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A Framework for Investigating the Performance of
Chaotic-Map Truly Random Number Generators
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Abstract—In this paper, we approximate the hidden Markov
model of chaotic-map truly random number generators (TRNGs)
and describe its fundamental limits based on the approximate
entropy-rate of the underlying bit-generation process. Wedemon-
strate that entropy-rate plays a key role in the performanceand
robustness of chaotic-map TRNGs, which must be taken into
account in the circuit design optimization. We further derive
optimality conditions for post-processing units that extract truly
random bits from a raw-RNG.

Index Terms—Truly Random Number Generator (TRNG);
Information Theory; Chaos; Hidden Markov Process (HMP).

I. I NTRODUCTION

CHAOS is the long-term non-predictive behavior observed
in certain nonlinear dynamical systems due to the sensi-

tivity of the output trajectory to the initial conditions. Although
chaotic systems are deterministic and can be described using
simple differential equations, their output trajectory can only
be determined given theexact initial state of the system. As
in practice the initial state of the system is only known with
uncertainty due to the random environmental noise, the per-
turbations grow exponentially leading to unpredictability [1].

One natural application for the unpredictability in chaotic
systems is in random number generators (RNGs). A RNG
requires anever-ending source of entropy (randomness), which
can be supplied by the inherent natural noise in the analog cir-
cuitry [2]–[5]. One of the most prominent solutions for random
number generation is based on the chaotic maps (cf. [6]–[9]).
A chaotic-map RNG operates based on the amplification of
the inherent noise in a chaotic map function by feeding the
output back into the map in each time step [9]. Then, the map
output is transformed into a binary random variable using a
bit generation function. Chaotic-map RNGs are fast and easily
integrable, and hence, interesting in practice.

An ideal chaotic-map RNG should be capable of generating
a truly random bit sequence, which consists ofindependent
andequiprobable output symbols (bits). Truly random number
generators (TRNGs) are required in public key cryptography
as well as digital signature schemes as essential tools for
data protection [10]. On the other hand, due to the process
variations, there is an inevitable correlation in the generated
output bits in a practical RNG (hereafter called raw-RNG).
An important question is how robust the map function is to
implementation non-idealities and how could the robustness be
measured. The degraded performance due to the correlations
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Fig. 1. The Bernoulli shift map.

necessitates the utilization of a post-processing unit forthe
recovery of the randomness in the bit sequence generated by
a given raw-RNG so as to obtain a TRNG (cf. [11], [12]).

In [9], the authors presented a mathematical analysis
of piece-wise affine map-based raw-RNGs using a Markov
model. In this paper, we describe the shortcomings of the
analysis in [9] and present a more comprehensive analysis.
Our contributions are as follows:

• We derive the approximate entropy-rate of the hidden
Markov process underlying chaotic-map raw-RNGs to
determine their fundamental limits.

• We demonstrate the effectiveness of the entropy-rate in
investigating the robustness of chaotic-map raw-RNGs.

• We derive necessary (though not sufficient) conditions
that an ideal post processing unit should fulfill to extract
truly random bits from a raw-RNG.

II. BACKGROUND REVIEW

A discrete-time (chaotic) map is defined using a transforma-
tion functionM(x) : (0, 1) → (0, 1). The output of the map
function from the previous time-step is fed back as the inputof
the current time-step. That isxn = M(xn−1) = Mn−1(x0),
whereM i(x0) , M(M i−1(x0)), n is the time step,x0 is
the initial state of the system, andxn is the state of the
system at timen, and clearly, the sequence{xn} forms a
Markov process [1]. Letfn(·) denote the probability density
function (PDF) of the map output at timen. Due to the Markov
property, the probability distribution at timen is related to that
of time (n− 1) through the linear Frobenius-Perron operator
P as given byfn(x) = Pfn−1(x). If the initial state of
this deterministic system (i.e.,x0) does not follow a PDF of
bounded variation (e.g., isexactly known), the output behavior
can be predicted [13]. However,f0(x) is of bounded variation
as a result of random perturbations, and hence the correspond-
ing Markov chain is ergodic. Hence,fn(x) asymptotically
approaches a fixed steady-state distribution denoted byf∞(x)
when n → ∞, which satisfiesf∞(x) = Pf∞(x). Let the
Lyapunov exponent associated with a discrete-time map be
defined asλ =

∫ 1

0
ln |M ′(x)|f∞(x)dx, whereM ′(x) is the
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Fig. 2. (a) The example map. (b) Steady-state probability distribution. (c) Conditional entropy.

derivative ofM(x). We assume thatM(x) is continuous and
differentiable except in finitely many points. The discrete-time
system defined above exhibits chaotic behavior ifλ > 0.

Next, we briefly review the Bernoulli shift map (shown in
Fig. 1), which is a piecewise-affine function given by

MBer(x) =

{

2x 0 < x < 1
2

2x− 1 1
2 < x < 1

. (1)

The Lyapunov exponent of the map is equal toln(2). The
Frobenius-Perron operatorP is implicitly given by fn(x) =
Pfn−1(x) = 1

2

{

fn−1

(

x
2

)

+fn−1

(

1
2 + x

2

)}

. It is straightfor-
ward to show thatf∞(x) = 1 is a solution tof∞ = Pf∞,
and hence, the steady-state probability distribution for the
Bernoulli map is uniform over(0, 1).

A random number generator that operates based on a chaotic
map can be defined using the pair(M,B) whereM : (0, 1) →
(0, 1) is the map function andB : (0, 1) → {0, 1} is the bit-
generation function. Let the output binary sequence be denoted
by {zn}, wherezn , B(xn−1). We assume that the initial
state of the system follows the steady-state distribution,i.e.,
X0 follows f∞.1 Consequently, the output sequence{xn} of
the raw-RNG forms a stationary Markov process. Further, as
the user does not have access to the state sequence{xn} of the
chaotic map, the sequence{zn} by definition forms a hidden
Markov process [14], [15]. A hidden Markov process is a
random process whose outcomes are functions of a Markov
process.

For the case of the Bernoulli shift map, a raw-RNG will be
formed using the pair (MBer,BBer), whereBBer is defined as

zn = BBer(xn−1) , ⌊xn−1 +
1

2
⌋, (2)

where⌊x⌋ denotes the greatest integer less than or equal to
x. In other words, the output iszn = 0 if xn−1 < 1/2 and
zn = 1 if xn−1 ≥ 1/2. It is straightforward to verify that
the bits generated from the Bernoulli shift map raw-RNG are
independent and equally0 or 1 and hencetruly random, i.e.,
we can show thatP[zn|z

n−1] = P[zn] =
1
2 .2

In [9], the authors presented a mathematical analysis of
piece-wise affine map-based raw-RNGs using a Markov model
and applied it to a variant of the Bernoulli shift map. Since
the hidden Markov bit-generation process does not generally
yield to a Markov process, the model in [9] is not capable
of explaining the bit-generation process and investigating the

1In this paper we use the upper case letter to denote a random variable and
the lower case letter to denote a realization of the random variable.

2For any i ≤ j, we definezj
i
, (zi, zi+1 . . . , zj) as the sequence of all

binary outputs from timei to time j. We further denotezj , z
j
1
.

robustness of the map to implementation variations for a
general chaotic map.

III. STATISTICAL PROPERTIES OFBIT-GENERATION

In this section, we theoretically formulate the bit-generation
process from a general discrete-time chaotic map. LetN(x)
denote the number of solutions to the equationM(u) = x.
Further, letu1, u2, ..., uN(x) be theN(x) solutions. For ex-
ample, it is seen that in the Bernoulli map we haveN(x) = 2
for all x ∈ (0, 1) except at the break-points. The Frobenius-
Perron operator for the chaotic map is then expressed as
fn(x) = Pfn−1(x) =

∑N(x)
i=1

1
|M ′(ui)|

fn−1(ui).
In order to clarify the discussions, we consider the fairly

general example map function shown in Fig. 2(a). Note that,
however, the framework is generic and is applicable to any
chaotic map. The example map functionMex is given by
Mex(x) = log2(1 + 3x)− ⌊log2(1 + 3x)⌋. Further, let the
bit generation function for the example map be chosen to be
zn = Bex(xn−1) = ⌊xn−1 + 2

3⌋. Thus, zn = 1 (zn = 0)
whenever the input isxn ≥ 1

3 (xn < 1
3 ), as shown by the

vertical dashed line in Fig. 2(a). It is easily seen that there are
exactly two solutions toM(u) = x for all x in the example
map (except at the break-points). Note that this need not be
the case in a general map. For example, atx = 0.4, the steady-
state distribution is dependent on the steady-state distribution
at pointsu1 and u2 as shown in the figure. The solution to
the steady-state probability distribution for the examplemap
is illustrated in Fig. 2(b).

Let the setSn(z
n) ⊂ (0, 1) be defined as follows.

Sn(z
n) ,


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

, (3)

wherexj for all 0 ≤ j ≤ n−1 denotes the state of the system
at timej. In other words,Sn(z

n) is the set of all initial points
x0 for which the firstn generated bits are the bit sequence
zn. Thus, givenSn(z

n) , we determine the probability of the
event that the sequencezn is generated, as given by

P[zn] =

∫

x∈Sn(zn)

f∞(x)dx. (4)

As a special case,S1(z1) = {x0|B(x0) = z1} is the set of
all points in the map that generate the output bitz1 (either
0 or 1). This is indeed the definition of the bit-generation
function. Accordingly, we can calculate the probability ofthe
event thatz1 is generated byP[z1] =

∫

x∈S1(z1)
f∞(x)dx.
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This calculation leads to obtaining the widely used measure
for the randomness of a binary sequence, i.e., the biasb, as
b ,

∣

∣P[0]− 1
2

∣

∣ =
∣

∣P[1]− 1
2

∣

∣ . The bias is a measure of the
closeness of the average number of1’s in the sequence to the
desired value of12 . In the case where the generated bits in
the output sequence are known to be independent,bias is the
only determining factor for the randomness of the sequence,
whereas a zero bias (b = 0) indicates that the binary sequence
is in fact truly random. On the other hand, as we shall see
shortly, the hidden Markov process defined here to investigate
process variations oftentimes entails correlation between the
bits in the sequence, i.e., the knowledge ofzi will provide
partial information about whetherzj is 0 or 1 for all i < j.

To clarify, we again consider the example map in Fig. 2(a).
Here, by definition ofBex, we haveS1(0) = (0, 1

3 ), and
S1(1) = (13 , 1). Accordingly, we can determineP[0] = 0.14,
P[1] = 0.86, and the bias to beb = 0.36. This indicates that
the generated bit sequence cannot be truly random.

As described above, we need to determineSn(z
n) in order

to calculateP[zn]. We have

x0 ∈ Sn(z
n) ⇐⇒

{

x0 ∈ S1(z1)
x1 ∈ Sn−1(z

n
2 )

, (5)

wherex1 = M(x0). Thus,Sn is obtained recursively using
Sn−1 and S1 assuming thatSn−1(z

n−1) is known for all
possible2n−1 binary sequences of lengthn− 1.

IV. FUNDAMENTAL PERFORMANCEL IMITS

In this section, we derive the entropy-rate of the bit-
generation process and analyze the fundamental performance
limits of TRNGs. As a chaotic-map raw-RNG is governed by a
hidden Markov process, no closed form solution exists for the
entropy-rate in general [14]. Thus, an approximate solution is
needed. Let the entropy of the sequencezn be defined as [16]

H(Zn) =
∑

zn∈{0,1}n

P[zn] log2

(

1

P[zn]

)

. (6)

Let H(Zn|Z
n−1) denote the conditional entropy of the ran-

dom symbolZn given the latestn− 1 symbols (i.e.,Zn−1).
That is H(Zn|Z

n−1) = H(Zn) − H(Zn−1) [16]. It is
straightforward to show thatH(Zn|Z

n−1) is a monotonically
decreasing function ofn, and hence,H(Zn|Z

n−1) converges
to a fixed valueH called theentropy-rate of the generated
binary sequence as given by [16]

H , lim
n→∞

H(Zn|Z
n−1) = lim

n→∞

1

n
H(Zn). (7)

Note that since{Zn} comes from a hidden Markov process in
the case of chaotic-map raw-RNGs, the rate of convergence of
H(Zn|Z

n−1) to the entropy-rateH is exponential inn, where
the exponent is proportional to the Lyapunov exponentλ of
the underlying chaotic map [14].

Let Pn : {0, 1}n → {0, 1}k(n) denote adeterministic
post-processing function such that it inputs a random binary
sequencezn and outputs another random sequence denoted by
tk = Pn(z

n). Further, letR(P) , limn→∞
k(n)
n

denote the
post-processing rate. Please note that for anyn, the output rate

of the post-processing unit can take(n+1) discrete values of
{

0, 1
n
, . . . , 1

}

based on the value ofk(n).

Definition 1 A post-processing function Pn is asymptotically
truly random if limn→∞

1
k
H(T k) = 1.

Intuitively, a truly random post-processing unit is one that
asymptotically for largen turns the input sequence to a nearly
truly random (independent and equiprobable) bit sequence.

Next, we will present our main results that will be used to
determine the necessary but not sufficient condition for ideal
performance evaluation of the chaotic-map TRNGs.

Theorem 1 If the post-processing function Pn is asymptoti-
cally truly random, then we must have R(P) ≤ H .

Proof: We present a proof by contradiction. Assume that
R(P) > H . According to the data processing theorem [16],
we haveH(T k) ≤ H(Zn). Hence,

lim
n→∞

1

k
H(T k) ≤ lim

n→∞

1

k
H(Zn) =

H

R(P)
< 1, (8)

where the equality is due to the fact that, by definition,
limn→∞

k
n
= R(P) and limn→∞

1
n
H(Zn) = H .

Theorem 1 states that unless we do notwisely decrease
the rate by a factorH , we cannot turn the output bits of the
raw-RNG to a truly random sequence. Again, considering the
example map in Fig. 2(a), the entropy-rate can be shown to
be ∼ 0.57 (Fig. 2(c)), i.e., the rate of a truly random post-
processing unit is smaller than0.57.

Theorem 2 For any R ≤ H , there exists an asymptotically
truly random post-processing function Pn with R(P) = R.

Proof: It suffices to demonstrate that a truly random post-
processing with asymptotic rateH exists. Then, any rateR ≤
H is also achieved by simply discardingR

H
of the bits in the

sequences of lengthnH . To show that rateH is achievable,
we build upon the idea of universal source coding and the
asymptotic equipartition property [16]. For anyǫ > 0, letA(n)

ǫ

denote thetypical set with respect toP[Zn], i.e., [16]

A(n)
ǫ =

{

zn ∈ {0, 1}n
∣

∣

∣
2−n(H+ǫ) ≤ P[Zn] ≤ 2−n(H−ǫ)

}

.

Then, using the Shannon-McMillan-Breiman theorem [17], it
is shown thatP[Zn ∈ A

(n)
ǫ ] ≥ 1 − ǫ. For sufficiently large

n, we also have(1 − ǫ)2n(H−ǫ) ≤ |A
(n)
ǫ | ≤ 2n(H+ǫ) [16].

In other words, any sequence of lengthn, with probability at
least (1 − ǫ), is contained in the typical set and the size of
the typical set is no larger than2n(H+ǫ). Let k = log |A

(n)
ǫ |.

Label all sequenceszn ∈ A
(n)
ǫ with binary sequencestk(zn)

of lengthk bits. Denote0k as the all-zero sequence of length
k. Then, let the post-processing functionPn(·) be defined by

Pn(z
n) =

{

tk(zn) if zn ∈ A
(n)
ǫ

0
k otherwise

, (9)

DefineIzn as the indicator of the typical set such thatIzn = 1

if zn ∈ A
(n)
ǫ and Izn = 0 otherwise. By the properties of

entropy [16], we haveH(T k) ≥ H(T k|Izn). Further,

H(T k|Izn)=H(T k|Izn=1)P[Izn=1]+H(T k|Izn=0)P[Izn=0],
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Fig. 3. The solid blue curves correspond to the decreased slope Bernoulli shift map. The dashed red curves correspond to the tailed tent map. (a) Decreased
slope Bernoulli shift map function:MDec-Bernoulli(x) (solid blue curve) and tailed tent map function:MTailed-Tent(x) (dashed red curve). (b) Steady-state
probability distribution. (c) Conditional entropy.

which is equal tok × (1 − ǫ) + 0 × ǫ = k(1 − ǫ), and hence
1
k
H(T k) ≥ (1−ǫ). The post-processing rate is asymptotically

R(P) = limn→∞
log |A(n)

ǫ
|

n
≥ H − ǫ. Since, the above results

hold for all ǫ > 0, we can choose to letǫ → 0, and we obtain
1
k
H(T k) → 1 andR(P) → H . Therefore, the post-processing

functionPn(·) in (9) is asymptotically truly random (according
to Definition 1) with rateH as desired.

Definition 2 A post-processing function Pn is asymptotically
optimal if we have limn→∞

1
k
H(T k) = 1 and R(P) = H .

Please note that, among the asymptoticallytruly random
post-processing units, it is desirable that the rate of post-
processing is highest possible, i.e.,optimal-rate. According
to Theorem 2, an asymptotically optimal post-processing unit
exists, however, it remains an open problem to provide one.

Although the entropy calculation entails exponential com-
plexity in the sequence lengthn, the convergence to the
entropy-rate is also exponential withn, where the exponent
is proportional to the Lyapunov exponent of the map. Thus
far, we have used this method for calculating the entropy-rate
of several practical maps and their non-ideal versions (whose
Lyapunov exponents are similar to the original map). In the
experiments, we have never observed the need to consider
lengths beyondn = 10 for which the entropy calculation takes
less than a second using MATLAB on a typical PC.

Note that it is also possible to approximatelyestimate the
entropy by observing a sufficiently long sequence from a raw-
RNG regardless of whether the map function is known or not
(as it is done in many randomness test suites) [17]. However,
when the map is known, our method of calculation offers
two advantages. First, it is significantly faster since estimation
requires processing of about one million generated raw bits
to be able to give similar predictions as our calculation for
n = 10. Second, the result of the approximate entropy test
is probabilistic, i.e., if a sequence passes the test there is
no guarantee that the generator is truly random whereas a
sequence with unit entropy-rate is guaranteed truly random.

V. SIGNIFICANCE OF THERESULTS

A. Robustness/Randomness Trade-off

To proceed, we utilize the developed methodology for
the performance evaluation of two practical robust chaotic
maps based on the Bernoulli map and the tent map. Tent
map is a chaotic map with very similar characteristics to
those of the Bernoulli map presented in Sec. II. The circuit
implementations of both the Bernoulli map and the tent map

suffer from the saturation problem, where the output can be
saturated in the corner points due to implementation variations,
and the output sequence will be all-zeros or all-ones [5].

In [6], the authors presented a decreased slope Bernoulli
map that makes the chaotic map robust by decreasing the
slope. The map function for the slope of1.5 is shown
by the solid blue curve in Fig. 3(a). As can be seen in
Figure 3(b) (solid blue curve), the steady-state probability
distribution is not uniform. If the bit-generation function is
BDec-Bernoulli(x) = ⌊x + 1

2⌋, because of the symmetry of the
map and the steady-state distribution the output bit sequence
will be unbiased. Figure 3(c) (solid blue curve) demonstrates
the entropy-rate of the binary sequence output of the decreased
slope Bernoulli shift map. As can be seen, despite the unbiased
output, the entropy rate isH ≈ 0.84.

Next, we study the tailed tent map that also resolves the
saturation problem [18], as shown by the dashed red curve in
Fig. 3(a). The steady-state distribution has been proven tobe
uniform for all tail parameters, as also confirmed in Fig. 3(b).
For the sake of comparison, we chose the tail parameter for
which the Lyapunov exponent of the map is equal to the
decreased slope Bernoulli map. The tailed tent map along
with the bit-generation functionBTailed-Tent(x) = ⌊x + 1

2⌋ can
result in a random number generator. First thing to note is
that the output bit stream is unbiased due to the uniform
steady-state distribution. However, the conditional entropy
converges to a value ofH ≈ 0.72 for the chosen tail parameter
(Fig. 3(c)). Hence, despite the uniform steady-state distribution
and unbiased bit sequence, the performance is even worse than
the decreased slope Bernoulli map.

B. Investigating the Robustness to Process Variations

Our results suggest that the entropy-rate (which is a measure
of truly randomness) can be used in the system-level as well
as circuit-level optimization of chaotic-map raw-RNGs (along
with other measures, such as speed, power consumption, etc).
To better illustrate this, we consider an example using the
zigzag map based TRNG [8], which is a modified version of
the tent map, as shown in Fig. 4(a). In order to investigate the
robustness of the zigzag map to the variations, we obtained
1,000 Monte Carlo sample maps from the implementation
in [8]. We further obtained the profile of the entropy-rate of
the output bit sequence for the Monte Carlo samples, shown
in Fig. 4(b). The mean of the entropy is 0.97 bits per source
symbol suggesting that this raw-RNG is relatively robust to
process variations. To confirm this, we also tested the output
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Fig. 4. (a) Zigzag map. (b) The profile of entropy-rate for 1,000 Monte
Carlo samples from the zigzag map.

bit streams for all the Monte-Carlo samples against NIST 800-
22 randomness test suite. Our simulations showed that more
than 99% of the maps generated sequences that passed all the
randomness tests (consistent with the very high entropy-rate).
Please note that NIST 800-22 tests are computationally very
expensive and each test takes minutes to run. Further, NIST
800-22 runs over a sequence generated from a given map, thus,
a sequence of 20,000 bits must be generated from the Monte
Carlo sample map before the test can be run. On the other
hand, given the map function, the entropy-rate calculation
takes less than a second and can provide similar predictions.

C. Practical Post-processing Units

Due to imperfections in practice, the output bits of a raw-
RNG are almost always correlated, which calls for the post-
processing. Von-Neumann is a widely used post-processing
algorithm [11]. In Von-Neumann algorithm, the sequence
is divided into the blocks of length two. Then,01 and
10 are mapped to0 and 1, respectively, while00 and 11
are discarded.Thus, the Von-Neumann post-processing rateis
readily derived to beRVon-Neumann =

1
2 (P[01] + P[10]). If

a truly random bit sequence is fed into the Von-Neumann
algorithm, the output rate is only14 , and hence, the Von-
Neumann post-processing is not optimal-rate. For the example
map of Fig. 2(a), we haveP[01] ≈ 0.11 andP[10] ≈ 0.11.
Thus, the output sequence of Von-Neumann post-processing
is nearly unbiased while the post-processing rateR ≈ 0.11
is much less than the entropy-rate ofH ≈ 0.57. Finally, the
Von-Neumann algorithm does not generate truly random bits
unless the outputs of the raw-RNG areindependent.

Next, we also consider two other post-processing units by
Addabboet. al. [12] and Poliet. al. [19]. Both papers provide
a post-processing unit that results in the generation of bits that
pass randomness statistical tests whenH ≈ 1. In both designs,
the post-processing rate is equal to one, i.e.,R = 1. Therefore,
according to Theorem 1, this post-processing in essencecannot
generate a truly random sequence unless the raw-RNG is
a TRNG in the first place. On other other hand, when the
raw-RNG is very close to being truly random, the output
sequence of the system has been shown to pass the randomness
test suites [12], [19]. In fact, we applied Addabbo’s post-
processing to the outputs of the zigzag raw-RNG presented in
Section V-B, and all of the generated sequences passed NIST
800-22 randomness tests after the post-processing.

We remark that since the condition in Theorem 2 is nec-
essary but not sufficient, there are post-processing units that
satisfy the rate reduction requirement and still leave patterns

in the output stream that are easy to spot using standard
randomness tests (e.g., NIST 800-22). On the other hand,
although [12], [19] do not satisfy the rate reduction condition,
they produce output streams that pass randomness test suites.

VI. CONCLUSION

In this paper, we derived the approximate entropy-rate of the
hidden Markov process underlying chaotic-map TRNGs. We
concluded thatunbiasedness of the generated bits and theuni-
formity of steady-state distribution of the chaotic map are not
good measures for the performance evaluation of the TRNG.
Instead, we proved that theentropy-rate is the fundamental
performance limit of the the bit-generation process from any
chaotic-map TRNG and can replace costly NIST 800-22 tests
whenever the map function is known.
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