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A New Method for Designing Causal Stable IIR
Variable Fractional Delay Digital Filters
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Abstract—This paper studies the design of causal stable Farrow-
based infinite-impulse response (IIR) variable fractional delay dig-
ital filters (VFDDFs), whose subfilters have a common denomi-
nator. This structure has the advantages of reduced implementa-
tion complexity and avoiding undesirable transient response when
tuning the spectral parameter in the Farrow structure. The design
of such IIR VFDDFs is based on a new model reduction technique
which is able to incorporate prescribed flatness and peak error con-
straints to the IIR VFDDF under the second order cone program-
ming framework. Design example is given to demonstrate the ef-
fectiveness of the proposed approach.

Index Terms—Constrained model reduction, delay filter, infinite-
impulse response (IIR), variable digital filter (VDF).

I. INTRODUCTION

VARIABLE fractional delay digital filters (VFDDFs) find
important applications in signal processing and com-

munications [1]–[3]. They are useful to the implementation
of arbitrary sample rate converters [4], digital synchronizers
[5] and other related applications. VFDDFs are also a kind of
variable digital filters (VDFs) where online tuning of frequency
characteristics is required. A number of useful methods for
designing Farrow-based finite-impulse response (FIR) VDFs,
namely weighted least squares [2], [6], linear programming
[7], semidefinite programming [4] and second order cone
programming (SOCP) [8], have been proposed. The latter two
approaches are able to design both linear-phase and low-delay
FIR VDFs with either minimax or LS criterion subject to wide
variety of constraints.

IIR VDFs, on the other hand, have also received considerable
attention for their potential advantages of lower system delay,
sharper cutoff and higher stopband attenuation over their FIR
counterparts. However, the design of IIR VDFs is usually com-
plicated by the highly nonlinear objective functions and stability
constraints [3], [9]–[12]. Therefore, most conventional methods
mainly focus on how the stability can be guaranteed. For the
design of IIR VFFDFs, [3] and [10] proposed to employ allpass
filters to simplify the design problem. Also, they mentioned that
due to the unit magnitude of allpass filters, the available degree
of freedom will be reduced as compared with general IIR filters.
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More recently, an optimization method for designing VFDDFs
using general IIR filters was proposed in [12]. All these ap-
proaches assume that the numerator and denominator or the
poles and zeros of the IIR VFDDFs are functions of the spectral
parameter. This structure will however suffer from undesirable
transient responses because the states of the IIR VFDDFs are
abruptly changed during the parameter tuning process [13]. An-
other useful method proposed in [6] for designing IIR VDFs is
based on model reduction of FIR prototype filters. In addition
to its simple design procedure, the advantage of the model re-
duction approach is that the resulting IIR filter is guaranteed to
be stable, and the frequency characteristics is well preserved.
However, it does not allow precise control of the frequency re-
sponse and incorporation of other constraints, such as prescribed
number of zeros and peak error constraints.

In this paper, we study the design problem of causal stable
IIR VFDDFs whose subfilters have a common denominator.
This structure can avoid undesirable transient response during
parameter tuning and reduce the implementation complexity.
Moreover, a new design method for IIR VFDDFs using a
new constrained model reduction technique is proposed. This
method, which can be viewed as a modification of the model
reduction technique proposed in [14], has been successfully
applied to the design of casual stable IIR filters [15] with
prescribed flatness and peak error constraints.

Important advantages of the proposed method are that the nu-
merator and denominator are determined separately and the sta-
bility of the model-reduced filter is guaranteed. More precisely,
the common denominator is first obtained by model-reducing
an average response of the prototype FIR VFDDF. The numer-
ator is then designed using SOCP so that prescribed flatness and
peak error constraints can be imposed to improve the frequency
characteristics of the final IIR VFDDF. Prescribed flatness con-
straints like multiple zeros in the stopband are sometimes desir-
able in sample rate converters for the suppression of alias com-
ponents, while peak error constraints are useful to limit the side-
lobes and undesirable peaks in filters with wide unconstrained
transition band and low system delay. Owing to the improved
frequency characteristics of the proposed IIR VFDDFs, further
optimization is usually not required. Design results show that
the proposed IIR VFDDFs have better performances and lower
implementation complexity than the conventional methods in
[6] and [12]. The paper is organized as follows: Sections II and
III are devoted to the proposed IIR VFDDF structure and its de-
sign using the constrained model reduction technique. Design
example is given in Section IV. Finally, conclusion is drawn in
Section IV.
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Fig. 1. Farrow structure for implementing a VDF.

II. THE STRUCTURE OF IIR VFDDF

In a VDF, the desired response is a function of a
spectral parameter (also known as tuning or control parame-
ters). The spectral characteristics of a desired VDF can therefore
be continuously varied by changing the parameter .

The impulse response of the VDF under consideration is as-
sumed to be , where is assumed to
vary linearly over a finite interval . The z-transform
of the VDF can then be written as

Interchanging the order of summation, one obtains

(1)

where is the th subfilter, which can
either be FIR or IIR function. (1) suggests a very useful structure
for implementing VDF called the Farrow’s structure [1] which
is shown in Fig. 1. For FIR VDF, the th subfilter is given by

, where is the filter length.
A similar structure was applied in [3], [9]–[12] for IIR VDFs,

where the poles and zeros of IIR subfilters are assumed to be
polynomials of the spectral parameters. Unlike FIR VDFs, the
design of IIR VDFs requires nonlinear optimization, which is
rather time consuming. Another important problem of IIR VDFs
with direct tuning of the poles and zeros is the undesirable tran-
sient response generated during parameter tuning [13].

In VFDDF, its desired response can be written as

(2)

where is the group delay of the VFDDF and it
can be varied linearly by the spectral parameter and
are respectively the passband and stopband cutoff frequencies.
In this paper, we shall consider the design of causal stable IIR
VFDDF whose subfilters have a common denominator. More
precisely, the proposed IIR VFDDF can be expressed as

(3)

where
and . Fig. 2 shows the structure of the pro-

posed IIR VFDDF. An advantage of this structure is that it does
not suffer from the problem of undesirable transient response
which is generated when the parameter is varied (except at

Fig. 2. Proposed structure of IIR VFDDF.

the very beginning). It is because the subfilters’ outputs are di-
rectly combined to form the desired output without changing
their internal states. Also, the arithmetic complexity is signifi-
cantly reduced as all the subfilters have the same denominator.
Furthermore, the numerator and denominator coefficients can be
simultaneously implemented in a multiplier block for efficient
multiplier-less realization [16].

III. DESIGN OF IIR VFDDF

Suppose that we have designed a FIR VFDDF in the form of
(1) using any existing methods for a given specification. To de-
sign IIR VFDDFs in (3), we employ the model reduction method
in [15], which can approximate an arbitrary FIR function by an
IIR function. The advantage is that the denominator of the IIR
function can be found without the knowledge of numerator, un-
like other model reduction techniques. Based on this observa-
tion, we propose to design the numerators using SOCP,
where additional constraints can be incorporated to improve the
performance, after has been found. We now describe the
procedures for determining and .

A. Determination of Denominator

In [15], the denominator of the model-reduced IIR filter can
be determined using a simple iterative procedure, given a FIR
function. To use this technique, we assume that has the
same denominator as in (3). A good method to determine

is to model-reduce the average response of over
the whole tuning range as follows:

(4)

The main reason for considering is that the magnitude
response of does not change significantly with in
the passband. This also explains why a common denominator
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is considered because it mainly contributes to the sharp change
in the magnitude response near the passband edge. Denote the
polynomial which approximates at the th iteration by

, where . By
defining

(5)
can be obtained by minimizing

(6)

where

. . .
...

...
...

. . .

...
...

...

The basic idea is to find such that is the smallest among
all the iterations for a sufficiently large . More importantly,
the roots of the resulting , which minimizes for an
arbitrarily given , are proved to lie strictly inside the unit
circle, and thus is always stable. Interested readers are
referred to [14] for more details.

B. Determination of Numerator Using SOCP

Once the common denominator is designed,
in (3) can be rewritten more compactly in matrix

form in terms of the design variables
, for , as follows:

(7)

where

and denote the real and imaginary parts of ,
respectively.

First of all, we approximate the desired response in
(2) by in the minimax sense by minimizing

(8)

where is a positive weighting function, and is the
(frequency, tuning range) of interest. The minimization problem
of in (8) can be reformulated as

(9)

where and
.

Discretizing the frequency variable and spectral parameter
over a dense set of frequencies and spectral
parameters in the range of interests, where

and are positive integers, the constraints in (9) become
. Moreover, by defining

the augmented variable , (9) can be cast to the
standard SOCP problem as follows:

(10)

where

and
is a zero vector.

Instead of using the minimax criterion, the following least
squares design criterion can be minimized:

(11)

can also be written as a quadratic function of as

(12)

where

, and .
The minimization problem of can be formulated as the
following SOCP

(13)

where and . It can be seen
that the number of constraints in the LS design is considerably
less than the minimax design criterion, which usually leads to
lower design complexity. The advantage of formulating the LS
design problem as a SOCP is that additional linear equalities or
convex quadratic constraints can easily be incorporated to (13),
as we shall illustrate in later sections.

C. Imposing Multiple Zeros in the Stopband

When designing digital filters, it is often required to impose
certain constraints on the frequency characteristics. One com-
monly encountered constraint is prescribed number of zeros in
the stopband, which are desirable in designing sample rate con-
verters in order to suppress the alias components [4]. These con-
straints can be obtained by equating the derivatives of the design
response and its ideal counterparts, and are equivalent to

(14)
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Fig. 3. (a), (d) Frequency and group delay responses of the low-delay FIR VFDDF (prototype). (b), (e) Frequency and group delay responses of the proposed IIR
VFDDF. (c), (f) Frequency and group delay responses of the IIR VFDDF obtained using conventional model reduction [6].

Substituting (3) into (14), we have

(15)

To satisfy (15) for the entire range of the tuning parameter
, the constraints

and , are imposed to
each subfilter. These constraints can be written as the matrix
representations

(16)

where for ,
Here, denotes the th entry of matrix . To
incorporate them to the SOCP in (10) or (13), we combine
all the constraints in (16) to form , where

. The minimization problems in
(10) and (13) can be solved subject to these linear equality
constraints using SOCP.

D. Peak Error and Convex Quadratic Constraints

To avoid excessive sidelobes of the LS solution and/or to sup-
press the undesired overshoot in the transition band for low-
delay VFDDF, additional peak error constraints should be im-
posed to the frequency of interest. The peak error constraint
can be written as ,
where be the peak ripple to be imposed in a frequency band

(a collection of frequency bands is also feasible).
Similar to the minimax formulation, one gets

(17)

After discretizing and over the range of interest, the re-
sulting constraints on the peak ripples can be augmented to the
existing constraints in (10) and (13) for the minimax and LS cri-
terion, respectively.

E. Selection of the Length of Denominator

In order to approximate to a sufficiently small error
level using the technique in [15], the length of the denominator
of should satisfy , where denotes
the ceiling function. This tells us that the savings in number
of multiplications and additions would be more pronounced if
model reduction is applied to FIR functions with lower system
delay. Here, we prefer to choose the group delay of the prototype
FIR VFDDF as

(18)

because a bump will usually appear at the transition band when
the group delay is lower than this value. This choice allows us to
set the system delay of as low as possible, while keeping
a good frequency characteristic of . Therefore, the im-
plementation complexity and performance of would be
comparable to its linear phase FIR counterpart. However, the
system delay is approximately reduced by a factor of two.

IV. DESIGN EXAMPLE

In this example, a low-delay IIR VFDDF is designed
using the proposed constrained model reduction method. The
SOCP problems are solved using the Sedumi Matlab Toolbox
[17]. As a comparison, the specifications of the VFDDF
are the same as those in [12]. That is: number of subfilter

and (
and ). First of all, a low-delay FIR prototype
VFDDF of length is designed in the minimax sense
using the SOCP approach in [8]. One zero at is also
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TABLE I
DESIGN RESULTS OF IIR VARIABLE FRACTIONAL DELAY DIGITAL FILTERS.

(� ; � ; � ): MAXIMUM (PASSBAND, STOPBAND, GROUP DELAY) ERROR; O :
OVERSHOOT IN TRANSITION BAND; T : TOTAL NUMBER OF ADDERS; T :

TOTAL NUMBER OF MULTIPLIERS; N/A: NOT APPLICABLE

imposed so that the model-reduced IIR VFDDF shown below
would preserve similar characteristics as its FIR counterpart.
Fig. 3(a) and (d) shows the frequency and group delay responses
so obtained. From Fig. 3(a), it can be seen that the resultant
FIR VFDDF has an overshoot of 2.54 dB in the transition band.
This seems to be a fundamental limitation for the design of the
low-delay FIR VFDDF with sharp cutoff.

Using the proposed model reduction method described in
Section III, the above prototype filter is converted to an IIR
VFDDF. Other parameters used in the proposed approach are
as follows: the lengths of the numerator and denominator of
the model-reduced filter are, respectively, chosen as
and and . To suppress
the overshoot, a peak transition band error constraint of 1 dB
is imposed to the model-reduced filter. In addition, one zero at

is imposed. Due to page limitation, only minimax crite-
rion is considered. Fig. 3(b) and (e) shows the design results of
the IIR VFDDF so obtained. It can be seen that both types of
constraints are successfully imposed by the proposed method to
the IIR VFDDF, at the expense of slightly lower performance
at the unconstrained band. As shown in Table I, the proposed
IIR VFDDF has better performances comparing to the one
designed in [12]. Also, because of the structure in (3) where
common denominator is employed, the implementation com-
plexity of the proposed VFDDF is considerably lower. Besides,
comparison with the conventional model reduction approach
studied in [6] is also considered. In order for this approach to
obtain a similar performance, the length of the denominator
of the model-reduced filter have to be chosen as .
Furthermore, it should be noted that the dynamic range of the
coefficients in the proposed VFDDF is much lower than the one
in [6], making the implementation less complicated. The above
results demonstrate the effectiveness of the proposed method in
designing causal stable IIR VFDDFs. Table I summarizes the
design results obtained using various methods.

V. CONCLUSION

A new method for designing causal stable IIR VFDDFs with
prescribed flatness and peak error constraints using SOCP-
based model reduction technique is presented. The proposed
VFDDF structure has a common denominator and it reduces the
implementation complexity and avoids undesirable transient
response during parameter tuning. Design results show that the
proposed method offers more flexibility, smaller coefficient
dynamic range and better performance than the conventional
methods studied in this paper.
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