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Blind Bi-Level Image Restoration With Iterated
Quadratic Programming

Edmund Y. Lam, Senior Member, IEEE

Abstract—Many camera systems are dedicated to the capture of
bi-level objects, including documents, bar codes, handwritten sig-
natures, and vehicle license plates. Degradations in the imaging
systems, however, cause blurring to the output images and intro-
duce many more intensity levels. The blurring often arises from
the optical aberrations and motions between the object and the
camera, and hampers any computer vision algorithms aimed at au-
tomatic recognition and identification of these images. While image
restoration has been applied frequently in such cases, many of these
algorithms do not explicitly incorporate knowledge of a bi-level ob-
ject, but attempt to apply a generic restoration scheme followed by
thresholding. Such two-step algorithms may not produce the best
results. On the other hand, directly restoring a bi-level object is a
combinatorial task and is therefore time-consuming. In this brief,
we propose a method that treats the blind restoration method as
an iterated quadratic programming optimization problem. This
has the properties of fast convergence and good numerical sta-
bility, due to established schemes such as the interior-point algo-
rithm. The output of our algorithm is very nearly binary. Sim-
ulation results show that by integrating the computation in the
imaging system, this proposed technique can restore weak signals
that would have been lost with a simple thresholding.

Index Terms—Bi-level images, blind deconvolution, image
restoration, iteration, resolution enhancement.

I. INTRODUCTION

MANY important objects are ideally bi-level or two-tone
images. The most ubiquitous are documents, where

black indicates text and white indicates background. In ad-
dition, we have line art, hand-written signatures, bar codes,
and vehicle license plates, all of which are frequently handled
by machine vision systems for automatic recognition and
identification. The information contained in a bi-level image is
often rich enough for such systems, while its relative simplicity
permits much faster processing than its grayscale counterparts
do. However, all imaging systems involve blurring and noise.
These often arise from the aberrations in the optics and motions
between the object and the camera, and the extent of such
degradations may not be known to the system. The images at
the sensor are no longer bi-level, and the algorithms cannot take
advantage of the simplicity of bi-level as opposed to grayscale
images. While a possible solution is to threshold the blurred
images, some weak signals would be lost and the image quality
will be deteriorated. A more rigorous treatment of this problem
is therefore necessary.
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The imaging process can be represented by

(1)

where is the point-spread function, is the ob-
ject, is the noise, and is the captured image. For
a diffraction-limited system under incoherent light, the point-
spread function is a low-pass filter [1], and is often assumed to
be spatially invariant. The observed image is therefore a noisy,
blurred version of the object, with a lower resolution due to the
filter. Digital post-processing is possible to restore the resolution
content. In a classical problem formulation for image restora-
tion, is assumed to be known. Over the last thirty years,
a multitude of techniques have been developed, and readers can
consult references such as [2]–[5] for specific algorithms.

Our problem differs from the traditional image restoration
framework on two grounds. First, the blur is unknown. The
restoration problem without knowledge of the point-spread
function is called blind deconvolution (when it is partially
known, it is called semi-blind deconvolution [6]), which is
known to be a much harder problem than image restoration
[7]. Many diverse methods exist [8]: Algebraic methods treat
the deconvolution problem as factorization of a bivariate poly-
nomial, for which the absence of the fundamental theorem
of algebra for higher dimensions suggests that the solution
is almost always unique except for scaling and shifting [9],
[10]. Projection-based methods treat the image and blur to
be deterministic quantities, and seek an object that simulta-
neously satisfies a set of constraints [11]. Iterative schemes
are employed in these methods [12]–[15]. Statistical methods
assume certain distributions of the image and blur, and seek
to maximize their probability through maximum likelihood
(ML) or maximum a posteriori (MAP) techniques [8], [16].
Since deconvolution is an ill-posed problem, regularization is
needed, and different norms such as norm and total-variation
(TV) norm have also been applied to blind deconvolution [17].
Multichannel restoration has also been attempted [18].

Second, the intensity of the restored object can only take on
two levels. Although it seems that the search space for possible
solution is greatly reduced, the incorporation of this criterion as
the prior information is very difficult [19]. For example, even
if the restoration problem can be cast as a convex optimization
problem with fast algorithms, the restriction to binary solutions
destroys the convexity [20], [21]. The signal distribution also
cannot be assumed Gaussian. Recent solutions mostly either
restrict the design variables to a convex subset of the original
feasible set [22], or relax the design variables to take on any
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Fig. 1. Model for image restoration.

value between the binary intensities and then incorporate an-
other procedure to push the intensity towards the extreme values
[23]. In both cases, the techniques were developed for blind de-
convolution of constant modulus signals, a common problem in
communication channel equalization [24] and mathematically
closely related to blind deconvolution. In recent years, there is
also interest in developing specific blind deblurring methods for
binary images, such as the iterative scheme in [25]. This algo-
rithm employs a three-step iterative process, and each iteration
uses gradient-descent schemes to arrive at the optimal point. Ac-
knowledging this slow convergence, the authors of that paper
suggested possible extensions using schemes such as conjugate
gradient, simulated annealing, and genetic algorithms [25]. But
the last two are also not fast techniques generally, and conver-
gence can take a rather long time.

In this brief, we are motivated by the recent surge of interest
in convex optimization techniques, which promise fast conver-
gence and numerical stability such as with interior-point algo-
rithms [20]. This can be applied to extend the work in [25]
in deblurring bi-level images. However, as this problem is not
convex in nature, in Section II we describe our formulation of
the problem that makes use of convex optimization at its core. In
particular, we will use quadratic programming as a special case
of convex optimization. Like [25], the solution is also computed
iteratively through a filtering process, but we will present a dif-
ferent formulation in putting the constraint of binary images.
Simulation results are shown in Section III that demonstrate the
effectiveness of our algorithm, with both 1-D data and images.
Conclusions are drawn in Section IV.

II. PROBLEM FORMULATION

Consider the linear filtering approach applied to the ob-
served blurred image as shown in Fig. 1. The ideal criterion
for the best design of the restoration filter is that

is minimized. However, for blind
deconvolution, we often seek a relaxed goal by requiring the
output to satisfy certain a priori knowledge such as
finite support and non-negativity [12], [14]. In our case, the
prior knowledge is that is binary, so we design the
restoration filter so that is also binary.

Another consideration is that even if is binary, it can
take on any two arbitrary values. In this brief, we assume that
proper scaling and mean adjustment is possible, so that two
values that the restored output should take on are .
After the restoration process, we can display pixels with value

as black and pixels with value as white, or vice versa.
This can be trivially determined from the applications.

Because of these two ideal values of , with a properly
designed restoration filter we should have

for all values of and . We can then set up the optimization
problem as follows:

subject to

(2)

where the symbol denotes element-by-element com-
parison and denotes element-by-element multiplication.
Note that ’s are auxillary variables that help us
convert the problem to a standard form at a later stage.
A small value of is achieved if and only if

, i.e.,
for all . Solving this optimization problem

would effectively tune to produce binary outputs [26].
It should be remarked, though, that the constraints in (2) are

not convex [20]. There is no direct algorithm to find the global
optimal solution. Instead, as with [14], a recursive filtering tech-
nique is used. This is schematically depicted in Fig. 2. Here, we
explain the algorithm in details.

1) First, let denote the current number of iterations. At the
beginning, set .

2) Second, make an estimate of , where the super-
script denotes the iteration number. Without further infor-
mation at this point, we use a simple high-pass filter for

(such as a Laplacian, in the absence of informa-
tion about ) because is a low-pass filter. We
can then compute

(3)

3) Third, we set up the optimization problem

subject to

(4)

Comparing (4) and (3), we can see that we have replaced
one of the ’s by , making the problem
now linear in . If the iteration converges,
should be a good estimate of and this new op-
timization problem will become similar to our original
problem in (3). We have not yet proved convergence,
although preliminary experiments seem to corroborate this
claim.
If we use the norm in the objective function, the above
can be converted to a quadratic programming as follows
[23]: let be the raster-scan of , be the raster-
scan of , and be a diagonal matrix whose diag-
onal entries are . If the images are of size ,
and the restoration filter has size , then is a vector
of length , a vector of length , and a matrix of
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size . Furthermore, let be an matrix
built from the data in such that would be the
raster-scan of . We also construct a new
variable .
Optimization problem (4) can be recasted as

subject to (5)

where

(6)

has zero entries except at the lower right corner, which has
an identity matrix. The objective function is
therefore quadratic in . We can further rearrange the terms
of the constraints in (5) to

(7)

(8)

These constraints are affine in . Therefore, the optimiza-
tion problem can be solved via quadratic programming.
The logarithmic barrier method can be constructed as fol-
lows: Let be the th row of and be
the th row of , where extends from 1 to

. The inequalities

(9)

(10)

for are therefore the same as (7) and (8). We
still have a constrained minimization problem to solve; but
instead of directly approaching it, we can form an uncon-
strained optimization problem by minimizing

(11)

where is a positive number. The logarithm terms act as
barriers to ensure that the arguments within them must
be positive, and the larger the value of , the stronger
the barriers [20]. Since this objective function is convex
in , it can be solved efficiently using methods such
as Newton. However, if is large, the Hessian varies
rapidly near the boundary of the feasible set and makes
the Newton iterations difficult numerically. Therefore,
the recommended steps are to solve (11) iteratively and
increase at each step, starting the Newton iteration from
the solution of the previous one. For other alternatives in
solving quadratic programming, such as the primal-dual
interior-point method, the reader can consult [27].

4) Fourth, we compute Note that
is not yet the optimal solution, because it produces

nearly binary signals only together with (3). Therefore,
this result should be used to fine-tune for the next estimate
of , as depicted in Fig. 2, with

(12)

Fig. 2. Model for recursive image filtering.

where [23].
5) Fifth, we go back to step (2) with this new estimate, and

increment the value of by one. If the values of
at that stage are already binary or very close to be, we will
terminate the looping and return as the restored
image. Otherwise, we will proceed within the loop.

III. SIMULATION

We apply the algorithm described above to the blind restora-
tion of several bi-level images. To demonstrate the effect of the
algorithm, we first consider a one-dimension example, which
can be considered a horizontal scan of a bar code [28] as de-
picted in Fig. 3.At the 15th position, there is a singular pixel
occupying the value while its neighbors take the value .
When this image is blurred by a simple averaging filter (i.e.,

) as shown in (c), the sharp transitions become
more gradual. Moreover, the intensity at the 15th position is now
positive. If we simply apply thresholding at this stage, the sin-
gular intensity value would be lost. Fine details would not be
preserved. On the other hand, if we apply the iterative decon-
volution scheme described in this brief, the results are shown
in (d) (with five iterations) and (e) (with ten iterations). In both
cases, we can observe that the singular value at the 15th posi-
tion is now restored to a negative value. If we perform thresh-
olding (setting the threshold at zero) after the image restoration,
we would correctly recover its intensity. Using more iterations
is seen to increase the margin between the threshold value and
the restored value at the singular point. This is very desirable to
withstand the effect of noise.

We also show, in Fig. 4, a plot of the value of the cost func-
tion in (5) with respect to the number of iterations. We perform
the simulation with in (12) ranging from 0.5 to 0.95. In each
iteration, the vertical bar covers the range of values within plus
or minus one standard deviation when different values for are
used. Note that iteration 0 refers to the cost function before any
optimization, and iteration 1 refers to the result of the first opti-
mization, both of which are unaffected by the choice of . We
can see that the optimization functional forms a decreasing se-
quence with respect to the number of iterations. This indicates
that the restored values are approaching , affirming that the
resulting images after restoration are closer to binary.

An example of restoration of a 2-D image is shown in Fig. 5.
The original text image of size 256 100 depicted in (a) takes
on only two possible intensity values, visually displayed as
black and white. It then undergoes a motion blur and added
with some Gaussian noise to give the image in (b). Shades
of gray appear as a result of the blurring. Even though we
can still read the letters, if we subject the image to a simple
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Fig. 3. Blind deconvolution of binary (1-D) images with the proposed scheme.
(a) Original image. (b) Blurred image. (c) After five iterations. (d) After 10
iterations.

thresholding operation, we will obtain the image in (c). Fine
details are lost, and the image makes it hard for tasks such as
pattern recognition or optical character recognition. However,
if we apply the blind deconvolution algorithm to the image in
(b), after 10 iterations we obtain the restored image as shown in
(d). The restored image evidently has increased high frequency
information, which after thresholding would return a rather
readable set of characters, as shown in (e). Similarly, we show
an example of a binarized map in Fig. 6 that has undergone

Fig. 4. Value of the optimization functional with respect to the iterations.

Fig. 5. Blind deconvolution of a binary (2-D) image with the proposed scheme.
(a) Original image. (b) Blurred and noisy image. (c) With simple thresholding.
(d) After 10 iterations. (e) After thresholding.

a 5 5 Gaussian blur to simulate defocus. As in the previous
case, random noise has also been added. Simple thresholding of
the blurred and noisy image again would render some texts un-
readable, while adding the restoration step before thresholding
improves the result.
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Fig. 6. Restoration of a binary image with Gaussian blur. (a) Blurred and noisy
image. (b) With simple thresholding. (c) After restoration and thresholding.

IV. SUMMARY AND CONCLUSION

In this brief, we have described a novel blind image deconvo-
lution method for restoring binary images. The prior knowledge
of a binary source is embedded in an optimization formulation,
which is tackled with an iterative quadratic programming algo-
rithm. Our preliminary results show that this method is capable
of restoring blurred images, which makes it suitable for machine
vision tasks such as pattern recognition. Further investigations
will focus on the issues of convergence and numerical stability,
as well as more extensive testing and fine-tuning of the algo-
rithm for images corrupted with more severe blurs.
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