
1

Hardware Architecture for List Successive
Cancellation Decoding of Polar Codes

Alexios Balatsoukas-Stimming, Student Member, IEEE, Alexandre J. Raymond,
Warren J. Gross, Senior Member, IEEE and Andreas Burg, Member, IEEE

Abstract—We present a hardware architecture and algorith-
mic improvements for list SC decoding of polar codes. More
specifically, we show how to completely avoid copying of the
likelihoods, which is algorithmically the most cumbersome part
of list SC decoding. The hardware architecture was synthesized
for a blocklength of N = 1024 bits and list sizes L = 2, 4 using a
UMC 90nm VLSI technology. The resulting decoder can achieve
a coded throughput of 181 Mbps at a frequency of 459 MHz.

Index Terms—Polar codes, list SC decoding, VLSI.

I. INTRODUCTION

CHANNEL polarization gives rise to an elegant and
provably good class of channel codes, called polar

codes [1]. Decoding of polar codes is usually performed using
a successive cancellation (SC) decoder [1]. Some hardware
architectures for SC decoding of polar codes were discussed
in [2], [3], [4], and [5], while the first ASIC of such a decoder
was presented in [6]. Moreover, an FPGA implementation of
a belief propagation decoder for polar codes was presented in
[7]. Recently, more sophisticated decoding algorithms, such
as the list SC decoder [8], [9], and the stack SC decoder
[9], were introduced. These algorithms provide improved error
correcting performance at the cost of increased complexity.
Stack SC decoding suffers from high memory requirements,
costly metric normalization, and non-deterministic decoding
latency, making list SC decoding more attractive from a
practical perspective. Unfortunately, the list SC decoder is
burdened by a likelihood copying step and no architecture of
such a decoder exists yet in the literature.

Contribution and Outline: This brief presents an architec-
ture for list SC decoding of polar codes. To this end, we also
describe how the copying of the intermediate likelihoods in
the list SC decoding algorithm can be avoided. In Section
II, we briefly review the construction and decoding of polar
codes. Section III discusses algorithmic improvements to list
SC decoding, while in Section IV the proposed list SC
decoder architecture is described. Section V summarizes VLSI
implementation results and concludes this letter.

II. POLAR CODES

We use aN1 to denote a row vector (a1, . . . , aN) and aji to
denote the subvector (ai, . . . , aj). We use the operators log
and ln for the binary and natural logarithm, respectively.

A polar code is constructed by recursively applying a
polarizing transform n times to the binary input symmetric
and memoryless channel W . This transform is linear and it
can be expressed as a 2× 2 matrix, denoted by F. The n-fold

Fig. 1: SC decoding of u1 with N = 4.

application of this transform can be expressed as an N × N
matrix G, with G = F⊗n, where ⊗n denotes the n-fold
application of the Kronecker product. Encoding is performed
by choosing a sequence uN1 ∈ {0, 1}N and calculating the
codeword xN1 = uN1 G. This codeword is transmitted over N
uses of W and a noisy codeword yN1 is received.

A. Successive Cancellation Decoding

The decoding method proposed by Arıkan is based on
successive cancellation. First, an estimate for u1, denoted
by û1, is calculated based on yN1 . Then, u2 is decoded,
based on yN1 and the knowledge of û1, etc. In principle,
it is possible to calculate the mutual information between
(yN1 , u

i−1
1) and ui for every i. A polar code of rate R is

constructed by letting only the NR ui’s with the highest
mutual information convey information, while freezing the
remaining ui’s to 0. The sets of non-frozen and frozen bit
indices are denoted by A and Ac, respectively. The exact
decoding procedure is dictated by the recursive structure of
the code. In Fig. 1, the decoding process is visualized for
N = 4. On the right-hand side of the graph, the likelihoods
W (yi|xi), i = 1, . . . , N, xi ∈ {0, 1} are available. These
likelihoods are combined pair-wise by going through a data
dependency graph (DDG) with N logN nodes, which are
grouped into logN stages. The output on the left side of
the graph is P (yN1 , û

i−1
1 |ui), ui ∈ {0, 1}, i = 1, . . . , N . Hard

decisions are taken according to

ûi =

{
arg maxui∈{0,1} P (yN1 , û

i−1
1 |ui), i ∈ A,

0, i ∈ Ac.
(1)

The two pairs of incoming likelihoods at each node, denoted
by a21 and b21, are combined in order to produce the interme-
diate likelihoods, according to either f : [0, 1]4 → [0, 1]2 or

ar
X

iv
:1

30
3.

71
27

v3
 [

cs
.I

T
]

 2
7

Fe
b

20
14

2

Fig. 2: Decoding tree for N = 4.

g : [0, 1]4 × {0, 1} → [0, 1]2 with

f(a21, b
2
1) =

(
1

2
(a1b1 + a2b2) ,

1

2
(a2b1 + a1b2)

)
, (2)

g(a21, b
2
1, ûs) =

(
1

2
a1+ûs

b1,
1

2
a2−ûs

b2

)
, (3)

where ûs is called a partial sum. Each partial sum is a linear
combination of some of the previously decoded codeword bits
[1]. The circle and square nodes of the DDG in Fig. 1 represent
application of f and g, respectively. If intermediate likelihoods
are stored, then the computational complexity of SC decoding
is O(N logN) [1].

B. List SC Decoding

Successive decoding can be described as a search procedure
on a full binary tree. The 2(i−1) nodes at depth (i−1) represent
ui given all possible choices for ûi−11 . The two outgoing edges
of each node in the tree are labeled with the two possible
choices for ûi. A decoder explores one or more paths in the
tree by deciding which edge to follow at each step based on
some metric. The SC decoder explores a single path from the
root to the leaves of the tree. It uses the likelihood in (1)
as a metric for edges corresponding to non-frozen bits and it
always follows the edge corresponding to 0 for frozen bits. The
SC decoder has the drawback that erroneous decisions at some
point can never be recovered in the future. The list SC decoder,
on the other hand, performs a breadth-first search on the tree
under a complexity constraint. This constraint is enforced
by discarding some of the paths at each step. Specifically,
the list SC decoder with list size L keeps track of L paths
simultaneously and also uses the likelihood in (1) as a path
metric when encountering non-frozen bits. More formally, let
(ûi−11 (1), . . . , ûi−11 (L)) denote the L distinct decoding paths
after the (i − 1)-th bit has been decoded. For every path
l ∈ {1, . . . , L}, there are two choices for ûi(l). Out of the
resulting 2L paths, the L paths with the highest metric are
preserved. When bit N is reached, the path with the highest
metric is set as the decoded codeword. Decoding paths for an
SC and a list SC decoder with L = 2 are shown by the red
dashed and green dotted lines in Fig. 2, respectively.

All results in this paper are illustrated for N = 1024 and
R = 0.5. The performance of list SC decoding over an AWGN
channel for some practical list sizes is compared with the
performance of SC decoding in Fig. 3. We performed 107

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

F
E

R

SC

SC (min)

List SC (L=2)

List SC (L=2,min)

List SC (L=4)

List SC (L=4,min)

List SC (L=8)

List SC (L=8,min)

Fig. 3: Frame error rate (FER) performance of a (1024, 512)
polar code under SC and list SC decoding with various L.

Monte-Carlo simulations for each data point. We observe that
the returns of increased list size are small for L > 4 and
that at high SNR using L > 2 provides almost no gain.
However, at a FER of 10−2, which is a sensible target FER
for many communications standards, e.g., [10], the gain of list
SC decoding is not negligible.

III. ALGORITHMIC CONSIDERATIONS

For each path, the intermediate likelihoods, the partial sums,
and the path itself are stored in memories. We call these three
memories collectively the state-memories. The content of each
memory forms the state of each path. After the path selection
step, each of the initial L paths is either discarded, kept, or
duplicated, depending on whether it has zero, one, or two child
nodes in the set of L out of 2L largest metrics, respectively. In
order to duplicate a path, in a straightforward implementation
its state is copied from one state-memory to another state-
memory, with some differences between the two copies that
correspond to the two different choices for ûi. It was shown
in [8] that list SC decoding can be performed with complexity
O(LN logN) when using a lazy copy technique. Our approach
is to introduce an auxiliary pointer memory in order to avoid
the high complexity of likelihood copying.

The algorithm in Fig. 4 describes list SC decoding. LI ,
Ûs, û, and p denote the likelihood, partial sum, path, and
pointer memories, respectively. For simplicity we think of LI
as a three-dimensional memory which is indexed by the path
index, the current stage index, and the bit index. Each element
of LI stores a likelihood pair. The channel likelihood pairs are
assumed to be stored in LI(:, logN, i), i = 1, . . . , N, before
LISTSC is called. Ûs, û, and p are two-dimensional memories.
Their first dimension is indexed by the path index and their
second dimension is indexed by a combination of the partial
sum, bit, and stage indices. The operation and structure of
the pointer memory are described in the following section.
The 2L path metrics are stored in the L × 2 memory M .
PATHSELECTION takes 2L path metrics as input and outputs
the indices of the parent paths corresponding to the paths with
the L best metrics, denoted by lp(l), l = 1, . . . , L, and the
corresponding values for û(l, i). The straightforward copying
approach is chosen for the partial sums and the paths because

3

1: function LISTSC(L)
2: for i← 1 to N do
3: stage ← index of first ’1’ in logN -bit MSB-0 binary

representation of (i − 1) (if i = 1, then stage ← logN)

4: for l← 1 to L do
5: for s← stage− 1 to 0 do
6: LI(l, s, :)← UPDATESTAGE(LI(p(l, s+1), s+1, :))

7: p(l, s)← l
8: end for
9: M(l, :)← LI(l, 0, i)

10: end for
11: if i ∈ Ac and i < N then
12: û(l, i)← 0, l = 1, . . . , L
13: else
14: (lp(:), û(:, i))← PATHSELECTION(M)
15: p(l, :)← p(lp(l), :), l = 1, . . . , L
16: Ûs(l, :)← Ûs(lp(l), :), l = 1, . . . , L
17: û(l, :)← û(lp(l), :), l = 1, . . . , L
18: end if
19: end for
20: return û(1, :)

Fig. 4: LISTSC: List SC decoding with list size L.

it can be carried out in a single clock cycle in hardware with
small overhead due to the small size of the involved memories.
Lines 4–10 of ListSC can be performed in parallel, since
there are no data dependencies between the loop iterations.
UPDATESTAGE, which performs the likelihood updates for the
given decoding stage using the update rules described in [1],
can also be executed in parallel for the 2s nodes of the DDG
that require updating at stage s [3].

A. Low-Complexity State Copying

In this section, we describe the function of the pointer
memory p. Assume that, for the code in Fig. 1, we have L = 2,
and u1, u2 are non-frozen while u3, u4 are frozen. Decoding
starts with one (empty) path. The path metrics for û1 = 0, 1,
are calculated using the SC procedure based on the contents
of the first state-memory. The intermediate likelihoods which
are produced are written to the first state-memory. In general,
the intermediate likelihoods which are produced for path
l ∈ {1, . . . , L}, are written to the l-th state-memory. Instead
of taking a hard decision on û1 as the SC decoder would,
the list SC decoder duplicates the (empty) parent path and
extends the first copy with û1 = 0 and the second copy with
û1 = 1. The SC procedure for the two new paths requires
the intermediate likelihoods produced by their parent path
in order to calculate the path metrics for û2 = 0, 1. These
likelihoods are located in the first state-memory, since they
were produced by the first path in the previous decoding step.
The intermediate likelihoods produced by the SC procedure
for û2 = 0, 1, for the first and second paths are written to the
first and second state-memory, respectively. From lines 5–8 of
the list SC algorithm in Fig. 4, we see that the SC procedure
does not process all stages of the decoding graph for each
ui. So, if after û2 has been processed the list SC decoder
follows a new path whose parent is the second path, it has
to read the intermediate likelihoods for the stages which were

not processed when decoding û2 from the first state-memory,
and the intermediate likelihoods for the stages which were
processed when decoding û2 from the second state-memory.
The auxiliary pointer memory p of dimension L× (logN−1)
keeps track of which memory stores each path’s likelihood for
each stage. When a decision for û2 needs to be made, there
are four candidate paths, out of which the two paths with the
best metrics are kept, while the remaining two are discarded.
Now, instead of copying the intermediate likelihoods of the
paths that we want to keep, it suffices to copy the references
to the state-memories contained in the pointer memory. Since
u3 and u4 are frozen, both paths are extended with û3 = 0 and
û4 = 0 and the best path is declared as the decoded codeword.

B. Likelihood Representation

SC decoding can be carried out in the log-likelihood ratio
(LLR) domain by modifying (2)–(3) [2]. LLRs provide re-
duced storage requirements, increased numerical stability, as
well as simplified computations with respect to a likelihood
based implementation. The list SC decoding algorithm is
described using likelihoods and log-likelihoods (LLs) in [8]
and [9], respectively. LLRs can be converted to LLs by using
LL(xi) = ln exp(LLR)1−xi

1+exp(LLR) . However, this conversion assumes
that LL(0) + LL(1) = 1, which is not true in general. Thus,
each LL is normalized by a different factor, so the ordering
of the path metrics will be affected and they can no longer
be used to choose the L best paths. For this reason, in our
decoder the likelihoods are represented in LL form, which also
simplifies the computations in (2)–(3) and provides numerical
stability, but requires more storage. We use negative LLs,
which are always positive numbers and do not require a
sign bit, to make the binary representation more compact.
Assuming transmission over an AWGN channel with noise
variance σ2, the negative LLs are

LL(xi) = − lnW (yi|xi) =
(yi − µ(xi))

2

2σ2
+ ln
√

2πσ2, (4)

where µ(xi) = 1− 2xi, xi ∈ {0, 1}, is the modulated version
of codeword bit xi. Using negative LLs, (2) and (3) become

f(a21, b
2
1) = (min∗(a1 + b1, a2 + b2),

min∗(a2 + b1, a1 + b2)), (5)

g(a21, b
2
1, ûs) = (a1+ûs + b1, a2−ûs + b2) , (6)

where min∗(a, b) = min(a, b) + ln
(
1 + e−|a−b|

)
. The f

function is simplified by using an approximation that ignores
the ln(·) term. In Fig. 3, the performance of SC and list SC
decoding with this approximation are plotted using dashed
lines. There is practically no difference in performance with
respect to the exact implementation for the used blocklength
and list sizes. Our simulations show that the loss becomes
slightly larger as the blocklength is increased. For example,
for N = 215 the loss is approximately 0.1 dB. Moreover, let
c, d > 0 be constants. Then, for any a, b ≥ 0, we have

min(ca+ d, cb+ d) = cmin(a, b) + d, (7)
(ca+ d) + (cb+ d) = c(a+ b) + 2d. (8)

4

(a) List SC decoder architecture with details of the structure of the memory cells.
(b) Pointer memory (top) and
metric sorter (bottom).

Fig. 5: Block diagram of the proposed list SC decoder architecture.

At each stage of SC decoding only one type of function
is used, so the constant terms are common for all involved
calculations. Thus, they can be recursively factored out and
removed without affecting the ordering of the path metrics.
So, we can use LL(xi) = (yi − µ(xi))

2, which is easier to
handle by the quantization step.

IV. LIST SC DECODER ARCHITECTURE

The list SC decoder is a combination of three components.
The first component is the metric computation unit (MCU),
which calculates the metrics for each path using the sequen-
tial SC procedure. The second component, called the state-
memories component, consists of L state-memories, which
the MCU uses to compute the 2L path metrics. Moreover, a
third component manages the tree search by performing path
selection based on the metrics that are calculated by the MCU.
An overview of the proposed list SC decoder architecture
is presented in Fig. 5(a). The MCU contains L SC decoder
cores, which perform the metric calculation based on the state
that they are supplied with. Multiplexers are responsible for
redirecting the correct LLs to each decoder core, according
to the entries of the pointer memory. The path selection unit
contains a sorter which finds the L best metrics out of 2L
options, along with the path index and the value of ûi(l) from
which they resulted, and the pointer memory, which manages
the memory read access of the SC decoder cores.

A. LL Quantization

Since the LLs are positive numbers, as SC decoding moves
towards stage 0, their dynamic range increases. When an LL
pair saturates, it is useless for making a decision. Thus, when
using LLs, it is crucial to avoid saturation. In (5) and (6),
two numbers with the same dynamic range are added. The
simplest way to avoid all saturations is to increase the number
of bits used to store the LLs by one bit per stage. This
way, the only performance degradation with respect to the
floating point implementation comes from the quantization of
the channel LLs. Let Qch denote the number of bits used for
the quantization of the channel LLs. The performance of the
list SC decoder under various quantization bit-widths using a

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

F
E

R

ListSC (Floating−Point)

ListSC (Q
ch

=2)

ListSC (Q
ch

=3)

ListSC (Q
ch

=4)

Fig. 6: FER performance of a (1024, 512) polar code under
floating-point and fixed-point list SC decoding for L = 2.

uniform quantizer with quantization step ∆ = 1 is presented
in Fig. 6. For the remainder of this paper, we choose Qch = 3,
since the degradation with respect to the floating point and to
the Qch = 4 implementations is very small.

B. Metric Computation Unit

The architecture of the SC decoder cores contained in the
MCU is derived from the log-likelihood ratio (LLR) based
architecture of [3], which was modified to implement LL based
SC decoding. Each decoder core consists of P processing
elements (PEs) that operate on up to P nodes of each stage of
the DDG in parallel. For fair comparison, we chose P = 64
as in [6]. Three counters track the index i of the bit that
is currently being decoded, the current stage s within the
decoding graph, and the current part within the stage ps for
the stages that require more than one cycle to be processed.
All control signals and memory addresses are generated based
on (i, s, ps). The maximum LL bit-width, denoted by Qmax,
determines the width of the PEs. Using the LL quantization
scheme described previously, we have Qmax = Qch + logN .
The PEs implement both (5) and (6). An additional input is
used to choose between the f and g outputs. Due to the choice
of quantization scheme, no overflow checks are needed. The
MCU contains L L-to-1 multiplexers, which are controlled by

5

the pointer memory in the path selection unit and redirect the
correct LLs to each SC decoder core.

C. State-Memory

SC decoding can be implemented by storing 2N LL pairs
[3], requiring a total of 4N data words. The N first pairs that
correspond to the channel LLs are never overwritten during SC
decoding. Thus, only one copy of the channel LL memory is
needed, from which all decoder cores can read. The remaining
N memory position pairs have to be distinct for each path. The
number of required memory position pairs is (L + 1)N and
the total number of bits used for LL storage is

BLL = 2

(
NQch + L

logN−1∑
i=0

2i (Qch + logN − i)

)
(9)

= (2L+ 2)NQch + 2L(2N − logN −Qch − 2). (10)

There are L partial sum and L path memories, with N memory
positions of 1 bit each, resulting in a total of 2LN bits. The
architecture of the partial sum memories is identical to the
one used in [3]. In order to complete the state copying step
in a single cycle, all the contents of each of the L partial sum
memories can be copied to and from one another by means
of crossbars, as illustrated in Fig. 5. The same holds for the
path memories. So, the number of bits per MCU state is

Btot = (2L+ 2)NQch + 2L(3N − logN −Qch − 2). (11)

D. Path Selection

1) Metric Sorter: For the path selection step, the 2L metrics
are sorted in a single cycle. To minimize the delay, a radix-
2L sorter was implemented by extending the architecture
presented in [11] to support finding of the L smallest values,
instead of only the 2 smallest values. This sorter requires
2L(2L − 1)/2 comparators of Qmax-bit quantities. Since a
single sorter is needed, minimizing its size is not critical. In
fact, the metric sorter occupies only 0.1% and 0.8% of the total
decoder area for L = 2 and L = 4, respectively. A register is
added between the output of the MCU and the metric sorter in
order to reduce the length of the critical path. Unfortunately,
decoding can not proceed before the choice of paths is made,
so an idle cycle is introduced every time the output of the
metric sorter is needed. This happens RN times per codeword.
Thus, by modifying the expression found in [6], the number
of cycles required to decode one codeword is

Clist = (2 +R)N +
N

P
log

N

4P
. (12)

If we ignore the second term, which is small, then the
overhead with respect to the case where we do not add a
register is approximately RN cycles, or RN

2N = 50R percent.
Nevertheless, adding the register leads to a higher throughput
due to a higher clock frequency. The architecture of the metric
sorter is presented in Fig. 5(b).

TABLE I: Synthesis results and comparison.

Proposed Architecture [3] [6]

Algorithm List SC SC SC
Code Length N = 1024 N = 1024 N = 1024

List Size L = 2 L = 4 n/a n/a
Cell Area 1.60 mm2 3.53 mm2 0.31 mm2 1.71 mm2

Scaled to 65 nm 0.84 mm2 1.85 mm2 0.31 mm2 0.22 mm2

Clock Freq. 459 MHz1 314 MHz1 500 MHz 150 MHz
Throughput 181 Mbps 124 Mbps 246 Mbps 49 Mbps
Technology UMC 90 nm TSMC 65 nm 180 nm

1 We used the typical timing model at 25◦C and 1V supply voltage.

2) Pointer Memory: The pointer memory contains L ×
(logN − 1) elements. Each element can take on L distinct
values, so we need dlogLe bits for the representation. In total,
the pointer memory contains LdlogLe(logN − 1) bits. For
example, for L = 2, 4 and N = 1024, this translates to 18
and 72 bits, respectively, which is negligible. This memory
also has the copying functionality that the partial sum and path
memories provide. The architecture of the pointer memory is
presented in Fig. 5(b).

V. SYNTHESIS RESULTS & CONCLUSION

Synthesis results for N = 1024 and L = 2, 4 using a
UMC 90nm CMOS technology are shown in Table I. Since
there exist no other list SC decoder architectures in the litera-
ture, we try to quantify the additional hardware complexity
that is required to reap the decoding gain benefits of list
SC decoding by comparing our design with the existing SC
decoder synthesis results of [3] and the chip results of [6].

In this work, the first list SC decoder architecture in the
literature was presented. It was also described how to avoid
copying of the intermediate likelihoods by copying between
pointers instead of the actual values.

ACKNOWLEDGMENT

The authors would like to thank Pascal Giard and Gabi
Sarkis (McGill University), and Mani Bastani Parizi (EPFL)
for helpful discussions. This project was kindly supported by
the Swiss NSF under Project ID 200021 149447.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in IEEE Int. Conf.
Acoustics, Speech and Sig. Process., May 2011, pp. 1665–1668.

[3] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[4] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency SC polar decoder
architectures,” in Proc. IEEE Int. Conf. Commun., pp. 3471-3475, 2012

[5] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped
architectures for successive cancellation polar decoder,” IEEE Trans.
Signal Proc., vol. 61, no. 10, pp. 2429–2441, Mar. 2013

[6] A. Mishra, A. J. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Mein-
erzhagen, A. Burg, and W. J. Gross, “A successive cancellation decoder
ASIC for a 1024-bit polar code in 180nm CMOS,” in Proc. Asian Solid-
State Circuits Conf. 2012, Nov. 2012.

[7] A. Pamuk, “An FPGA implementation architecture for decoding of polar
codes,” in Proc. IEEE Int. Symp. Wireless Commun. Sys., Nov. 2011.

6

[8] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT 2011), Aug. 2011, pp. 1–5.

[9] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding
of polar codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3100–3107,
Aug, 2013.

[10] “Specific requirements part 11: Wireless LAN medium access con-
trol (MAC) and physical layer (PHY) specifications,” IEEE P802.11-
REVmb/D12, Nov. 2011, pp. 1–2910, 2012.

[11] L. Amaru, M. Martina, and G. Masera, “High speed architectures for
finding the first two maximum/minimum values,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 20, no. 12, pp. 2342–2346, Dec. 2012.

	I Introduction
	II Polar Codes
	II-A Successive Cancellation Decoding
	II-B List SC Decoding

	III Algorithmic Considerations
	III-A Low-Complexity State Copying
	III-B Likelihood Representation

	IV List SC Decoder Architecture
	IV-A LL Quantization
	IV-B Metric Computation Unit
	IV-C State-Memory
	IV-D Path Selection
	IV-D1 Metric Sorter
	IV-D2 Pointer Memory

	V Synthesis Results & Conclusion
	References

