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Probability-Dependent Gain-Scheduled Filtering
for Stochastic Systems with Missing
Measurements

Guoliang Wei, Zidong Wang, Bo Shen and Maozhen Li

Abstract—This paper addresses the gain-scheduled filtering Due to various reasons such as probabilistic network con-
problem for a class of discrete-time systems with missing nee  gestion and intermittent mechanical failures, it has beeh w
surements, nonlinear disturbances and external stochastinoises. recognized that the missing measurement phenomenon is

The measurement missing phenomenon is assumed to occur in. itable i | Id t ted Vi
a random way, and the missing probability is time-varying wih inevitable in many real-world systems connected via nek.or

securable upper and low bounds that can be measured in real The filtering problem with missing measurements has regent|
time. The multiplicative noise is a state-dependent scalaGaus- received renewed research interests due mainly to the pop-
sian white noise sequence with known variance. The addresbe ylarity of networked control systems [7], [10]. As a simple
gain-scheduled filtering problem is concerned with the degh of a yet effective model, the Bernoulli distribution model haseh

filter such that, for the admissible random measurement missg, tilized in diff t t ¢ flect th e
nonlinear parameters and external noise disturbances, therror utfized in difrerent systems 1o reriec € missing measure

dynamics is exponentially mean-square stable. The desirdilter ~Ments or packet dropouts, for example, nonlinear syste@js [1
is equipped with time-varying gains based primarily on the tme-  time-delay systems [10] and networked control systems, [12]

varying missing probability and is therefore less conservéive than  etc. Unfortunately, in almost all existing literature centing
the traditional filter with fixed gains. It is shown that the filter  ganoulli distribution model. the missing probability hasen
parameters can be derived in terms of the measurable probabty imolicitly assumed to be a ;‘ixed constant resulting in a time-
via the semi-definite programme method. : p - y ) . 9 A
o o ) invariant filter structure. In reality, however, for dynami
__Index Terms—Filtering; missing measurements; gain schedul- yayiation in the environment, the severity of the missing
ing; time-varying Bernoulli distribution; probability-d ependent measurement shenomenon miaht be chanaeable with time. and
Lyapunov functions pher ngnt g . ’
therefore the missing probability is often time-varying.
For the filter design problems for time-varying systems, the
. INTRODUCTION gain—sched_uling approach has_bgen fpund to _be one of _the
. o . . most effective ones, whose main idea is to design filter gains
The general idea of filtering problems is to form a kind os functions of the scheduling parameters which are suppose
“best estimate” for the true value of some certain systeretaso be available in real time. Gain-scheduled filtering peot
on some potentially noisy observations [1]-[4], [8], [1]é]. have been an attractive research focus in the past decade,
Filtering problem serves as one of the fundamental problemgge e.g. [5]. Associated with the gain-scheduling techaigu
in the areas of control and signal processing. During thé pae utilization of parameter-dependent Lyapunov functidth
few decades, the filtering problem has attracted consiéeralope to reduce the possible conservatism [1]. Nevertheless
attention and some effective filtering strategies have begfere has been little research attention on the filteringlero
exploited in the literature that include Kalman filteringheme for discrete-time nonlinear stochastic Systems Wﬁhdom|y
[9] and H filtering methods [10]. The developed filteringmissing phenomenopaspecially when the time-varying nature
approaches have been applied in a variety of systems suck@pes mainly from the missing probability. This is indeed
uncertain time-delay systems [10], stochastic systemisddd 5 challenging topic that deserves much research effort from
nonlinear systems [6], [11]. the community. It is, therefore, the purpose of this paper to
_ _ S make one of the first few attempts to deal with the missing-
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Il. PROBLEM FORMULATION In this paper, we aim to construct the following probability
Consider the following class of discrete-time nonlined#€Pendent gain-scheduled filter for (1) and (6):

stochastic systems:
wp(k+1) = Gpk))xs (k) + Hp(k)y(k),  (8)
x(k+1) = Ax(k)+ Bf(z(k)) + Dx(k)w(k) (1)
yo(k) = Ca(k) (2) Wherexz(k) € R" is the state estimate andk) is the time-
' varying scheduling parameter taking valudpn ps]. G(p(k))

wherez (k) € R" is the stateyo(k) € R™ is the ideal mea- and H(p(k)) are the scheduled filter gains of the following
surement output (without data missing) ank) := Zx(k). structure:

w(k) is an one-dimensional Gaussian white noise sequence
satisfyingE{w(k)} = 0 andE{w?(k)} = 0*. A, B,C, Dand  G(p(k)) = Gy +p(k)Gy, H(p(k)) = Ho +p(k)H; (9)
Z are constant matrices with appropriate dimensie() = p
is the initial state and the output matriX is assumed to be whereGy, G, H, andH s are the constant filter parameters to
full of row rank. be designed angd(k) is the time-varying missing probability
The nonlinear vector-valued functiofi(-) represents the that can be estimated/measured via statistical tests litime=
nonlinear disturbance satisfying the following sectotdded  Remark 2:Different from the conventional filters, the above
condition with f(0) = 0: gain-scheduled filter structure comprises two kinds of rfilte
T gains: the constant (fixed) parametérs, G, Hy and Hy,
[F(z(k) = Fra(R)]1f (2(R)) = Fo2(R)] < 0, () Znd the time-varying parametgtk). Here,pik) takes valjue
where I, and I, are constant real matrices of appropriati#n the interval[p; p»] and can be measured in real time.
dimensions and” = I, — F; is a symmetric positive definite In certain applications such as the reliability analysis fo
matrix. It is customary that such nonlinear functigif-) sensors, if the data missing probability for a particularsse
belongs to the sectdiy, Fy] [6]. In this case, the nonlinearis greater thar.5 through statistical tests, then such a sensor
function f(z(k)) can be decomposed into a linear part andwould be replaced or at least repaired. In other words, the

nonlinear part as upper bound for the data missing probability(s. In this
paper, the interval constraifit; ps] is added to reflect such
F(z(k)) = Frz(k) + fs(2(k)), 4) an engineering practice and also facilitate the later aisly
and it follows from (3) that Obviously, with this type of gain-scheduled filters, the con
. servatism can be reduced since more information about the
fs (2(k))(fs(2(k)) — Fz(k)) < 0. (5) missing measurement phenomenon is utilized. Note that this

(ﬂ'}r‘_\d of gain-scheduling technique has been extensivelliepp
to deal with robust control and filtering problems for unaért
systems with time-varying parameters, see e.g. [5].

y(k) = E(k)yo(k) = £(k)Cx(k), (6) Letting z(k) = [z" (k) 27 (k)]", the error dynamics of the

where¢(k) € R is a random white sequence characterizing tr{gterlng process is derived from (1), (6) and (8) as follows:

probabilistic sensor data missing phenomenon, which obeé/ D) =A(p(ENE(E) + B i
the following time-varying Bernoulli distribution: & +1) (p(k))a(k) + Bf (2(k))

The measurement output with sensor data missing is
scribed by

+ (§(k) — p(k))C (p(K))

x Nz(k) + DNz (k)w(k) (10)
Prob{¢(k) =1} = E{¢(k)} = p(k),
Prob{¢(k) =0} = 1—E{{(k)} =1—p(k), (7) Wwhere
where p(k) is a time-varying positive scalar sequence thatA(p(k)) _ [ A 0 } D= [ D }
belongs to[p; p»] € [0 1] with the constantp; and p, p(k)H(p(k))C G(p(k)) |’ 0 ]’
being the lower and upper bounds mft). In this paper, we  _ 0 _ B
assume thaf(k), w(k) andp are uncorrelated. Furthermore, Clp(k)) = [ H(p(k))C ] , B= [ 0 ] , V=11 0. (11)

the kind of measurements missing that obey the probability

distribution law (7) is said to be admissible. Definition 1: The filtering error system (10) is said to be
Remark 1:In (6), a random white sequence satisfying thexponentially mean-square stabiie with w(k) = 0, there

time-varying Bernoulli distribution is introduced to reftehe exist constantsr > 0 andr € (0,1) such that

missing measurement phenomenon that has attracted conside

able attention in the past few years, see e.g. [10]. Howéver, E{||z(k)||?} < ar*E{||Z(0)|?}, kelt.

missing probability in most relevant literature has alwbhgen

assumed to be a constant. Such an assumption, unfortynateljhe purpose of this paper is to design a desired filter of the

tends to be conservative in handling time-varying missirfigrm (8) for the discrete nonlinear stochastic system viittet

measurements. In this paper, the missing probability ssxeltl  varying parameters in (1) and (6) such that, for all admissib

to be time-varying with known lower and upper bounds whichonlinearities, missing measurements and stochasticrdist

will then be used to schedule filter gains, thereby redudieg tbances, the augmented system (10) is exponentially mean-

possible conservatism. square stable.
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[1l. M AIN RESULTS In the following, we will conclude from (12) thafl < 0.

In the following theorem, the parameter-dependent Ly&/om the relation—Q(p(k + 1)) + S + ST > 0 in (12),
punov function and the convex optimization are used to de¥f can see thats is nons;ngulalr Plerfo_rgmn? congruence
with the stability analysis problem for the gain-scheddlier ~ transformation diagl, I, S™, 675 S~} to (12),
design of the discrete-time stochastic nonlinear systetjs e have

and (6) with missing measurements. —Q(p(k)) = * * *
Theorem 1: Consider the augmented filtering error system| FZN =2  x * *
10) with given filter gains. If there exist positive-definite | Q1 (k) B —A(k)  * * <0,
matrix sequence&)(p(k)) > 0 and matrix S such that the | C(p(k))N 0 0 —OA(k) *
following matrix inequalities DN 0 0 0 —oA(k .
—Qp(k)) * * * with A(k) = —5~TQ(p(k + 1))S ™! + 5 +57, (k) =
FzN- 2l * * A( (k)) + BRLZN, © = ©~ (k) and& = o~2. Then, it
(k) S°B —Ak) * * 0:follows from inequalityS~TQ(p(k+1))S~1 —S~1 - §-T >
Qa(k) 0 0 —O(k)Ak) * —QYp(k + 1)) that
02STDN 0 0 0 —o2A(k)
12) [ —QW(k)) = * * *
hold, whereA (k) = —Q(p(k + 1)) + S + ST and FZN =21 % * *
_ Q1 (k) B —A(k) * * < 0, (20)
Ok) = p(k)(1—p(k). (k) = OWSTCOENN | coipy 0 0 —OAK) =
(k) = ST[Ap(k)) + BF,ZN), (13) DN 0 0 0 —A(k)
then (10) is exp_onen'ually mean-square sta_ble. with A(k) = Q'(p(k + 1)). To this end, by Schur Com-
Proof: Define the Lyapunov functionV(k) := plement Lemma, we can see tHat< 0. Subsequently, we
zT(k)Q(p(k))z(k), whereQ(p(k)) is a time-varying positive have
definite matrix sequence dependent on the missing probabili s
(k). By noting E {¢(k) — p(k)} = 0 andE {w(k)} = 0, it E{AV(K)} < =Amin(IDE[Z (k)" (21)
can be obtained from (10) that where i, (IT) is the minimum eigenvalue df and|-| is the

E{AV(k)} usual vector norm. Finally, we can confirm from Lemma 1 of

_ [10] that the augmented filtering systems (10) is exponkiytia
=E {[A(p(k)z(k) + Bf (z(k))]" Q(p(k + 1))[A(p(k))Z(k) mean-square stable and the proof of this theorem is thus
)) complete. u

+Bf(z(k))] + p(k)(1 = p(k)z" (k) NTC (p(k T i Th Lo e oert f
NTPT emark 3:In Theorem 1, to improve the performance o
X Qp(k +1)C(p(k) Nz (T) totat(k )_ b the filter to be designed, a time-varying Lyapunov function
xQ(p(k + 1))DNz(k) — 2" (k)Q(p(k)z(k)} . (14) dependent on the missing probability has been propose@. Not
From (3) and (5), we can obtain that, in the past few years, parameter-dependent Lyapunov
functions have been intensively employed for tackling unce
E{AV(k)} tain systems and time-varying parameter systems aiming to
< E{[(A(p(k)) + BE.ZN)z(k) + Bf(2(k))]" reduce the conservatism, see e.g. [1].
xQ(p(k + 1) [(A(p(k)) + BF, ZN)z(k) Remark 4:In the controller and filter design, the product

terms between Lyapunov matrices and the system matrices

TAT
+Bf5( (D] + p(R)(1 = p(k))Z 2(7)TN OT(I_)(TIC)) usually have to be decoupled to bypass the difficulty encoun-
Qp(k + 1)C(p(k))Nz (k) + o*z" (k)N' D tered in the design. In this case, it is often an effectivatsty
Q(p(k+1))DNz(k) — 27 (k)Q(p(k))z(k) to add slack variables, see e.g. [1], [5]. Along this line, in
_2fs (z(k)[fs(2(k)) + FZNz(k)]} . (15) Theorem 1, we have introduced a slack variabte facilitate
the resulting filter design problem.
From (14) and (15), it follows that The following theorem focuses on the design of gain-
E{AV(K)} < E{jT(k)Hi(k)}’ (16) scheduled filte_zr parameters(p(k)) and H(p(k)) according
R to the results in Theorem 1.
wherez(k) = [z" (k) fJ(z(k))]" and Theorem 2: Consider the discrete-time nonlinear stochastic
I, % system (1). Assume that there exist positive-definite matt
=1, —214+BTQp(k+1)B (17)  quenceQ(p(k)) > 0, matrix sequences (p(k)) andG(p(k)),
. nonsingular matrices;1, Ro and matrix R; such that the
with following parameter-dependent LMIs hold:
I, =(A(p(k)) + BF1ZN)TQ(p(k + 1))(A(p(k)) + BFy —Q(p(k)) * «
x ZN)+0*NTDTQ(p(k + 1))DN +p(k)(1 — p(k) | FZN =21 * *
X NTCT (p(k)Q(p(k + 1)CRR)N = Q(p(K)) YA R
Iy =BTQ(p(k +1))(A(p(k)) + BFLZN) + FZN.  (18) T4 (k) 0 0 0 02T (k)
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where Then, a gain-scheduled filter can be obtained in the form of
ST A+ p(k)H(p(k))C + SLBFRZ  G(p(k)) ] (8) such that the filtering error dynamics (10) is exponédiytia
k)H

VA (p(k))C + RTBRZ  G(p(k)) | mean-squ.are_ stable. N
Proof: Firstly, choose the probability-dependent Lya-

Ly (k) =Q(p(k +;())(;))Aé o punov matrices as
I3(k) =O(k) { H(g(k))c ] N, Ta(k) = o’ [ RllTlp } N, Q(p(k)) = Qo + p(k)Qp (27)

A [ S+ ST, Ry +RY ] B { StB ] (22) where@o > 0 and @, > 0. It is easily seen thaf)(p(k)) =
Ry+ Rl Ry+R] |’ RIB |’ Qo + p(k)Qp with Qo = TTQoT andQ, = T7Q,T.

In this case, there exist nonsingular matrides and Sy, such ~ S¢tling
that Ry = S3,S5," S21, and then the gains of the desired filter an (k) = p2 — p(k) () — p(k) — p1 (28)
can be obtained as follows: M = Y T T =y

G(p(k)) = 83" G(p(k))Sai' S22, H(p(k)) = S5," H(p(k)). ~ We have

Then, there exists a desired gain-scheduled filter in tha fufr { O‘lk(:k):r o‘Qlik) =1 O‘Z:(k) 20(=1,2) (29)
(8) such that the filtering error dynamics (10) is expondiytia p(k) = a1 (k)p1 + a2 (k)p2-
mean-square stable. Similarly, letting
Proof: Let the nonsingular matrix variabl€ in (12) be (k41 Ea1)—
partitioned asS = [Sj]ax2 Where Si1, So; and Sy are  Bi(k) = Wv Ba(k) = u, (30)
nonsingular matrices. Introduce matrices P2=p1 p2—p
s 0 we have
= [ 0 Soism ] L Qp(k) = TTQp(R))T, { B+ () =1 AR 20(=12) 4,
R — S .6-16. R, — ST g=Tg 23) p(k +1) = B1(k)p1 + B2(k)po.
et From the above transformations, it is easily derived that
By congruence transformation

2

2
diag{7 ", 1,7, 7', T~'}, we can see that (22) is 5/, 1)) — (O Oln(k + 1)) — 0!
equivalent to (12), and it then follows from Theorem 1 thatQ(p( ) ;az( )@ QO +1) ;ﬂl( )@

(10) is exponentially mean-square stable. ] 9 9
Apparently, the number of LMIs in Theorem 2 is actually G (p(k)) = Zai(k)éi, H(p(k)) = Zai(k)ﬁi- (32)
infinite due to the time-varying paramete(t) and, therefore, im1 im1
it is nearly impossible to solve the LMIs directly. In theFurthermore it follows from (24) that
following, we will convert the LMIs into finite ones. '

Theorem 3: For system (1), assume that there exist positive 2

_ i . ijrl
positive-definite matrice§), > 0 and @, > 0, nonsingular _ Z ai(k)a; (k)ar (k) Bi (k)M < 0. (33)
matricesS11, R, and matricesky, Go, Gy, Hy and H; such bgirl=1
that the following LMIs hold: Also, it follows from (29) and (31)-(33) that (22) holds. The
F proof is now complete. ]
N ¥ * ¥ * In Theorem 3, we convert infinite LMIs in Theorem 2 to
FBN =21 «x * * . . . . .
il i - } finite ones by turning the time-varying paramegét) into the
MP = Fér B I3 ,j’: . * <0, (24) polytopic form. By such a transformation, the constant gain
I 0 0 Oy 2* . of the desired gain-scheduled filter can be easily derived in
Ly 0 0 0 oIy terms of the available LMI toolbox by using the computation-
for i, §,r 1 = 1,2, wherel's and B have been defined in (22) ally appealing gain-scheduled filter design algorithmelisas
_ _ _ . follows.
rii _ SQA +p;(Ho + piHy)C + 51TT13F12 G' ] Algorithm 1: The gain-scheduled filter design algorithm.
! | RiA+p;j(Ho+pHf)C+ R BRZ G |’ Step 1: Given the initial values for the positive integ#¥,
A = [ S11+SE R+ RY i _ @ }:IZC N the initial statep, the constantg, and_pz, t_h(_e_matrices4, B,
Re+RT Ry+RT |773 H'C » C, D, Fy, F, and Z, select appropriate initial state estimate
i 3 3 A 577 d setk = 0.
Q = Qo—piQZ”Fé:Ql—A’@J :pj(l_p’r)av Pf an . . .. ..
_ _ 2 - Step 2: Solve the LMI in (24) to obtain the positive-definite
B = Hy+pHy, G =Go+pCy. (25) 2P (24) P

matrices Qo and Q,, matrices Ry, Go, Gy, Ho and Hj.
In this case, there exist nonsingular matriGes and S, such Choose appropriate nonsingular matricgs andSs; to derive
that Ry = ST, S5,! S21, and therefore the constant filter gainghe constant filter parametet®, Gy, Hy and H by (26).

are obtained as follows: Step 3: Based on the measured time-varying parameter
o o p(k), compute the filter gaing/(p(k)) and H(p(k)) by (9)
Go = S5," GoSyy' S22, Gy = S5y" G S5y G2, and the state estimate; (k + 1) by (8). Then, sek = k + 1.

Hy = Sy, Hy, Hy = So;" Hy. (26)  Step 4: If k < N, go to Step3, otherwise go to Step.
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Fig. 1. Estimate erroe; (k) Fig. 2. Estimate erroez (k)
Step 5. Stop. [2] H. Gao, J. Lam and C. Wang, MixeH> /Ho, filtering for continuous-
Remark 5:0ur main results are based on the LMI condi- time pol)ét%pic SlystemS: a parlargeter-degendenése;ppgmzméuggs, Sys-
. f : PR PO tems and Signal Processingol. 24, No. 6, pp. -702, 5.
tions. While the_mterlor point LMI sqlvers are S|gn|f_|cant [3] H. Gao, J. Lam, L. Xie and C. Wang, New approach to migég) Ho
faster than classical convex optimization algorithmshidd filtering for polytopic discrete-time systemtEE Trans. Signal Pro-

be kept in mind that the complexity of LMI computations  cessingVol. 53, No. 8, pp. 3183-3192, 2005

: : ; : : [4] H. Gao, J. Lam, P. Shi and C. Wang, Parameter-dependést diésign
remains higher than that of solving, say, a Riccati equafon with guaranteed H-infinity performancéE Proc. Control Tjeory and

instance, problems with a thousand design variables t§pica  Applications Vol. 152, No. 5, pp. 531-537, 2005.
take over an hour on today’s workstations. However, regeard5] N. Hoang, H. Tuan, P. Apkarian and S. Hosoe, Gain-scteetltilter-

S . . - ; ing for time-varying discrete systemH;EE Tran. Signal Processing
on LMI optimization is a very active area in the applied ) o "\ g Pp. 2464-2476, 2004.

math, optimization and the operations research communitys) J. Lam, H. Gao, S. Xu and C. Wan#l., and La /Lo, model reduction
and substantial speed-ups can be expected in the future. for system input with sector nonlinearitie, Optim. Theory and Appl.
Vol. 125, No. 1, pp. 137-155, 2005.
[7] G.-P. Liu, Predictive controller design of networkeds@ms with
IV. AN ILLUSTRATIVE EXAMPLE communication delays and data lo#8EE Trans. Circuits and Systems

. -1l: Express Briefs \Vol. 57, No. 6, pp. 481-485, 2010.
The system parameters of (1) and (6) are given as foIIow&] X Me‘:}g’ ), Lan and 2. Fei pApgeneranze d parameter-dépan

0.43 0 0.1 0.04 approach to robust  filtering of stochastic systemsircuits, Systems
A= { ] ,B = [ ] p1 =0.4,p, = 0.8, and Signal Processingvol. 28, No. 2, pp. 191-204, 2009.

0.15 0.36 0 0.08 [9] S. Sun, L. Xie, W. Xiao and N. Xiao, Optimal filtering for stems with

0.3 0.03 0.51 0 multiple packet dropoutdEEE Trans. Circuits and Systems -II: Express
D= [ } L = { } ,C =10.38 0.46], Briefs Vol. 55, No. 7, pp. 695-699, 2008.

0.05 0.38 0 0.621 [10] Z. Wang, F. Yang, D.W.C. Ho, and X. Liu, Robu#f, filtering for

— i T 2 _ stochastic time-delay systems with missing measuremHEsEE Trans.
Fy = diag{0.46 0.37}, F; = diag{2.81 2.95},0 L Signal ProcessingVol. 54, No. 7, pp. 2579-2587, 2006.

icai il Z. Wang, Y. Liu and X. Liu,H  filtering for uncertain stochastic time-
Assume that the measurable missing probability sequer{%‘@ delay systems with sector-bounded nonlineariti®stomatica Vol. 44,

satisfieSp(k:)-: p1+(p2—p1)] sin(@)|. According to Theorem No. 5, pp. 1268-1277, 2008.
3 and Algorithm 1, the constant filter parametékg G, Hy [12] G. Wei, Z. Wang, X. He and H. Shu, Filtering for networksibchastic
; . ’ time-delay systems with sector nonlinearitE EE Tran. Circuits and
and Hf can be obtained as follows: Systems - Part JIVol. 56, No. 1, pp. 71-75, 2009.
0.0242 —0.0007 ~1.3778 [13] J. Wilson, A. Nelson and B. Farhang-Boroujeny, Paramelerivation
Go = [ ] , Hy = [ ] , of type-2 discrete-time phase-locked loops containingltieek delays,
0.0086  0.0140 —1.5091 IEEE Tran. Circuits and Systems - Part, IVol. 56, pp. 886-890,

0.0030 0.0084 0.9806 Dec. 2009, = . o
Gf = { 0.0070  0.0059 ] , Hf = [ ] . [14] J. Zhang, Y. Xia and P. Shi, Parameter-dependent roHust filtering

1.0835 for uncertain discrete-time systenfgjtomatica \Vol. 45, no. 2, pp. 560-
. . .. - . 565, 2009.
With the _ava'lab_le missing prObablhtW(k)’ the gain- [15] L. Zhang, P. Shi, E.-K. Boukas and C. Wang, Rollgst filtering for
scheduled filter gaing7(p(k)) and H(p(k)) and the state switched linear discrete time-delay systems with polytapicertainties,

estimatez (k) can be obtained. Figs. 1-2 show the estimate IET Control Theory and Applications/ol. 1, No. 3, pp. 722-730, 2007.

7 ) o ) [16] S. Zhou, B. Zhang and W.-X. Zheng, Gain-scheduldd,, filtering
errorsey (k) = z1(k) — zp1(k) andez(k) = z2(k) — z72(k), of parameter-varying discrete-time systems via paranuspendent

respectively. The simulation results have illustrated teo- Lyapunov functionsInt. J. Control, Automation and Systeméol. 7,
retical ana'ysiS. No. 3, pp. 475-479, 2009.
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