real cepstrum. (b) Reconstruction of ~min(n) from its even part
é(n) (c) Reconstruction of iz,,],i,,(rz) in allpass filtering viewpoint.

F. Relation Between Complex Cepstrum and Real Cepstrum

If h(n) is a real-valued sequence, its corresponding complex
cepstrum h(n) is also real valued according to the recursive re-
lation (5). Under this constraint, we are going to relate the real
cepstrum and complex cepstrum as follows: Denote /. (n) as the
even part of h(n), which is the complex cepstrum of h(n). If we
substitute H (/%) with H(ei*) = log[H (¢’*)] and Hg(e/*)
with Hy(e?) in property E of Section II, we have

he(n) = F~1 {ﬁR(eiw)} = F {log|H(e™)|} .

Further, using the definition of real cepstrum in (2) and (4), we
have

(10)

he(n) = F~1 {C‘(ejw)} = é&(n). (11)

That is, the real cepstrum &(n) is actually the even part of the
complex cepstrum h(n), as shown in Fig. 1(a).

In this section, we only discuss the related properties of com-
plex cepstrum and real cepstrum for our design method. There
are still more literatures [11]-[17] for cepstrum analysis or al-
gorithms for cepstrum calculation.

III. CONSTRUCTION OF MINIMUM-PHASE SEQUENCE

The problem to be dealt with is described as follows: Given a
mixed-phase real-valued sequence h(n), we would like to find
its minimum-phase counterpart A, (7), which is a minimum-
phase sequence and has the same frequency magnitude response
of h(n). That is,

| Hunin (e7)| = | H(e7*)] (12)
where H,,i,(e/*) and H(e/*) are the Fourier transforms of
hmin(n) and h(n), respectively.
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Definitions (1)—(4) reveal the fact that, although the respec-
tive complex cepstrum of Ay, (n) and h(n) are different ac-
cording to (1) and (3), the respective real cepstrum, however, are
the same according to (2), (4), and (12). In other words, since
the real cepstrum is uniquely determined by the magnitude com-
ponent of a sequence’s frequency response, two sequences with
the same magnitude response must have the same real cepstrum.
Therefore

é(n) = émin(n)' (13)

Hence, we can calculate ¢, (1) by performing the inverse
Fourier transform on log | H (e?*)|. Further, since hpin(n) is a
causal sequence according to property 3 and émin(n) is just the
even part of hn&in(n) according to property F', we can apply (7)
to reconstruct fy,in(n) from émi, (n). In particular, perform

hmin(n) = émin(n)u-l-(n) (14)
where u (n) is defined in (7). This operation is illustrated in
Fig. 1(b). A

Finally, after hy,in(n) is obtained, (6) can be employed to
acquire hmin(n). The problem solution is then found.

If H(z) has its zeros on the unit circle, the region of con-
vergence of log[H (z)] cannot include the unit circle. From this
computational point of view, we should avoid the zeros existing
on the unit circle. However, in practice, it is often to design dig-
ital filters with some zeros on the unit circle in the z-domain. We
can overcome this problem by selecting a different contour C'
slightly inside the unit circle while computing é(n) from C(2)
[6]. This can be achieved equivalently by first multiplying the
input h(n) with an exponential sequence as

ha(n) = {a”h(n), n=0,... . N-1 .. L> 8N
15)
where o < 1 and o = 1. This step will cause the radius of its
zeros scaled down by the factor a, i.e., moving its zeros slightly
inside the unit circle.
Besides, even though the sequence is finite, its cepstrum se-
quence is still infinite [6]. Computationally, aliasing effect will
occur. To reduce the aliasing effect, we must append " h(n)
with several trailing zeros as in (15).
To design a minimum-phase filter with impulse response
hmin(n) using the proposed method, we must start with a
prototypical impulse response h(n) with the same magnitude
response. If the prototype is unknown, we can use the FIR filter
design algorithm such as the Parks—McClellan program [18]
to design the linear-phase equiripple FIR filter prototype h(n)
according to the specifications, including the filter’s length,
maximum ripples on the passband and the stopband, and the
cutoff frequencies.
Now, we summarize the overall steps for constructing the
minimum-phase sequence hp,in(n) from any mixed-phase or
linear-phase sequence h(n) as follows.
1) Choose o < 1 and v 2 1 to move the zeros slightly inside
on the unit circle.

2) Perform L-point (FFT), on h.(n) =
n=0,1,...,(N-1),toget H,(k),k = 0,1
L > 8N.

0, n=N,...,L—-1

a™h(n),
(L—1),

P
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3) Perform (IFFT),, on log |H, (k)| to get é,(n), which is
equal to ¢4 min(n).

4) Construct lAL%min(n) from €4 min(n) using (12).

5) Compute hg, min(n) from fza,min(n) using (6).

6) Rescale hq, min(n) t0 get Amin(n) = ha,min(n)o

—n

IV. ALLPASS FILTERING VIEWPOINT

In this section, we provide another viewpoint on the work
presented above. In fact, the proposed process in the previous
section is equivalent to passing the mixed-phase or linear-phase
sequence through a proper allpass filter to acquire a minimum-
phase output sequence. Intuitively, this can be inferred from
the fact that the mixed-phase or the linear-phase sequence and
its minimum-phase counterpart have the same magnitude re-
sponse with different phase response. Formally, we can prove
this by considering the characteristics of an allpass filter’s com-
plex cepstrum.

An allpass filter’s transfer function H,;,(z) can be expressed
as N »

Hop(z) = im0 2062 ) oy jarl < 1.

[T=i (1 — arz)
(16)

We can drop the linear-phase term z%¥ to compute its complex
cepstrum as follows:

where

N
log [Hap(2)] = — log(1 — arz) + Zlog(l —arz™h)
k=1 k=1
N oo an N oo an
_ “k n _ k _—n
=22 )
k=1n=1 k=1n=1
-1 N o _,n
n
n=—oo \k=1
') N —an
o3 (D) )
n=1 \k=1
Thus
2;1 —5?7 n>0
Bap(n) = 0 n=0 (18)

N —a"
D1 ——s n<O0.

Notice that an allpass filter’s complex cepstrum is an odd se-
quence. From the previous discussion, while we drop the non-
causal part of the mixed-phase sequence’s complex cepstrum, it
can be viewed as follows: To apply an allpass filter whose non-
causal part of complex cepstrum is just the negative noncausal
part of the mixed-phase sequence’s complex cepstrum as shown
in Fig. 1(c). Therefore, the two noncausal parts of complex cep-
strum will be added and canceled to be zero. Moreover, if we
consider the H (z)’s zero location, we find that, by multiplying
H(z) with H,p(2), the effect is that H(z)’s zeros lying out-
side the unit circle will be canceled by the poles of H,,(z) and
be reflected inside the unit circle at their reciprocal conjugate
locations.

V. DESIGN EXAMPLES

In the following, three examples are given to illustrate the
design of minimum-phase FIR filter by the proposed method.
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Fig. 2. Equiripple bandpass linear-phase and minimum-phase filters with
length 24. (a) Amplitude response. (b) Group-delay response. (c) Zero-pole

plot.
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Fig. 3. Low-pass mixed-phase and minimum-phase filters with length 13. (a)
Amplitude response. (b) Group-delay response. (c) Zero-pole plot.

Among the three examples, the first one is the linear-phase
equiripple even-length bandpass filter with length 24. The
second one is a low-pass mixed-phase odd-length filter with
length 13, which emphasizes that we need not start with a
linear-phase filter to accomplish our work. The third example is
a high-order low-pass filter with length 128. In the three cases,
their frequency magnitude/group-delay response and zero-pole
plot before and after the minimum-phase design procedure are
shown in Figs. 24, respectively. In the following, we discuss
several points revealed from these design examples.

First, the magnitude response of each minimum-phase se-
quence, as desired, remains the same as the corresponding pro-
totype sequence. This results from the fact that, in the design
process, we have employed the real cepstrum of the prototype
sequence, which possesses equivalent information to their fre-
quency magnitude response, as the real cepstrum of desired min-
imum-phase sequence. Second, from each plot of group-delay
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Fig. 4. Equiripple low-pass linear-phase and minimum-phase high-order filters
with length 128. (a) Amplitude response. (b) Group-delay response. (c) Zero-
pole plot.

response, it is obvious that the group delay of the minimum-
phase sequence is indeed less than that of one of the corre-
sponding prototype sequences. This accords with the fact that
a minimum-phase sequence is also a minimum-group-delay se-
quence [6]. Third, the zeros of the resultant sequences’ z-trans-
form, except for the ones on the unit circle, are all inside the
unit circle, which proves that the resultant sequences are min-
imum-phase sequences. In the design process, the zeros out-
side the unit circle are reflected into their conjugate reciprocal
locations. In the case of linear-phase prototypes, as shown in
Figs. 2 and 4, the z-transform of resultant minimum-phase se-
quences will have double zeros inside the unit circle. In the
case of mixed-phase prototype, as shown in Fig. 3, it is more
obvious that the zeros outside the unit circle are reflected into
their conjugate reciprocal locations. Besides, in all the exam-
ples, the unit-circle zeros remain unchanged after the design
process. Lastly, in the case of high-order sequence as shown
in Fig. 4, this design process still performs well. At the same
time, it saves much effort since we need not find the roots of its
z-transform.
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TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD AND SEVERAL
EXISTING METHODS IN THE OPEN LITERATURE

Herrmann| Mian Pei Orchard | Stathaki | proposed
[1] [2] [3] [4] [5] method
Herrmann's v v v v
approach [1]
factorization®! RF cc DC NR RM RC
& phase- v
7 |unwrapping
=| FFT 2 3 2 2
3 R
< | Tteration v'2 v
minimum-phase
filter’ square | square | square | square the the
maenitude root*3 root root root same same
as

*1: RF: root-finding, CC: complex cepstrum, DC: differential cepstrum,
RM: root moment, NR: Newton-Raphson iteration, RC: real cepstrum

*2: The specific iterative procedure depends on which root-finding
algorithm is applied.

*3: Square root of the prototype’s magnitude response.

VI. PERFORMANCE AND COMPLEXITY COMPARISON

In Table I, we compare the new method with other methods
proposed in the open literature [1]-[5]. Note that the methods
[2]-[4] are all mainly based on Herrmann’s design procedure
[1], in which the frequency response of odd-length equiripple
linear-phase prototype filter are shifted up by one-half of
its stopband’s peak-to-peak ripple to acquire the second-order
zeros on the unit circle of the z-plane. Then, the zeros belonging
to the minimum-phase component is retained by the specific
factorization approach. Therefore, the resultant magnitude
response will become approximately the square-root magnitude
of the original prototype. In our design procedure and the
procedure in [5], the efforts required are merely two FFTs
and a recursive procedure to compute the impulse response
either from real cepstrum or from root moments. Therefore,
the complexities are the lowest. However, there is a conspic-
uous difference between [5] and our proposed method; unlike
[5], in which a linear-phase prototype is required, our design
procedure can begin with a general mixed-phase prototype.

VII. CONCLUSION

We have introduced a simple effective method to construct
a minimum-phase FIR filter from a mixed-phase filter. During
the process, there’s no need to unwrap the phase or find the
roots. Neither do we need to begin with an odd-length equiripple
linear-phase prototype filter and get the square-root magnitude
response. Note that coefficient scaling is used to handle the
unit-circle zeros’ numerical problem. Furthermore, while we
compute the real cepstrum sequence, zero padding is necessary
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to reduce the aliasing effect. The resultant minimum-phase filter
magnitude response will be exactly the same as the original one
even when the filter is of high order.
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