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Abstract— This paper presents a fully-integrated NEMS res-
onator, operable at frequencies in the MHz range, together with a
compact built-in CMOS interfacing circuitry. The proposed low-
power CCII circuit allows detailed read-out of the nanocantilever
structure for either extraction of equivalent circuit models
or comparative studies at different pressure and DC biasing
conditions. In this sense, extensive experimental results are
presented for a real mixed electro-mechanical system integrated
through a combination of in-house standard CMOS technology
and nanodevice post-processing by nanostencil lithography. The
proposed read-out scheme can be easily adapted to operate the
nanocantilever in closed loop operation as a stand alone NEMS
oscillator.

Index Terms— Low-power, current-conveyor, CMOS, NEMS,
resonator, read-out.

I. INTRODUCTION

IT is well known that the semiconductor market exhibits
an increasing demand on products for mobile applications,

requiring in general very low-power and compact integrated
circuits. In this sense, nanotechnologies seem a suitable partner
for CMOS circuits, since mechanical implementations may
achieve larger power savings and size reductions than their
electronic counterparts. In particular, micro and nanoelec-
tromechanical systems (M/NEMS) are good candidates to
replace the costly and bulky quartz crystal devices in integrated
oscillators [1], [2] or to operate as integrated sensors [3], [4].
Hence, there is a real need not only for CMOS compatible
NEMS resonators but also for specific MOS circuits required
for their test and operation in future mixed electro-mechanical
systems-on-chip.

This paper presents a fully-integrated nanocantilever, op-
erable at frequencies in the MHz range, together with a
specific built-in low-power CMOS read-out circuit for its
experimental characterization and interfacing (e.g. closed loop
operation as stand alone oscillator). The NEMS fabrication
is based on nanostencil lithography [5], while a new low-
power CMOS topology is introduced for the interface circuit in
terms of second generation current conveyors (CCII) [6]. The
mixed electro-mechanical system is finally integrated through
a combination of in-house standard CMOS technology and
nanodevice post-processing [7].
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Next section makes a short introduction to the overall mixed
NEMS/CMOS system to be integrated. Then, an equivalent cir-
cuit is explained in Section III for modeling the nanoresonator
itself. The novel low-power CCII CMOS topology for the
interfacing circuit is proposed in Section IV, while Section V
presents a mixed integrated example and its experimental
results. Finally, conclusions are summarized in Section VI.

II. RESONATOR READ-OUT

In general, NEMS resonators based on nanocantilevers
include the main parts shown in Figure 1(a), where its ideal
read-out scheme is also illustrated. The device consists of a
driver, mechanically fixed, and a cantilever placed in parallel
very close to the driver and anchored only at one end, so it
can freely bend around the static position at a given oscillation
frequency.
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Fig. 1. NEMS ideal read-out scheme (a) and proposed monolithic CMOS
solution (b).

Under read-out operation, the fixed driver is devoted to bias
the required DC voltage Vbias − Vref (typ. 1V to 20V) and
to act as the input terminal for the frequency stimulation Vosc

(typ. -30dBm to 0dBm). On the other hand, the cantilever
plays the role of the output terminal, allowing the read-out
of the NEMS resonator current Ires (typ. in the range of nA)
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and the corresponding voltage signal Vmeas at the load resistor
Rload. The resonance frequency fres (typ. 1MHz to 10MHz)
depends on the cantilever material and dimensions, as detailed
in Section III.

Unfortunately, the ideal read-out scheme of Figure 1(a) is
not feasible in practice due to the MΩ range values of the
NEMS resonator impedance around fres, which limits the
allowed parasitic capacitance at the output port Cpar far below
the pF range. Hence, a built-in interface circuit is required.
Several implementations based on the passive integration of
Ires through Cpar have been reported in the literature [2], [8],
[9]. However, the resulting integration gain is still strongly
dependent on the layout parasitics. In order to overcome this
issue, the alternative approach of Figure 1(b) is proposed,
where a built-in CMOS CCII is inserted at the output electrode.
This new scenario is not only suitable to ensure parasitic
capacitance values for Cpar in the sub-pF range, but it also
minimizes Cpar effects by keeping a constant voltage bias
at this electrode. Furthermore, the proposed CCII interface
supplies flat spectral amplification of Ires for either external
measurement at Vmeas or internal feedback to Vosc (e.g. stand
alone oscillator), as analyzed in Section IV.

III. NEMS TECHNOLOGY AND DEVICE MODEL

The basis of the fabrication process is described in [8]
and consists of post-processing standard CMOS wafers. Only
a required area of poly-silicon for the nanodevice must be
reserved during CMOS integration. However, the novelty here
is the lithography process itself, from which an enhanced
resolution down to 200nm and a higher fabrication throughput
are obtained [7] by applying a full-wafer and parallel nanopat-
terning technique named nanostencil lithography (nSL) [5].
In this new process, after concluding the fabrication of the
CMOS circuits, the integration area is selectively patterned
with a 80nm thick aluminum layer by nSL. Subsequent process
steps consist on reactive ion etching of silicon to transfer the
aluminum pattern to the poly-silicon structural layer, wafer
dicing and silicon oxide wet etching to release the mechani-
cal structure. Following this procedure, lateral resolutions of
200nm can be routinely achieved, while surrounding CMOS
circuits show no degradation of their analog performance.
Further details about this specific NEMS technology can be
found in a recent work reported by these authors [7]. As a
result of the above CMOS post-processing, the poly-silicon
structure of Figure 2(a) is obtained, where W , L, H and D
stand for the cantilever width, length, height and gap to driver,
respectively. In our case, the typical dimensions for the NEMS
device are listed in Table I.

TABLE I
PHYSICAL DIMENSIONS OF THE NEMS RESONATOR OF FIGURE 2.

Parameter Value Units

W 265 nm
L 14.5 µm
H 580 nm
D 650 nm
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Fig. 2. Physical (a) and equivalent circuit model (b) of the NEMS resonator.
Top drawing not in scale.

In general, the resonance frequency for a given oscillation
mode i of a mechanical resonator is given by:

fi =
1
2π

√
ki

meff
(1)

where ki and meff are the spring constant and the effective
mass, both depend on the oscillation mode and on the force
loading distribution and point of application (air damping is
neglected). In our case, we consider the fundamental mode
that corresponds to a lateral flexion. Supposing undamped
(i.e. ideal vacuum) operation, the analytical expression of
the natural (i.e. without any electrostatic force) resonance
frequency of this mode is found to be [10]:

fres =
1.015
2π

√
E

ρ

W

L2
(2)

where E and ρ stand for the Young’s modulus and the mass
density of the nanocantilever material, respectively.

The signal transduction is based on capacitive detection.
Around the resonance frequency of the considered mode, the
nanocantilever moves laterally and its mechanical motion is
translated into an electrical signal, subsequently collected and
processed by the read-out circuit. In fact, the capacitive current
generated by a two-electrodes configuration can be described
as:

Ires =
dQres

dt

= (Cstat + Cmot)
dVosc

dt
+ (Vbias − Vref + Vosc)

dCmot

dt

' Cstat
dVosc

dt
+ (Vbias − Vref )

dCmot

dt
(3)

where Cstat and Cmot are the static plate and the motion
capacitances, respectively. Thus, the NEMS current can be
understood as a sum of two contributions: one arising from the
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static structure (i.e. Cstat
dVosc

dt ) and the other coming from the
nanocantilever motion itself (i.e. (Vbias − Vref )dCmot

dt ). This
second part allows the measure of the frequency response of
the mechanical resonator.

In practice, either due to air environment or other second
order effects, the NEMS resonator can exhibit important losses
that translate into a decrease of its quality factor Q. In these
cases, the nanomechanical resonator can be described through
a small signal equivalent RLC model [1], as depicted in
Figure 2(b). The main physical parameters of this model
are the cantilever dissipation, mass and elasticity, which are
electrically equivalent to Rres, Lres and Cres respectively:

Rres =

√
k0meff

Qη2
Cstat = ε0

HL

D

Lres =
meff

η2

Cres =
η2

k0
η = ε0

HL(Vbias − Vref )
D2

(4)

where η and ε0 stand for the electromechanical coupling
coefficient and the vacuum dielectric constant, respectively.
In addition, the cantilever output capacitance Ccant and the
fringing coupling to the driver Ccoup are included here, while
the driver own capacitance Cdriv can be neglected according
to the read-out scheme of Figure 1. Unfortunately, analytical
expressions for Rres are difficult to obtain, so Q is usually
extracted from experimental data, as illustrated in Section V.

IV. CMOS CURRENT CONVEYOR CIRCUIT

As stated in Section II, the aim of the CMOS interfacing
circuit in Figure 1 is both to ensure a constant bias at the
output of the NEMS resonator and to read-out its current. For
this purpose, the compact CMOS circuit shown in Figure 3
is proposed. Basically, this block consists of an input low-
impedance stage (M1-M4) and an output current scaler (M5-
M12).
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Fig. 3. Simplified schematic of the CMOS CCII- circuit.

On one hand, the input low-impedance is achieved by the
cascode transistor M4. Its gate is continuously regulated by

the telescopic differential amplifier M1-M3, whose negative
feedback tends to compensate any difference between VX and
VY . As a result, this input stage behaves like a voltage source
VX controlled by VY , sinking or sourcing the Ires current
demanded by the NEMS resonator. In this sense, the Ires full
scale that can drive the CCII- circuit from X is defined by
its Class-A bias level Ibias. According to the advanced EKV
MOSFET model [11], the small-signal input resistance of this
controlled voltage source is found to be:

rin =

(
1

n + gmg1
gmd1

)
1

gmg4
(5)

where n stands for the subthreshold slope factor. Hence, the
error amplifier M1 scales down rin by its gain factor gmg1

gmd1

compared to the impedance of the single M4 transistor 1
gmg4

.
On the other hand, the NEMS current sensed by M4 is

amplified by the geometry scaling factors M and N of
the two-stage cascode current mirrors M5-M8 and M9-M12
biased at Vcasp and Vcasn, respectively. In order to reduce the
overall power consumption, a K/M fraction of the biasing is
subtracted before the second amplification stage.

In conclusion, the proposed circuit qualitatively behaves like
a classic CCII- [6], but with an extra gain from the IX to IZ

signals:  IY

VX

IZ

 =

 0 0 0
1 0 0
0 −MN 0

 VY

IX

VZ

 (6)

In fact, the new CCII- topology introduced in Figure 3 is an
improvement of the input stage [12] in order to allows a wider
voltage range for both VX and VY thanks to the symmetry of
the M1 and M2 drain connections. Also, compared to other
similar CCII- evolutions like [13], [14], the proposed circuit
saves power consumption by minimizing the transistor count
of the input stage.

Applying the circuit model (6) to the general read-out
scheme of Figure 1, we obtain the final design equations:

∆Vmeas = RloadMN∆Ires (7)

Vcant ≡ Vref (8)

where Vcant stands for the voltage biasing at the NEMS
resonator output. The MOS device dimensions for the pro-
posed CCII- are listed in Table II, while the resulting electrical
specifications are summarized in Table III for a typical set of
design values.

V. INTEGRATION AND RESULTS

Following the proposals of Sections III and IV, a compact
1.5MHz NEMS resonator together with the CMOS interfacing
circuit has been integrated through the in-house standard
CMOS double poly-silicon technology and the full-wafer post-
processing steps based on nanostencil lithography described
in [7]. The resulting size of the mixed electro-mechanical
system without pads is about 800µm×400µm (0.32mm2), as
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TABLE II
DEVICE DIMENSIONS FOR THE CCII- OF FIGURE 3

Transistor W
L

[ µm
µm ]

M1-2 4× 30/5

M3 2× 15/10

M4 30/3

M5-6 10/5

M7-8 M × 10/5

M9-10 50/5

M11-12 N × 50/5

TABLE III
OVERALL SPECIFICATIONS OF THE READ-OUT CIRCUIT FOR Ibias=10µA,

M=N=10, K=9 AND Rload=700Ω

Parameter Value Units

Transimpedance 70 kΩ
Bandwidth 7.5 MHz
In-band input impedance <3 kΩ
In-band input current noise 0.5 pA/

√
Hz

Supply voltage 5 V
Current consumption 230 µA
Load capacitance 30 pF

shown in Figure 4. Since the in-house CMOS technology is
a 2.5µm lithography process, a considerably smaller imple-
mentation can be obtained using modern submicron CMOS
technologies.

Taking advantage of the built-in interfacing circuit, the
NEMS resonator has been tested. In this sense, the typical
transfer function of the nanoresonator is depicted in Fig-
ure 5. As it can be easily seen, the NEMS device exhibits a
clear and narrow mechanical resonance around fres=1.5MHz,
showing important magnitude losses outside this band. All
magnitude transfer functions in this section are normalized to
RloadMN/Rres'−55dB. In case of fully integrated closed
loop operation (e.g. stand alone oscillator), this attenuation
factor can be easily compensated to 0dB by choosing larger
M , N and Rload design values, as the CCII- load capacitance
is then Cdriv � Cload. From the Q factor and the Vbias-Vref

DC biasing of Figure 5, the model parameters of Table IV
are deduced. The same nanocantilever has been measured
for different environment pressure conditions in Figure 6,
returning very good results at vacuum levels below 10Pa.
Finally, a comparison between vacuum and air environments
for different biasing levels has been also tested in Figure 7.
These results verify the dependence of the resonance frequency
on the square of the DC biasing for electrostatically actuated
NEMS resonators, and the decrease of its resonance quality
factor due to air damping losses.

VI. CONCLUSIONS

A compact NEMS resonator with built-in CMOS interfacing
circuitry has been successfully integrated and experimentally
tested. The new low-power CCII read-out circuit allows de-
tailed measurements of the nanocantilever structure in the

CCII- CMOS circuit

NEMS device

Nano-cantilever

10 m¹

50 m¹

200 m¹

Fig. 4. Microscope photographies of the mixed NEMS and CMOS circuit.
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Fig. 5. Experimental NEMS transfer function in vacuum (0.9Pa) for Vbias-
Vref=2V, Vosc=-26dBm, resulting in fres'1.5MHz and Q'8000.
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TABLE IV
TYPICAL MODEL PARAMETERS FOR THE NEMS RESONATOR OF FIGURE 2.

Parameter Value Units

Rres 40 MΩ

Lres 33 kH
Cres 0.34 aF
Cstat + Ccoup 275 aF
Ccant <50 fF
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Fig. 6. Experimental NEMS transfer function for different vacuum levels
and Vbias-Vref=1V, Vosc=-17dBm and fres'1.5MHz.

MHz range for either extraction of equivalent circuit models
or comparative studies at different pressure and DC biasing
conditions. In this sense, the proposed interfacing circuit can
be easily adapted (e.g. choosing a larger value for Rload) to
operate the nanocantilever in closed loop operation as a mixed
electro-mechanical stand alone oscillator.
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