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Variable Digital Filter With Group Delay Flatness
Specification or Phase Constraints

Hai Huyen Dam, Antonio Cantoni, Sven Nordholm, and Kok Lay Teo

Abstract—In this paper, we consider the design of finite-im-
pulse response variable digital filters (VDFs) with variable cutoff
frequency or variable fractional delay. We propose the design of
VDFs with minimum integral squared error and constraints on
the maximum error deviation in conjunction with flatness group
delay specification or phase constraints. These specifications allow
the VDFs to have approximately linear phase, especially in the
passband. As these specifications are required to be satisfied for
all the filters generated by the VDF with controllable spectral
characteristics, the linear constraints resulting from the flat-
ness specification are relaxed to inequality constraints. To make
the optimization problem tractable for the phase constrained
problem, suitable approximations are employed in the paper. The
design problem is formulated as an optimization problem with
a quadratic cost function and infinite number of constraints. A
numerical scheme with adaptive grid step size is proposed for
solving the optimization problem.

Index Terms—Group delay flatness, phase constraint, variable
digital filter (VDF).

I. INTRODUCTION

VARIABLE digital filters (VDFs) are digital filters with
controllable spectral characteristics such as variable

cutoff frequency, adjustable passband width and controllable
fractional delay [1]–[3]. These spectral characteristics can
be varied online. VDFs have been used in various of signal
processing and communication applications. Examples include
arbitrary sample rate changers, digital synchronizers and other
applications involving online tuning of frequency characteris-
tics [4]. Fractional delay digital filters have been used in timing
adjustment for digital receivers [4].

In [5], the design of the VDF with least square criterion and
peak gain constraints is investigated to demonstrate the trade-off
between the integral squared error and the maximum error de-
viation. In this paper, we derive and incorporate additional con-
straints on the group delay flatness specification or phase con-
straint to allow control of the group delay or the phase in the
passband.

In [6]–[9], a group delay flatness specification has been in-
vestigated for a finite-impulse response (FIR) filter. Here, we

Manuscript received March 22, 2007; revised July 26, 2007 and October 12,
2007. This paper was recommended by Associate Editor Y.-P. Lin.

H. H. Dam and K. L. Teo are with the Department of Mathematics and
Statistics, Curtin University of Technology, Perth 6845, Australia (e-mail:
H.Dam@@curtin.edu.au; K.L.Teo@curtin.edu.au).

A. Cantoni is with Western Australian Telecommunications Research
Institute (WATRI), The University of Western Australia, Perth 6009, Australia
(e-mail: cantoni@watri.org.au).

S. Nordholm is with Western Australian Telecommunications Research Insti-
tute (WATRI), Curtin University of Technology, Perth 6845, Australia (e-mail:
sven@watri.org.au)

Digital Object Identifier 10.1109/TCSII.2007.912750

extend this formulation further to the VDF in which the group
delay flatness specification is required to be satisfied for all
VDFs generated with controllable characteristics depending on
a tuning parameter. In [6] and [7], linear equality constraints are
enforced to achieve the group delay flatness specification. For
the VDF design problem this is not feasible since the constraints
need to be satisfied for all VDFs generated by the VDF con-
trol parameter. In this paper, we employ appropriate inequality
constraints since this provides sufficient freedom. The optimiza-
tion problem is then formulated as a semi-infinite quadratic op-
timization problem with constraints involving absolute oper-
ations, in which the terms inside these operations are linear
functions of the filter coefficients.

An alternative approach to include the group delay flatness
specification is to control the phase of the filters generated by
the VDF by incorporating additional phase constraints, espe-
cially in the passband. As such, this allows the phase of the fil-
ters generated by the VDF to have approximately linear phase or
equivalent constant group delay. The design problem is formu-
lated as an optimization problem with a quadratic cost function
and nonlinear constraints. To make the design problem tractable,
suitable approximations are developed in the paper. The design
problem can then be approximated as a semi-infinite quadratic
optimization problem. For completeness, a numerical scheme
with adaptive grid step size [5], [10] is developed for solving
the optimization problems resulting from the prescribed flatness
specification or the phase constraints.

The paper is organized as follows. The problem formulation
and optimization problem are presented in Section II. The group
delay flatness specification for the VDF and the incorporation
of the inequality constraints into the optimization problem are
developed in Section III. A phase error approximation is out-
lined in Section IV. In Section V, a numerical scheme with adap-
tive step size is employed for solving the optimization problem.
Section VI contains numerical results on a sample design of a
variable delay VDF using the approaches described in this paper
and also existing methods. Finally, conclusions are presented in
Section VII.

II. PROBLEM FORMULATION AND OPTIMIZATION PROBLEM

Consider the design of a VDF [3] with sub-filters, depicted
in Fig. 1. The frequency response of the VDF can be expressed
as

(1)

where , , is the frequency response of
the th sub-filter with the corresponding impulse response of
length , and is the transpose
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Fig. 1. VDF—Farrow structure.

operator. Also, is a tuning parameter varied in the range .
The frequency response (1) can be rewritten as

(2)

where and are 1 vectors,
and . The 1 vector

is given by and de-
notes the Kronecker product.

We consider the design of a VDF with variable cutoff fre-
quency or variable fractional delay with the desired frequency
response given as

(3)

where , , and are the passband and stopband
regions and the desired group delay, respectively, depending
on . By appropriate choices for , and , a vari-
able cutoff frequency or variable fractional delay VDF can be
specified.

The VDF is designed to minimize the integral squared error
measure, defined as the integration of the weighted squared error
deviation between and for all
and

where is a positive weighting function and
. Since we consider a real coefficient vector , the

integral squared error measure can be written as

where

denotes the Hermitian transpose operator. Note that these
double integrals can be obtained by using numerical integration
[12].

In addition, the filter is designed subject to a constraint on the
weighted peak deviation between and ,

(4)

where represents the allowed tolerance. In the fol-
lowing, we derive additional constraints for the flatness specifi-
cation and the phase error approximation in the passband.

III. GROUP DELAY FLATNESS SPECIFICATION

In this section, the group delay flatness specification for the
VDF is derived. Denote by the desired phase response
of the VDF for a frequency and a tuning parameter . From
(3), we have , .

Denote also by the phase response of the VDF, e.g.,

The group delay response of the VDF is said to be flat to order
[7], where is a positive integer, if and only if

, if
and .

(5)

As developed in [11], the condition in (5) is equivalent to the
following:

and (6)

For the VDF with the frequency response in (2), the expression
in (6) becomes

(7)

Given (7) and following the approach in [11], the condition (6)
is satisfied if and only if:

and (8)

These constraints can also be expressed as

is odd and (9)
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Note that (9) is only required for odd values of as (8) is always
satisfied for even values of . Equation (9) can be written as a
linear function of the VDF coefficients as

odd

(10)

The linear constraints in (10) will lead to an overly con-
strained problem. Thus, instead of including an infinite number
of linear equality constraints in the designed problem we
propose to relax these constraints by introducing inequality
constraints for the flatness specification of the design. Now
the design of the VDF with the integral square error as the
design criterion and the constraints involving the weighted peak
frequency response deviation in addition to the group delay
flatness constraints can be stated as

odd

(11)

where is an upper bound on the group delay flatness speci-
fication. The two constraints in (11) involve absolute value op-
erations with the terms inside the absolute operators are linear
function of the filter coefficients. Thus, the problem (11) has a
convex cost with convex constraints and if a feasible solution
exists then the optimum solution is unique.

IV. PHASE ERROR APPROXIMATION IN THE PASSBAND

An alternative method to including the flatness specification
in Section IV is to control the phase of the filters generated by
the VDF. This can be achieved by incorporating phase con-
straints, especially in the passband. In order words, we seek
to constrain the phase response of the filters within the desired
phase response with a small error in the passband

(12)

Since the phase error is a nonlinear function of the filter
coefficient vector , the design problem incorporating addi-
tional phase constraints is highly nonlinear. These nonlinear
constraints for the phase, however, can be approximated by
their respective linear constraints, leading to a tractable design
problem.

Since

for a small phase error in the passband, the left-hand size in
(12) is approximated by the following [13]:

(13)

where is the filter magnitude response and denotes
the imaginary part of a complex number . By modifying the

proof in [13] for the current case that includes the tuning pa-
rameter , it can be shown that the constraint (4) results in the
following constraint on in the passband

(14)
By assuming for all and

, it follows from (13) that the constraint (12) is reduced to

Thus, the approximation of the phase error constraint for each
frequency and the tuning parameter is given
by

(15)

where

The VDF is designed to minimize the integral squared error
measure subject to weighted peak constraints on the frequency
response in conjunction with the phase error constraints in the
passband

(16)

Similar to (11), the problem (16) has a convex cost with convex
constraints and hence if a feasible solution exists then the op-
timum solution is unique.

V. OPTIMIZATION APPROACH

Since the number of constraints in (11) and (16) is large, the
near-active constraint optimization method using discretization
in [5], [10] can be employed for solving these problems with
two infinite set of absolute linear constraints. The advantage of
the method is that it concentrates on the constraints near the ac-
tive points. The number of near-active constraints is, in general,
significantly smaller than the number of total discretization con-
straints. In addition, the method employs an adaptive scheme for
the discretization grid set with a sequence of grid points refined
gradually.

A procedure for solving the two optimization problems for-
mulated in this paper can be extended from [5]. As (16) has
two infinite sets of infinite inequality constraints, instead of ob-
taining one set as in step 2 in [5], a set

is obtained such that

(17)
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TABLE I
INTEGRAL SQUARE ERROR, MAXIMUM GROUP DELAY AND PHASE ERRORS FOR DIFFERENT CASES

and

is obtained such that

As for step 3 in [5], the discretization problem of (16) is solved
with and being the region for the first and the second
constraints, respectively.

VI. DESIGN EXAMPLES

In this section, the design procedures developed in this paper
are applied to the design of a variable delay VDF. The design of
other VDFs such as variable cutoff frequency can be obtained
similarly. For the purpose of comparison we also present results
based on the alternative design techniques proposed in [1], [3]
and [5]. Thus, the following cases are considered.

• Consider the design of a VDF with peak error constraints
and additional group delay flatness constraints as proposed
in this paper.

• Consider the design of a VDF with peak error constraints
and additional phase error approximation constraints. The
upper bound on the phase error is chosen as
and , respectively.

• Finally, for the purpose of comparison with existing de-
sign techniques for VDFs we consider the design of a VDF
based on:
— minimize integral squared error and no constraints as

proposed in [1], [3];
— minimize integral squared error with peak error con-

straints as proposed in [5].
The length of the variable delay VDF designed filter to be de-

signed is with . The range of is chosen as
. The desired delay changes linearly over one sample delay

with with the desired delay . The pass-
band and stopband regions are given as
and . The weighting func-
tion is one for all frequencies. The passband and stop-
band ripple measures in dB, and , are re-
quired to be less than dB and dB, respectively, where
with and being the passband and stopband ripples. The
number of discretized points for is 128 while the number of
discretized points for is 256.

Table I shows the integral squared error, the maximum pass-
band, stopband errors and the maximum phase, group delay er-
rors in the passband for the four cases considered.

Fig. 2. Group delay response and group delay error for the group delay flatness
constraint case with � � � and � � ����.

Fig. 3. Group delay response and group delay error for the group delay flatness
constraint case with � � � and � � ����.

Figs. 2 and 3 show the group delay error and the group delay
of the VDFs with group delay flatness specification order of

and , respectively, and the upper bound
. The group delay is flat at around the frequency for

all .
Figs. 4 and 5 show the magnitude response and the phase

error for the two cases with phase constraints. The phase error
approximations are highly accurate with the phase error for all
filters less than in the passband. Again, the phase and the
group delay errors are reduced when is reduced. Also, the

Authorized licensed use limited to: University of Western Australia. Downloaded on July 20,2010 at 07:44:26 UTC from IEEE Xplore.  Restrictions apply. 



446 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 5, MAY 2008

Fig. 4. Magnitude response and phase error for the phase constraint case with
� � ������.

Fig. 5. Magnitude response and phase error for the phase constraint case with
� � ������.

phase errors are lower than those in case 1. The group delays,
however, do not have the flatness property as for those in case 1.

As expected, the integral squared error is lowest for case
of unconstrained minimization of the integral squared error as
proposed in [1], [3]. However, for case of unconstrained mini-
mization of the integral squared error, the passband ripple, stop-
band ripple and maximum passband group delay error are sig-
nificantly higher than for the design approach proposed in this
paper.

From Table I it is also clear that the design based on minimum
integral squared error with peak error constraints as proposed in

[5] yields slightly lower integral squared error when compare to
the designs based on this paper. The maximum passband group
delay error, however, is higher than those obtained using the
design methods based on this paper.

VII. CONCLUSION

In this paper, we incorporate the flatness group delay speci-
fication or the phase constraint into the design of a VDF with
minimum integral squared error measure in conjunction with
weighted peak constraint deviation on the frequency response.
These additional specifications allow the control on the group
delay or the phase of the filters generated by the VDF with con-
trollable spectral characteristics, especially in the passband. De-
sign examples show the trade-off between the phase, the group
delay errors and the integral squared error. In addition, com-
parable performance is obtained by incorporating the flatness
group delay specification or the phase constraints.
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