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A New Robust Kalman Filter-Based Subspace
Tracking Algorithm in an Impulsive
Noise Environment
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Abstract—The conventional projection approximation subspace
tracking (PAST) algorithm is based on the recursive least-squares
algorithm, and its performance will degrade considerably when
the subspace rapidly changes and the additive noise is impul-
sive. This brief proposes a new robust Kalman filter-based sub-
space tracking algorithm to overcome these two limitations of
the PAST algorithm. It is based on a new extension of the
adaptive Kalman filter with variable number of measurements
(KFVNM) for tracking fast-varying subspace. Furthermore,
M-estimation is incorporated into this KFVNM algorithm to
combat the adverse effects of impulsive noise. Simulation results
show that the robust KFVNM-based subspace tracking algorithm
has a better performance than the PAST algorithm for tracking
fast-varying subspace and in an impulsive noise environment.

Index Terms—Impulsive noise, Kalman filter, Kalman filter
with variable number of measurements (KFVNM), least squares,
projection approximation subspace tracking (PAST).

I. INTRODUCTION

UBSPACE-BASED methods play a key role in array signal

processing and many other system applications. For in-
stance, the conventional direction-of-arrival (DOA) estimation
method MUSIC [1] and the more recent work on DOA and
mutual coupling coefficient estimation method [2] are both
subspace-based methods. Usually, the invariant subspace can
be computed from the singular value decomposition (SVD)
of the array output or the eigenvalue decomposition (EVD)
of the covariance matrix of the array output. However, up-
dating the subspace through EVD or SVD online is com-
putationally expensive. Therefore, subspace tracking methods
with low computational complexity have received considerable
attention [3]-[7], [10]. An efficient class of algorithms is the
projection approximation subspace tracking (PAST) algorithm
and its variants [3]—[5]. It employs the recursive least-squares
(RLS) algorithm to recursively estimate the signal subspace
by minimizing the least-squares (LS) error between the cur-
rent measurement and a “projection approximation” obtained
from previously estimated subspace. However, the conventional
PAST method also has two limitations, both of which stem
from the nature of the RLS algorithm it uses. First, since the
RLS-based PAST method requires the subspace to be slowly
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varying and the estimate is solely based on the measurements,
it may be difficult to track fast changing subspace [6]. Second,
the RLS algorithm is vulnerable to impulsive noise, and the
performance of the PAST algorithm will be degraded substan-
tially when the measurements are corrupted by impulsive noise,
which are frequently encountered in man-made electromagnetic
interference and other natural noises [9]. The later problem was
studied in [10], where M-estimation [11] in robust statistics
is incorporated into PAST to suppress the adverse effect of
the impulsive noise. However, the tracking speed is somewhat
limited as mentioned above.

In this brief, we propose a new robust Kalman filter-based
subspace tracking method in impulsive noise to address the
above limitations. We first adopt the Kalman filter, instead of
the RLS algorithm, to track the time-varying subspace. The
Kalman filter algorithm is an optimal recursive state estimator
in the minimum mean-square error sense, and it has a better
tracking ability than RLS since it uses a state-space model
to describe the subspace dynamics. To further enhance the
tracking ability, a new extension of the Kalman filter with
variable number of measurements (KFVNM) algorithm in [7] is
proposed. A new measure of subspace variations is introduced
and incorporated into the KFVNM algorithm to improve its per-
formance. Moreover, a robust method for recursively estimating
the covariance matrices of the KFVNM algorithm is proposed
to handle their time-varying behaviors. Consequently, when the
subspace substantially varies, a small number of measurements
will be employed in KFVNM so that the estimation bias intro-
duced by remote and unrelated measurements will be small. On
the other hand, if the subspace is slowly varying, a large number
of measurements will be used to reduce the estimation variance.
Thus, the proposed KFVNM method can provide a better flex-
ibility than the PAST algorithm, particularly in highly dynamic
environments. Next, to combat against the impulsive noise, M-
estimation in robust statistics [9]-[12] is applied to the KFVNM
algorithm. More precisely, a robust statistics-based estimate
of the measurement noise variance is calculated and used for
detecting whether the incoming measurement vector is contam-
inated by impulsive noise. The “impulsive-free” noise variance
is estimated by assuming that the impulsive noise is a contami-
nated Gaussian (CG) process as in [9] and [10]. By assigning a
small or even zero weight to a potentially impulse-contaminated
measurement in the KFVNM algorithm, the adverse effects
of impulsive noise can be suppressed. It is worth noting that
the particle filter may also be adopted for tracking targets in
non-Gaussian noise [13], [14]. However, because of its high
complexity, we shall not pursue such direction in this study.
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II. SYSTEM MODEL AND PAST ALGORITHM

We consider the subspace tracking problem in an antenna
array with N sensors impinged by 7 narrow-band incoherent
signals. The array output observed at the ¢th snapshot consists
of the NV sensor outputs, which can be written as

r

o(t) =Y alwp)se(t) +n(t) = As(t) + n(t) (1)

k=1

where a(wy) is the steering vector corresponding to the kth
DOA for the given array geometry. For a uniform linear
array (ULA), a(wg) = [1,e/%, ..., edN="Der]T and wy =
27 \~td sin 6y, with )\, d, and 6, denoting the carrier wave-
length, intersensor spacing, and kth DOA, respectively. A =
[a(wi),a(ws),...,a(w,)] denotes the steering matrix, s(t) is
the vector of signal waveforms, and n (i) is the noise vector,
which is commonly considered to be an additive white Gaussian
noise (AWGN) vector with zero mean and covariance matrix
021, where I is an identity matrix. Conventionally, the signal
subspace U , is obtained from the EVD of the covariance matrix
of the array output, i.e.,

R,, = E [z(t)z" (t)] = AR, A" +o°1 (2)

where R, = F[s(t)s(t)] is the signal autocovariance matrix.
For online implementation, the PAST algorithm estimates the
subspace by minimizing the following cost function of W (t):

t

J(W ()= 5" llz(i) = Wty (i) 3)

i=1

where y(i) = W (i — 1)x(i) is the projection approximation
used, and 0 < 3 < 1 is the forgetting factor. It has been shown
in [3] that (3) is minimized when the column of W(¢) is
equal to the signal subspace. However, as mentioned before, the
performance of the PAST algorithm is considerably degraded in
fast-varying subspace. Moreover, because of the LS cost func-
tion adopted in (3), the estimate will be significantly deterio-
rated by impulsive noise. Hence, a robust KFVNM algorithm is
proposed in the following sections to overcome these problems.

III. KALMAN FILTER-BASED SUBSPACE TRACKING WITH
VARIABLE NUMBER OF MEASUREMENTS

A. KFVNM

We first introduce the proposed KFVNM algorithm. This
algorithm is derived from the following state-space model:

2(t) =F(t)z(t — 1) + w(t) @)
a(t) = H(t)=(t) +8(t) ()

where z(t) and x(t) are the state vector and the observation
vector, respectively. F'(t) and H(t) are the state transition
matrix and the observation matrix, respectively, and w(t) and
d(t) are zero-mean Gaussian noise with covariance matrix
Q. (t) and Rjs(t), respectively. It is well known that the
standard Kalman filter can be utilized to update the state z(t)
recursively based on the state-space model [15]. Moreover, it
has been proved that the Kalman filter is equivalent to a linear

regression problem since (4) and (5) can be stacked together
as [16]

N {F(t) [z(t — 1)_—6(2t()t —DlFwt)]

We notice that only one single measurement () is used for
the state update at each iteration. The number of measurements
used in the Kalman filter can be carefully selected to achieve a
better bias—variance tradeoff.

If L(t) measurements, ie., z(t)=[z7(t—L(t)+
D),...,z7(t —1),2T(t)]T, are used for the state update
at time ¢, the linear state-space model will be extended to

} 2(t) = [F(t)g((tt)_ 1)] + A(t) (7)

where H(t) = [H (t — L(t)+1),..., H"(t — 1), H (t)]7,

Ft)[z(t—1)—2(t—1)] +w(t
A(t)_{ou )= Dl

0

] ®)

with &(t) = [67(t — L(t) +1),...,67(t—1),67(#)]T and
covariance

€))

planaro) = |[FUY L0

0 R; (t)

where P(t/t —1) = F(t)P(t — 1/t — 1)FT(t) + Q,,(t) is
the a priori estimate covariance with P(t — 1/t — 1) being a
posteriori estimate covariance in the standard Kalman filter
recursions and Rs(t) = diag{ Rs(t — L(t) +1),..., Rs(t —
1), Rs(t)}. Let S(¢) be the Cholesky decomposition of (9),
then multiplying both sides of (7) by S~*(¢) will lead to a linear
regression as follows:

X (t) = H(t)z(t) + n(t) (10

where X (t) = S'()[(F(t)z(t —1)T, &7 ()", H(t) =
ST H (1)), and @) =-S'(HA®), with
E[n(t)n” (t)] = I. The LS solution of (7) is given by
£(t) = arg min || X (1) - H(t)z(1)|2
= (B 0HE®M) B OX@0) )

with covariance P(t) = (ﬂT(t)fI(t))’l. Hence, 2(t) and
P(t) will be adopted for updating 2(¢/t) and P(t/t) instead
of those in the standard Kalman filter. We know that the
variance of the estimator in (11) will be decreased when more
measurements are included. However, if the system state z(¢)
rapidly varies, more measurements, corresponding to different
underlying states, will result in a large estimation bias. Thus, it
is desirable to select an appropriate number of measurements
L(t) to achieve a proper tradeoff between bias and variance. As
shown in [7], L(t) can be selected based on the approximation
of subspace variations. We first define state variation as

() =2(t—1)— 2(t—1)

é 2 (12)
2(t) =Aa2(t— 1)+ (1 — A)&(t — 1)

13)
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where 0 < A\, < 1 is a forgetting factor for smoothing the past
states. We find that ||é(¢)||2 can serve as a measure of the
variation of subspace since, when z(t¢) rapidly changes, the
approximated absolute derivation of ||&(t)||2

Ge(t) = [lle®)lly — lle(t = 1)ll,]

will be large, and vice versa. Hence, G.(t) can help estimate
how many measurements should be used to update the state. In
this brief, we propose to update L(t) at each snapshot as

(14)

L(t) =round {Lp + [1 — g (Gn(t))] (Lu — L)} (15)
where G (t) = G.(t)/Geo, with G (t) averaging from G, (t)
over a time window of length T and G averaging from the
first T estimates of G, (t). round{-} denotes rounding a value
to the nearest integer; Ly and Ly are the lower and upper
bounds of L(t), respectively; and g(x) = min{max{x,0},1}
is a clipping function to keep G (t) within the interval
[0, 1]. Equation (15) differs from that in [7] because a clipping
function g(x) is employed to make the estimate more stable
and, hence, reduce the variance of the subspace estimate. As
expected, more measurements will be used if the subspace
variation measure G y (¢) is small, and vice versa.

B. KFVNM-Based Subspace Tracking

Associating W (t) with the subspace instead of z(¢) in (4)
yields the following state-space model for subspace tracking:
wi(t)

=Ft)WT(t—-1)+E() (16)

T (t) = HHO)WT (1) + ¥ (1). (17)
In (16) and (17), E(t) and W¥(t) are innovation and residual
error matrices, respectively. Moreover, the observation matrix
H (t) can be approximated as H (t) = wT(t)W*(t —1). Al-
ternatively, we propose to employ a better estimate of H (t) as

W (t/t—1)

where the superscript * denotes the complex conjugate opera-
tion. Next, with the help of the proposed KFVNM algorithm
and the dynamic model in (16) and (17), one can update and
track the subspace W (t) with L(t) measurements. Hence, the
resultant KFVNM-based subspace tracking algorithm requires
O(L?®) + (L + 1)Nr + 2Lr% + L?r operations in each update.
For slowly varying subspace, a large L is used to reduce the
variance with complexity tending to be O(L?), whereas for
fast-varying subspace, a small L is selected to reduce the bias
with considerably smaller complexity. In fact, the KFVNM
algorithm can be switched to an RLS-based algorithm (e.g.,
PAST) to avoid high complexity when L is large [7].

(18)

IV. ROBUST KFVNM-BASED SUBSPACE TRACKING

It can be seen from (10) and (11) that the state z(t¢) is
estimated from the past L(¢) observations. Hence, any impulse-
contaminated measurement x(k) with ¢t — L(t) +1 <k <t
will impair the estimate of z(t) and the selection of L(t). In

M-estimation, an M-estimate cost function is employed instead
of the LS objective function in (11) to combat the adverse
effect of the outliers. Since we only consider outliers in the
measurements, the M-estimate cost function is only applied to
the measurement equations to yield the following cost function:

t

TEO) = Sle@B+ 3 plle®ly) a9
k=t—L(t)+1

where p(e) is an M-estimation function, e,(t) =

S,H(O(F(t)z(t — 1) — 2(t)), and e(k) = S, (t)(z(k) —

H(k)z(t)), with S,(t) and Sy(¢) being the Cholesky
decomposition of P(t/t — 1) and Rs(k) in (9), respectively.
Usually, the values of p(e) are small for large values of |e| to
combat the adverse effect of the large measurement outliers.
For smaller values of |e|, p(e) will reduce to the square function
to achieve high estimation efficiency. A simple M-estimation
function is the modified Huber function [11], [12], i.e.,

ple) = {giﬁ

where £ is a threshold parameter used to control the suppres-
sion of the outliers, and it needs to be estimated recursively.
Following the technique proposed in [10, Sec. III], £ at the tth
time instant can be estimated from the “impulsive-free” error
variance & (t) as £(t) = 1.965(¢), where

0<lel <¢

20
£< el 20

F2(t) = AT (t — 1) + C1(1 — N\y)med (A, (1)) (1)
Aq () = {lle(t = No + 1|13, He( H }, med(-) is the me-
dian operator, C; = 1.483(1 + 5/ 1)) is a finite sample
correction factor, and N, is the length of the median operation,
which is usually chosen to be 5—11 [10]. Since the sensor noise
without the outlier is a Gaussian process, it may be simpler to
use 6(t) = x(t) — H(t)z(t) instead of e(t) in (19).

A necessary condition for the optimal solution of (19) is
V.J(z(t)) =0,ie.,

(851 ®) " eol®)
~ P (le®)y) o Ty —
+ > el (S M H (k)" e(k) =0. (22)
k=t-L(t)+1 =712
After some manipulation, one gets
(1) = (ﬂT(t)Q(t)ﬂ(t))_l B oomxe) @3

where €2(t) is a weight matrix

Q1) = diag {I,q ([le (t = L() + Dllo) L, -, g ([le(®)lly) I}
(24)

q(e) is the weight function
o) =2 {5 Rl 25

and p/(e) is the derivative of p(e). It can be seen that (23) is a
system of nonlinear equation, and its solution usually requires
iterative method such as the iteratively reweighted LS (IRLS)
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TABLE 1
ROBUST KFVNM-BASED SUBSPACE TRACKING ALGORITHM

Stage 1. Initialize W(0), Rx0), Q,(0) and L(0) .
Stage 2. Fort=1,2, ..., T, do
i). Calculate e(t) as (12)and (13).

ii). Calculate G,(¢) as (14) and GEO by averaging first ¢
estimates G (1).

iii). Calculate L(¢) as (15) and update as min{L(¢), }.

iv). Examine the estimating error &(¢) and update the

weight matrix €(7) as (24).
v). Estimate W(¢) using the robust KFVNM as (23).

vi). Update the noise covariance matrix Q,(¢) and R(¢)
as (26) and (27).
End ¢
Att =T, obtain do by averaging first 7 estimates G (¥).
Stage 3. Fort =7, +1, T, +2, ... do
i). Calculate e(f) as (12) and (13).
ii). Calculate G,(¢) as (14) and obtain G, v() by
normalizing G, (¢) with G, .
iii). Update L(?) as (15).
iv). Examine the estimating error &(¢) and update the
weight matrix Q(7) as (24).
v). Estimate W(¢) using the robust KFVNM as (23).
vi). Update the noise covariance matrix Q,,(f) and R(#)
as (26) and (27).
End ¢

method, in which the previous iteration is used to compute
the weight matrix. This process is repeated until convergence.
Fortunately, the a priori state estimate F'(¢)2(t — 1) is usually a
good estimate of z(t), and hence, it can be used to compute the
weight at (24). Hence, a satisfactory result can be obtained usu-
ally after one iteration. Basically, the modified Huber function
assigns a weight of one to ordinary samples and a zero weight
to those samples with a very large prediction error.

We now consider the estimation of Q,,(¢t) and Rs(¢). In
[7], they are assumed to be known a priori, whereas in this
work, they are estimated in the presence of possible outliers.
In particular, we shall extend the method in [8] to the proposed
KFVNM algorithm, as shown in the following:

Qw(t) = Awa(t - 1) + (1 - )‘w)Qw(t)
Rs(t) =\sRs(t — 1) + (1 — As)Rs(t).

(26)
27)

Here, A\, and \; € (0,1] are the forgetting factors; Q. (t)
is estimated from the errors with a window length of N,,,
ie, w(k)=2z2k/k)-Fk)2(k—1/k—1), t—N,+1<
k <t; and Rs(t) is estimated from the errors with a win-
dow length of Ny, i.e., 8(k) = x(k) — H(k)2(k/k),t — N5 +
1 < k <'t. Typical values of IV,, and Ny are 1-5. Whenever
q(|le(k)]|2) is found to be zero, &(k) is likely to be corrupted
by impulsive noise, and these corrupted observations will be
excluded from updating the covariance matrices Q,,(t) and
R;(t) in (26) and (27). By applying the Kalman filter to each
row of W (t), one gets the proposed robust KFVNM subspace
tracking algorithm in Table I. It should be noted that, at the
beginning of the algorithm, the selected L(t) may be larger than
the number of available samples. Hence, L(t) should be chosen
as min{L(t),t}.

60 —— KFVNM

o LA A LA
0 200 400 600 800 1000
Time Instant

Fig. 1. DOA tracking in impulsive noise using KFVNM and PAST. Arrows
indicate the time instants when the impulses are applied.

V. SIMULATION RESULTS

To evaluate the performances of the proposed robust
KFVNM-based subspace tracking algorithm, computer simu-
lations of a DOA tracking problem is performed. A ULA with
N = 10 sensors separated by a half-wavelength is considered,
and the conventional ESPRIT algorithm is utilized to estimate
the DOAs from the subspace. Two uncorrelated narrow-band
signals with SNR = 10 dB impinge on the array from the far
field. The first DOA is time invariant at ; = 10°, whereas the
second DOA is time varying, as specified by

40 — 1 x 1072¢,
36 — 2.5 x 1071 (t — 400),
26 — 7.5 x 1073(t — 440),

0<t<400
400 <t <440
440 <t < 1000

02(t) =

where 65 slowly changes at the time intervals [0, 400] and
[440, 1000] and rapidly changes at the time interval [400,
440]. The ambient noise is assumed to be CG [9, Sec. II].
For simplicity, we assume that the nominal noise is zero-mean
white Gaussian distributed with a power of 0 dB, whereas
the impulsive noise has the same distribution with a power of
30 dB occurring at the time intervals [301, 303], [424, 425],
and [726, 727]. The locations are fixed so that their effects
can be visualized more clearly. The conventional PAST [3]
and robust PAST [9] algorithms are also tested for comparison,
and the forgetting factor of these two algorithms is set to be
0.98 according to [3] and [10]. The parameters of the KFVNM
algorithmare A\, = A\, = A\s =\, =0.99, L; =1, Ly = 50,
Ty =100, N, = N5 =5, and N, = 10.

The DOA tracking results of the proposed KFVNM-based
subspace tracking algorithm and the PAST algorithm are shown
in Fig. 1. We can notice that both methods are significantly
affected by the impulsive noise, and it takes a long time to
forget these adverse effects. Conversely, due to the robustness
of the robust KFVNM algorithm, the impulsive noise can be sat-
isfactorily suppressed, and the subspace is accurately tracked,
as shown in Fig. 2. Furthermore, the proposed robust KFVNM
algorithm is able to offer a better tracking performance than the
robust PAST algorithm, since a dynamic model of fast-varying
subspace is employed. Fig. 3 shows the number of measure-
ments selected by the proposed algorithms. It shows that the
selection in the LS-based KFVNM algorithm is significantly
affected by the impulsive noise, whereas the robust KFVNM
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Fig. 2. DOA tracking in impulsive noise using robust KFVNM and robust
PAST.
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Fig. 3. Number of measurements L(t) used in (dashed line) KFVNM and

(solid line) robust KFVNM in an impulsive noise environment.

algorithm is able to suppress the impulsive noise effectively and
select the measurements more appropriately.

Next, impulsive noise is added to the measurements at three
randomly selected time instants, and each impulsive noise lasts
for two or three time instants. Five hundred Monte Carlo simu-
lations are run, and the SNR is 10 dB. The root mean squared
error (RMSE) at each time instant is calculated as RMSE =

\/Efil S (60— 0;,)?/(Kr), where K is the total num-
ber of Monte Carlo experiments, r is the number of signals,
0,, is the nth DOA, and éi,,,, denotes the nth estimated DOA
in the 7th Monte Carlo experiment. The RMSEs of the DOA
at each time instant estimated by the proposed robust KFVNM
and robust PAST are illustrated in Fig. 4. The proposed robust
method is seen to achieve a better performance than PAST when
the subspace is fast-varying. In addition, the impulsive noise
can be satisfactorily suppressed by robust algorithms.

VI. CONCLUSION

A robust Kalman filter-based subspace tracking algorithm
in an impulsive noise environment has been presented. It is
based on a new adaptive KFVNM to improve the tracking of
time-varying subspaces. By incorporating M-estimation into

10
st | Robust PAST |
— Robust KFVNM
&)
a
o ° :
] hy
= i
['4 4 [
g A
, P\
\
p— 1 S
% 200 400 600 800 1000
Time Instant
Fig. 4. DOA RMSE:s in impulsive noise using robust KFVNM and robust
PAST.

this algorithm, a new robust subspace tracking algorithm in
impulsive noise is obtained. Its effectiveness is illustrated by
computer simulation of the DOA tracking problem in ULAs.
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