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Abstract—Variable digital filters are useful for various signal
processing and communication applications where the frequency
characteristics, such as fractional delays and cutoff frequencies,
can be varied online. In this brief, we present a formulation
that allows the tradeoff between the total squared error and the
maximum deviation from the desired response in the passband
and stopband. With this formulation, the maximum deviation
can be reduced below the least-square solution with only a slight
change in the performance of the total squared error. Similarly,
the total squared error can be reduced below the minmax solution
with a minor change in the maximum deviation from the minmax
solution.

Index Terms—Least-square criterion, min—-max criterion, peak
gain constraint, variable digital filter (VDF).

1. INTRODUCTION

ARIABLE digital filters (VDFs) are digital filters with
Vcontrollable spectral characteristics such as variable
cutoff frequency, adjustable passband width and controllable
fractional delay [1]-[3]. These spectral characteristics can be
varied online. Variable digital filters have many applications
in different areas of signal processing and communications.
Examples include arbitrary sample rate changers, digital syn-
chronizers and other applications involving online tuning of
frequency characteristics [4], [S]. Fractional delay digital filters
have various important applications including timing adjust-
ment for digital receivers [4].

The least-square design criterion is commonly used to de-
sign Farrow-based [6] finite-impulse response (FIR) VDFs. This
criterion gives rise to a quadratic optimization problem [8]. A
linear programming technique has also been proposed for the
design of variable digital filters with minmax design error crite-
rion [3]. With a minmax criterion, the emphasis is to minimize
the maximum amplitude distortion of signals to be passed by a
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Fig. 1. VDF-Farrow structure.
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filter without taking into consideration the error energy. Thus,
minmax filters typically have high sidelobe energy. On the other
hand, the least-square error criterion is related to the noise gain
of the filter. This criterion is simple and easy to formulate. How-
ever, it results in the filters with low sidelobe energy but having
large errors near the discontinuities in the desired response.

In this brief, we investigate a design formulation for the
Farrow structure, [6], which allows a tradeoff between the
minmax and least-square criteria. This problem has been
initially investigated in [7]. The design formulation can be
formulated as a semi-infinite quadratic optimization problem
while the minmax problem can be formulated as a semi-infinite
linear optimization problem. Two numerical schemes with
adaptive grid size are presented for solving the semi-infinite
linear and quadratic optimization problems. Following from
the general window design [10], we show the tradeoff between
the integral squared error and the peak error for VDFs. The
minmax and least-square solutions are at the end points of
the tradeoff curve. Design examples show that starting from
the least-square solution, a reduction in the peak error can
be obtained at the expense of a small increase in the integral
squared error. Similarly, starting from the minmax solution, a
reduction in the integral squared error can be obtained at the
expense of a slight increase in the peak error. It is noted that
the presented scheme can be applied to the design of bandpass
and bandstop filters, proposed in [9].

The brief is organized as follows. The problem formulation
and optimization problem is given in Section II. Algorithms
for solving linear and quadratic semi-infinite optimization
problems that arise are given in Section III. Design examples
solved by using the optimization techniques are presented in
Section I'V. Finally, conclusions are given in Section V.

II. PROBLEM FORMULATION AND OPTIMIZATION PROBLEM

Consider the design of a VDF [6] depicted in Fig. 1. The
structure has L subfilters with z-transform H;(z),0 <1 < L—-1

N—-1

Hi(z) = Z hi(n)z™™ = hi ¢(2) (1)
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where h; = [h(0),. .., (N —1)]7 is the impulse response for
the I*" subfilter and ¢(z) = [1,..., 2V~ with []7 denoting
the transpose of a vector [-].

The frequency response of the VDF can be expressed as

H(e, 6 Z Hy(7°)6" = h''s(e?,6) 2
where h = [hZ,... hT |17 and
S(e7%,8) = [T ()80, ..., T ()L

We consider the design of a VDF with variable cutoff fre-
quency or variable fractional delay. The desired frequency re-
sponse for the filter can be given as

—jwr (o),

Ha(el,§) = {8 w € P(5)

w € S(6)

where P(6), S(6) and 7(§) are the passband and stopband re-
gions and the desired group delay, respectively, which can de-
pend on the tuning parameter §. For a low-pass filter, the pass-
band and stopband regions can be given as

P(6) = [~wp(8),wp(8)] and

S(6) =[-m, —ws(O)] U [ws(6), 7]-
The cutoff frequencies w,(¢) and w;(§) can be tunable with
respect to § and in general can be given as

wp(6) = wp + Bp(6) - 6 and wy () = wy + Bs(6) - 6
where w, and w, are passband and stopband cutoff frequencies
at & = 0. The desired group delay 7(6) is 7(8) = 74 + B-(6) - 6
where 74 is the desired group delay for 6 = 0.

Note that in literature [1], [5], various ranges for § have been
chosen. In this case, we chose the range of 6 as A = [0,1],
[1]. The functions 3,(6), Bs(6) and 3. (6) are continuous with
respect to the parameter §.

The filter is optimized over all 6 € A. The integral squared
error measure can be defined as the integration of the error de-
viation between H (e/*, §) and the desired frequency response
Hy(e*, 8) over all possibilities of § and w,

h):./A/Q((S)W(w,éﬂH(eW,é)— 2%, 8) Pdwds

3)
where Q(6) = P(6) U S(6) and W(w, d) are the weighting

function,

ifwe P(6)

W, (6),
W(“"S):{ ) itw e S(6)

Ws(6)7

with W,,(6) and W, (6) being the positive weighting factors.
Since we consider a real coefficient vector h, the cost function
in (3) can be reduced to the following quadratic function:

EMh)=h"Qh +p’h +c¢ 4)

25
where Q = R {fA Jos) W(w, 6)s(w, 8)sf (w, 6)dwd6}

p=—2R {/ W (w, 8)s(w, ) H(c7* 6)dwd6}
()

and ¢ = [, f9(6) (w, )| Ha(e?*, 6)|?dwds, with []#
noting the Hermitian transpose of a complex vector [-].
The least-square solution is obtained by minimizing the
quadratic cost function in (4). The solution to this optimization
problem can be expressed as hys = —(1/2)Q~!p. Denote
by Hrs(e’*,§) the corresponding frequency response of the
least-square solution. The maximum deviation level in the
passband and stopband for the least-square solution is

de-

yrs = max max W(w,8)|Hps(e!”,8) — Hq(e?, )|

S€EA weQ(8)

with the integral squared error Ers = F(hrgs).
For the minmax criterion, the optimization problem can be
formulated as

min max max W(w,8)|H (e, 8) —

Hy(e?)6)].
h 6€A weN(s) a(e’™, )| )

By introducing a positive parameter -y, the problem (5) can be
re-formulated as

miny
W (w,8)|H (e?*,8) — Ha(e?*,8)| < 7,Yw € Q(8),6 € A.

Furthermore, by using the real rotation theorem [11] and let-
ting z = [hT,~]7, this problem reduces to the following semi-
infinite linear programming problem with respect to the vector
z

. — bT
{ min f(2) z ©

g(w,6,A,2) <0, Vw € Q(),6 € Aand X € [0,1]

where b = [01 n, 1]7 with 01  isa 1 x N zero vector

g(w,6,1,2) = A(w, 6, \)z—
and A(w,6,\) = [[W(w §YR {s(e’*, 6

W (w, 5)R{Hd(ej‘; ,8)e/*™}
ez 47 1]

Denote by zyryr = [hfj Ao YM M] r the optimum solution
to the problem (6) with the maximum deviation level yys s and
the integral squared error F . Since the minmax solution has
the lowest maximum error deviation while the least-square so-
lution has the lowest integral squared error, we have Epg <
Enrar and yarar < yrs.

In the following, we present a design criterion that allows
the tradeoff between the minmax and the least-square criteria.
The optimization problem can be formulated as: minimizing the
integral squared error with the maximum error deviation being
restricted to be less than or equal to a positive value «

W(w,8)|H (e, 6) — Hy(e?*,6)| < a, Yw € Q(6),6 € A

where YM M S (0% S YLS- ObViously, Q= YMM and o = YLS
reduce to the minmax and the least-square solutions, respec-
tively. By varying « within the range [yarar, YLs], we observe
the tradeoff between the maximum deviation in the passband,
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stopband, and the integral squared error. The design problem
can be formulated as

W (w,8)|H(e?,8)— Hq(e'*,8)] < o,V w € Q6),6 € A.

in £(h

{ min (h)

By using the real rotation theorem [11], this problem can be

reduced to the following semi-infinite quadratic optimization
problem

{ m}}nf(h) =hTQh + pTh +¢

g(w,8,\,h) < a, Yw e Q(6), § € Aand X € [0,1],
where g(w,8,\,h) = Aj(w,8,\)h
— W (w, )R { Ha(e,8)e/*™} | (7)

and Ay (w,0,\) = [W(w,5)R {s(e*, 6)ej27r)\}]T

III. ALGORITHMS

The problems (6) and (7) are, respectively, semi-infinite linear
and quadratic optimization problems with three continuous pa-
rameters w, 6 and A. In the following, we present the scheme for
solving (7).

It can be seen from [11] that if a unit circle generated
by e/?™ for A € [0,1] is approximated by 16 points,
A = [0,1/16,...,15/16], then the difference between the
absolute complex value and the maximum discretized value is
relatively small. Thus, the number of discretization points K
for Aisset as K, = 16. In addition, denote by A the discretized
set for A with K points. The problem (7) reduces to

min f(h)
h . . 3)
g(w, 6, \,h) < a, YVw e Q(b), 6 € Aand X € A.

If the continuous set 2(8) for w is chosen from a fixed grid
set of size K, for all ¢, then the problem (8) reduces to a
quadratic optimization problem with K, K5 K constraints. For
the discretization problem obtained to be a good approximation
to the original problem, the integers K, and K should be
sufficiently large. Thus, the discretization problem has a large
number of constraints. To reduce the number of constraints, a
near active constraint scheme [12] is used to solve the optimiza-
tion problem. A discretized optimization method with adaptive
schemes for the grid set is employed, where a sequence of
adaptive grid points is constructed and the grids are refined
gradually.

Let F denote the feasible set for (8)

F=1{h:gw,8\h)<aVweQ®),5cAand) € A}.
9)
We have the following properties.
1) Property 3.1: There exists an M > 0 such that for any h
bounded in F, § € A and w, wy € P(8) or S(8), A € A, we
have

|g(w757)‘7h)_g(w1767/\7h)| SM|w_wl|' (10)

Proof: Assume that w and wy € P(6), which is the pass-
band. We have

lg(w, &, A, h) — g(w1, 6,2, h)]
W, (8)|R{(s(e’,8) —

+ Wy (8)[(e77) —
<SWp(6 Z| (eden — ederm)st) . |max|hl( )|

l,n

W, (8| — ¢

(1, 8))e7™ ) Th|
ejwlr(é))ej27r>\|

jw17(6)|.

(11)
Since
|ejwn _ ejw1n|

— |ejw1n(ej(w7w1)n _ 1)|

sin?((w — wy)n) + (cos((w — wy)n) — 1)2

= e+ (e (2520 )
< ¢ (= wn)? + (M) = Vo — il

and h is bounded, we have (10) where M = M, in the passband
with

M, = max V2W,,(8) sup [hi(n

)l Z n|8'| + |7()
(12)
Similarly, it can be shown that there exists M so that (10) is
satisfied in the stopband, i.e., for all w and wy € S(6). Thus, M
is chosen M = max{M,, M,}. O
2) Property 3.2: For all € > 0 there exists a grid 24(6) C
Q(6), § € A, such that

max max min

(13)
seA weQ(8) w1€Q4(8)

lw —wi| < -
M
Any feasible solution to

min f(h)
gw, 5, \,h) <a—e, Vwe Q(6), 5 € Aand X € A.
(14
is also a feasible solution to (8). .
Proof: Let h be a feasible solution of (14). For all 6 € A
and w € €2(8), it follows from (13) that there exist an w; €
4(6) in the same region as w, such that |w —w| < ¢/M. Thus

g(w757)‘7h) - g(wlvév/\vh) < |g(w767/\7h) - g(w1757)‘7h)|
<Mlw—wi| <e

Hence, g(w, 8, A\, h) < e4g(w1, 6, A, h) < «. This completes
the proof. O
In many cases, the number of constraints turns out to be too
large to be handled. Thus, a near active set constraint scheme
is used which includes a procedure to eliminate unnecessary
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constraints in (14), [12]. This can be done by restricting w to
a smaller subset Q5 (6) C Q4(0)

QG (6) = {w € Qq(6) : g(w,8, A, h) > o — ¢; for some A}

where €1 > . The problem (14) with the smaller subset ' (6)
becomes

min f(z)
g(w,8,\,h) < —¢, Yw € Q7 (6), 6 € Aand X € A.
15)
The advantage of the method is that it concentrates on the con-
straints near the active points. In general, the number of points in
Q7' (6) would be significantly smaller than the number of points
in ©Q4(6). Thus, the complexity for solving (15) is considerably
less than solving (14).
The adaptive discretization scheme for the problem (14) is
presented in the following.
3) Procedure 3.1: Discretized quadratic programming
problem using adaptive grid scheme.

* Step 1: Set the number of discretization points I{s for A with
the discretization set A. Initialize two positive numbers ¢ and

€1 where €1 > €. In this brief, the value of €; is chosen as

€ = max{2e, 1()72.} Set the value of A, depending on e. Denote
by €2(6) the corresponding uniform discretization set for £2(4) with
K, grid points.

« Step 2: If h has not been initialized, then set X’ as the set consisting
of all discretized (w, é) in Step 1 and go to Step 3. Otherwise, let X'
be the set consisting of (w, §) such that

X ={(w,8), w€Q®), s € A: W(w,8)
hls(e’”,8) — Hy(e’,8)| > a—er}. (16)

As can be seen from (16), we do not need to discretize A.

* Step 3: Solve the problem (8) with the constraint g(w, 8, A, h) < a—e
where (w,8) € X', X € A and h as the initial solution. Update h
as the solution obtained.

e Step 4: If K, < K™ where K" is the maximum number of
discretized points for w, then set 2/, — K., and update the uniform
discretization sets €2(6) for all 6 € A. Otherwise, €2(5) remains the
same. If € is greater than a small tolerance, then reduce the value of
€, €/2 — ¢, update the value of ¢; and return to Step 2. Otherwise,
go to Step 5.

* Step 5: Stop the procedure. O

For the problem (6), a scheme similar to that described in
Procedure 3.1 can be used for the discretized linear optimization
problem with adaptive grid points. The variable in this case is

T 1T .
z = [h',~]" instead of h.

IV. DESIGN EXAMPLES

Case 1: Consider the design of a low-pass VDF with vari-
able cutoff frequency. The desired delay 7(w) is constant with
respect to the parameter 6. The passband and stopband cutoff
frequencies w,(¢) and w4(6) change linearly with respect to ¢
with 3,(8) = Bs(6) = 0.267 for all § € [0,1].

Initial passband and stopband cutoff frequencies are
wp = 0.27 and ws; = 0.47. Thus, when ¢ changes from O to 1,

27
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Fig. 2. VDF with variable cutoff frequency. Integral squared error versus
minmax error for different desired delay 7.

20 T T T T T T T T

Frequency response [dB]
A
3
T

~100 L L 1 1 ! 1
0 0.1 0.2 0.3 0.4 05 06 07 08 0.9 1

ol

Fig. 3. VDF with variable cutoff frequency. Frequency response of the filters
with least-square criterion and 7(6) = 74 = 10.

the normalized passband region increases from [—0.27, 0.27]
to [—0.47,0.47] while the stopband region reduces from
[-7, —0.47] U [0.47, 7] to [-7, —0.67] U [0.67, 7]. The length
of the filter is N = 21 and L = 5. The weighting function
is one in the passband and the stopband, W, = W, = 1. In
addition, the value of K is Ks = 128 while K** = 256.

Fig. 2 shows the tradeoff between the integral squared error
and the maximum error for cases with the desired delay being
reduced from 10 to 6. The least-square and minmax solutions
are the extreme points of the curves. It can be seen that the max-
imum error can be reduced from the least-square solution with
a minor change in the integral squared error by incorporating
the constraints in the maximum deviation. Similarly, the integral
squared error can be reduced from the minmax solution with a
minor change in the maximum error. In addition, the maximum
error and the integral squared error increase with a reduction in
the desired delay.

Figs. 3 and 4 show the frequency responses of the VDF
with least-square and minmax criteria. The passband cutoff
frequency increases from 0.27 to 0.4w. The minmax filters
have approximately the same levels in the stopband while the
least-square filters have low stopband energy.

Case 2: Consider the design of a low-pass VDF over
continuous tuning parameter § with variable delay. The
passband and stopband regions are kept constant with
Bp(6) = ps(6) = 0, V6. The passband and stopband
cutoff frequencies are given by w,(§) = w, = 0.27 and
ws(6) = ws = 0.4, V6. The desired delay changes linearly
over one sample delay with 3.(6) = é. Thus, when § = 0, we
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Fig. 6. VDF with variable delay. Frequency response of the filters with least-
square criterion and 7, = 6 for different 6.

have 7(6) = 74 and when 6 = 1 we have 7(6) = 74 + 1. The
values of IV and L are chosen the same as in Example 1.

The tradeoff between the least-square and the minmax so-
lutions is shown in Fig. 5 for cases with the desired delay re-
duced from 10 to 6. The maximum error and integral squared
error are increased when the desired delay is decreased. Sim-
ilar to the first case, the maximum error can be reduced from
the least-square solution with a minor change on the integral
squared error while the integral squared error can be reduced
from the minmax solution.

Figs. 6 and 7 plot the frequency response and the group delay
for the optimized VDF over continuous tuning parameter range
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Fig. 7. Group delay VDF with variable delay and least-squared criterion with
74 = 6 and different 8.

6 with the least-square criterion. The desired group delay is in-
creased from 7y = 6toTg+1=7.

V. CONCLUSION

In this brief, we have investigated the design of VDF with
least-square criterion and peak gain constraint. We have shown
that a tradeoff can be achieved between the maximum error
and the total squared error. The maximum deviation can be re-
duced below the least-square solution with a minor change in
the performance of the total squared error. Similarly, the total
squared error can be considerably reduced below the minmax
solution with a slightly increase in the maximum deviation from
the minmax solution. In addition, efficient numerical schemes
with adaptive grid size are presented for solving the optimiza-
tion problems.
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