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Abstract—A new algorithm for determining the output frequency range and the frequency components of Volterra 

models under multiple inputs is introduced for nonlinear system analysis. For a given Volterra model, the output 
frequency components corresponding to a multi-tone input can easily be calculated using the new algorithm. 

 

 
Index Terms—generalized frequency response functions, nonlinear systems, output spectrum, Volterra models. 

 

I. INTRODUCTION 

ne important aspect of system analysis in the frequency domain is the requirement to investigate the 
relationship between the system input frequencies and the output frequency behaviour. For linear systems, 

the output frequency function )( ωjY is related to the input frequency spectrum )( ωjU by the system frequency 

response function )( ωjH via the simple linear relationship )()()( ωωω jUjHjY = . This simple basic result 

provides the foundation for all linear system analysis and design in the frequency domain. In this case, the input 
frequencies pass independently through the system, that is, an input at a given frequency ω produces at steady 
state an output at the same frequency and no energy is transferred to or from any other frequency components. 
The system frequency response function )( ωjH itself alone can totally characterise a given linear system. For 

nonlinear systems, however, this is not true. It has been observed that the output frequency components of 
nonlinear systems are much richer compared to the corresponding input frequencies. The input frequencies pass 
in a coupled way through a nonlinear system, that is, an input at given frequencies may produce quite different 
output frequencies. This is quite different from the case for linear systems where the output frequency range is 
identical in steady state to that of the inputs. This makes it difficult to give a general explicit expression 
connecting the input and output frequencies for most nonlinear systems. However, for some specified inputs, 
explicit algorithms are available to determine the output frequency range [1]. 

This study presents a new and much simpler algorithm for the determination of the output frequency range 
and the frequency components for Volterra models under multitone inputs. This is very useful for the analysis of 
nonlinear systems in the frequency domain.  

 

II. GENERALIZED FREQUENCY RESPONSE FUNCTIONS FOR NONLINEAR SYSTEMS 

It is well known that the input-output relationship of a wide class of nonlinear systems can be approximated in 
the time domain by the Volterra functional series [4]. 
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where the system output y(t) is expressed as a sum of the response of L parallel subsystems, each of which is 
related to both the system input u(t) and an nth-order kernel. The output of the nth-order nonlinear 
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subsystem, )(tyn , is characterised by an extension of the familiar convolution integral of linear systems theory 

to higher dimensions 
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where the nth-order kernel or nth-order impulse response ),,( 1 nnh ττ   is so called because this reduces to the 

linear impulse response function for the simplest case n=1. By introducing the concept of the nth-order 
associated function [4] and then taking the multidimensional Fourier transform of the associated function, yields 
from (2) 
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where )(⋅U is the input spectrum defined as the Fourier transform operator. ),,( 1 nn jjH ωω   is the nth-order 
transfer function or nth-order generalised frequency response function (GFRF) defined as  
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Following [1] and [3], it can easily be shown that 
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By making a change of variables 
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Eq. (5) becomes 
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where 
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From (1) and (7) 
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Therefore, the system output frequency response or output spectrum to a given general input u(t) is 
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where nΩ  is the effective frequency domain of the nth-order output frequency function )( ωjYn .  The family 

};,,{ 1 ωωω n  in Eq (8) was referred to as the input-output frequency domain in [3]. The output 

spectrum )( ωjYn can therefore be referred to as the nth-order output frequency (response) function or output 

spectrum. For a physical interpretation of (5) and (8), see [1][3].  Note from the variable transform (6) that the 

input-output frequency domain is restricted to ωωω =++ n1 . The valid frequency range of the output 

spectrum can therefore be determined provided that the input frequencies are known. 
 

III.  DETERMINING OUTPUT FREQUENCIES UNDER MULTIPLE INPUTS 

This section presents a useful result on calculating the output frequencies of nonlinear systems which can be 
described by the Voterra series. 

A. Description of Output Frequencies 

As a simple example, consider a simple case, where a nonlinear system is driven by a sinusoidal signal 
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Substituting (11) into (2), yields [2] 
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From (12), the input to the nth-order submodel )(tyn contains only one single principal frequency 

component 0ω , the output of the nth-order submodel )(tyn , however, contains many frequency components 

distributed at 0ωn± , 0)2( ω−± n , ,)4( 0ω−± n . For example, for the linear submodel of the nonlinear 

system (1), the output frequencies include0ω± ; for the 2nd-order nonlinear subsystem, the output frequencies 

will appear at 0 and 02ω± . 

For a general case, where the input is a summation of multiple sinusoidal waves 
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with 00 =ω , ii ωω −=− , 00 =A , ii AA =− , the output of the nth-order submodel )(tyn can be 
calculated to be [1] 
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where 
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Following [1], the nth-order output frequency function )( ωjYn  can be expressed as 
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As will be shown in the next section, the output frequency components of the nth-order submodel )(tyn will be 

much richer compared with the input frequency components since each frequency component ω  determined by 

the combination ∑
=

=
n

i
ki

1

ωω with },,2,1{ Kk i ±±±∈   might appear in the output frequency domain. An 

important point is that these possible output frequency components can be determined beforehand once the 
frequency components in the multiple input are given. 

B. An Algorithm for Determining the Output Frequency Range  

It is observed that the output frequency components of nonlinear systems are much richer compared to the 
corresponding input frequencies. The input frequencies will pass in a coupled way through a nonlinear system, 
that is, an input at given frequencies may produce quite different output frequencies. Therefore energy may be 
transferred to or from other frequency components. This is quite different from the case for linear systems where 
the output frequency range is identical in steady state to that of the input. It would be difficult to give a general 
explicit expression connecting the input and output frequencies for all nonlinear systems. However, for some 
specified inputs, explicit algorithms are available to determine the effective frequency range for arbitrary order 
output frequency response functions. Lang and Billings [1] proposed an algorithm to compute the frequency 
range of the arbitrary order output frequency function )( ωjYn  defined by (7) and (8). In this study, however, a 

much improved and compact recursive algorithm is proposed for calculating the effective frequency range of 
arbitrary order output frequency functions. 

From (7) and (8), the input and output frequencies for the nth-order subsystem with a multiple input of the 
form (13) will be constrained by 
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This will be used to determine the frequency range of the nth-order output frequency function.  For convenience 
of description, denote 
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For the simplest case of n=1, it is clear that the effective frequency range of the output spectrum is 

},,1:{}2,,2,1:{1 KkKk kk ±±====Ω∈  ωσω . 

In order to determine the effective frequency range 2Ω for the case of n=2, consider the following 

combinations of two frequency components 
 






















+

+

+

+
+

+

KK

K

K

K

22

12

22

12

21

11

     

     

     

     

σσ

σσ

σσ

σσ
σσ

σσ









                                                        (19) 

 
This can be expressed in a vector form as 
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For a given vector T
pxxxX ],,,[ 21 = , let SX  denote a set whose elements are formed by the 

entities of X in the sense that }1:{ pixX i
S ≤≤= . It can easily be proved that all the different 

entities of the vectorS
2Γ  are identical to all the effective frequency components of the second 

order output frequency function )(2 ωjY . Note that some entities in the vectorS
2Γ  may be the 
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same. Therefore S
2Γ  is redundant for determining the effective frequency components 

of )(2 ωjY .   

In general, the effective frequency components of the nth order output frequency function )( ωjYn  can be 

calculated using the recursive algorithm below: 
 
Algorithm 1    Assume that a nonlinear system is excited by a multiple input signal u(t) of the form (13) with K 

fundamental frequency components , },,,{ 21 Kωωω  . The effective frequency components of the nth-order 

output frequency function can be determined by searching all the different entities of nΩ ,  which is defined as 
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where V is defined as in (20), >Ω>=<Γ< −− 11 n
S
n indicates the number of entities  in the vector 

1−Γn , and 
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The above recursive algorithm is very simple and quite easy to implement using vector-oriented software tools.  

As an example, consider the case of K=3, 1ω =2, 2ω =3 and 3ω =7. For n=2 and 3, the frequency components of 

the output frequency functions were calculated to be 2Ω ={0,±1, ±4, ±5, ±6, ±9, ±10, ±14} and 3Ω ={±1, ±2, 

±3, ±4, ±6, ±7, ±8, ±9, ±11, ±12, ±13, ±16, ±17, ±21}. 
 

Proof of Algorithm 1   Assume that all the different entities of the vectornΓ  are identical to all the effective 

frequency components of the nth-order output frequency function )( ωjYn . Let Tn
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n
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)(1 ωjYn+  can then be determined by inspecting the following combinations: 
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Similar to (25), the above equation can be expressed in a vector form as 
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This is just (23). Therefore, Algorithm 1 can be used to determine the effective frequency range for the arbitrary 

order output frequency function )( ωjYn . Note that some entities in nΓ  are the same and nΓ  is often redundant 

for determining the effective frequency components of the nth-order output frequency function )( ωjYn . 

It is known that the positive and negative frequencies are symmetrical about the origin, therefore only the 
non-negative frequencies need to be calculated. It can easily be shown that the non-negative frequency 

components of the nth-order output frequency function )( ωjYn  can be calculated using the recursive algorithm 

below: 
 
Algorithm 2    Assume that a nonlinear system is excited by a multiple input signal u(t) of the form (13) with K 

fundamental frequency components , },,,{ 211 Kωωω =Ω . The non-negative frequency components of the 

nth order output frequency function can be determined by searching all the different entities of +Ωn ,  which is 

defined as 
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where V is defined as in (20), mI  is defined by (25), and S
n || Γ  is a set whose elements are composed by all the 

different entities of the vectornΓ by taking absolute values. 

Algorithm 2 can be proved in the same way as Algorithm 1. The recursive algorithm is very simple and quite 
easy to implement using vector-oriented software tools. For the case of n=2, (29) becomes 
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Clearly, the absolute values of all the different entities of the vector 2Γ  are identical to all the non-negative 

frequency components of the second order output frequency function)(2 ωjY . 

As an example, consider the case of K=3, 11 2 fπω = , 22 2 fπω = , 33 2 fπω =  with 1f =2, 2f =3 and 3f =7. 

For n=3, the non-negative frequency components of the output frequency functions were calculated to be 
+Ω3 ={1,2,3,4,6,7,8,9, 11,12,13,16,17,21}. 

 

IV.  CONCLUSION 

A new algorithm has been introduced to determine the output frequency range and the frequency components 
for the Volterra class of nonlinear systems with multitone inputs. The new algorithm is quite simple and easy to 
implement using vector and matrix-oriented software tools. Thus compared to previous results [1], the new 
algorithm is more compact in form and much simpler to implement. 
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