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The original Pascaline was a mechanical calculator able to sum and subtract integers. It en-

codes information in the angles of mechanical wheels and through a set of gears, and aided

by gravity, could perform the calculations. Here, we show that such a concept can be real-

ized in electronics using memory elements such as memristive systems. By using memristive

emulators we have demonstrated experimentally the memcomputing version of the mechan-

ical Pascaline, capable of processing and storing the numerical results in the multiple levels

of each memristive element. Our result is the first experimental demonstration of multi-

digit arithmetics with multi-level memory devices that further emphasizes the versatility and

potential of memristive systems for future massively-parallel high-density computing archi-

tectures.

The Pascaline, built by the mathematician Blaise Pascal, is one of the first known mechanical
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calculators to perform the basic arithmetic operations ? 1 that has been produced on a ”large scale”

for its times. The machine, whose picture is shown in Fig. 1a, uses gears and wheels and is aided

by gravity to transfer the carry of the addition 2. It encodes ten digits in certain positions (rotation

angles) of the wheels (one wheel for each power of the base-ten system), so we could call it a

multi-state machine in the sense that each of the memory elements (wheels) encodes more than

two values of information. In addition, the results of the computation are stored directly in the

states (angles) of the wheels themselves, enabling the user to read out the result of the computation

without any additional device. Although the commercial success of the Pascaline was limited, it is

considered an important step in the development of computing machines.

The Pascaline is of course far less powerful than our present digital computers. However,

these latter ones typically store one bit of information per memory cell, namely our present dig-

ital machines are two-state (binary) machines. In addition, our present computers employ a dif-

ferent unit, other than the memory, to actually perform the computation, thus requiring constant

communication between the memory and this computing unit. It is thus tempting to employ the

multi-state and computing-in-memory features of the Pascaline in future computing architectures.

Indeed, multi-state memory would allow an increased information storage on a single element,

and if the results of arithmetic operations on these multiple states could be stored directly in the

memory itself (like for the Pascaline), there would be no need to transfer information from the

physical location where it is computed to where it is stored (at present, this represents an important

?Practically only addition, since subtraction was performed using the method of nine’s complements, multiplication

as repeated summation, and division as repeated subtraction.
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bottleneck in our digital computers 3).

For the above reasons, the concept of using memory to process information (memcomputing4)

is now receiving increased attention. Its foundations are supported by the mathematical notion of

a Universal Memcomputing Machine5 – an alternative computing paradigm to the Turing Machine

– which shows substantial advantages when realized in hardware. Memory elements that store

multiple levels of information can be fabricated either using active devices (e.g., transistors) or

passive ones. The passive ones, in particular, hold the advantage that they require much less power

to perform computation than active elements 6–9 and can be realized with a variety of materials and

systems down to nanoscale dimensions 7, 10.

In this paper, we will demonstrate experimentally a memcomputing machine that works like

the Pascaline. We will use emulators of memristive elements (resistors with memory) we have

introduced previously11, 12 to build such a device. We will show that it is capable of addition and

subtraction directly in memory. We choose to work in base-10 but our machine can easily work in

any base.

We should note that multi-bit information processing and storage with memristive devices

has been demonstrated in several experiments 9, 13–17, and indeed multi-bit arithmetics with memris-

tive devices has already been considered in the literature, but in a considerably simpler architecture

than what we show in this work. For instance, in Ref. 15 Wright et. al. demonstrated a single digit

base-10 arithmetics with phase-change materials. The authors of Ref. 17 reported a “memristive

abacus” based on synaptic Ag-Ge-Se devices that can calculate decimal fractions. All this previous
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work is limited to single-digit operations that are certainly not enough for any practical purpose.

The experimentally built memristive Pascaline (see Fig. 1b) consists of four identical blocks

responsible for four different digits of a number. The blocks are coupled to each other in series so as

to carry over. Each block consists of a memristor Mi connected in series with a resistor Ri to +2.5

V, a reset circuit Resi, displayed in detail in Fig. 2a, and a pulse generator Pi (here, i = 1, 2, 3, 4).

The digit value is stored in the state of the memristor and represented by the voltage across the

memristor in the absence of programming and reset pulses. The memristors are connected in

such a way that negative programming pulses from Pi increase their memristances and, therefore,

the voltages across the corresponding Mis. We use threshold-type memristors implemented with

memristor emulators 11, 18 (see Fig. 2b). The memristor model 11 parameters are α = 0, β = 62

kΩ/V·s, VT = 1.2 V, Rmin = 1 kΩ, Rmax = 10 kΩ. Figure 2c presents experimentally measured

pinched hysteresis loops of a single memristor connected to an AC voltage source. The frequency

behavior of these loops is typical for memristive devices 19. The memristive Pascaline is powered

by a 5V voltage source and employs 2.5V as a virtual ground. The outputs of pulse generators Pi

in Fig. 1c take −2.5 V during the pulse, and are otherwise in a non-connected state.

The reset circuit Res (Fig. 2a) compares the voltage across the memristor VM with a thresh-

old voltage Vt (applied to the ’minus’ terminal of A1) and generates a positive (+2.5 V) reset pulse

as soon as the voltage on the memristor exceeds Vt. The reset pulse width is defined by RR,2C1

time constant (see Fig. 2a) that needs to be sufficiently long to set the memristor into its Rmin

state. This pulse is also used for carry over: as it can be seen from Figure 1b, the output of Resi is
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Figure 1: Pascaline machines: from past to present. a. Mechanical Pascaline (machine de la

Reine Christine de Suède, 1652) exhibited in the Musée des Arts et Métiers (Paris). b.

Memcomputing Pascaline. Pulse generators P1-P4 (at the bottom) are triggered by push in buttons

or carry pulses from Res circuits. The outputs of P1-P4 (top terminals) provide negative voltage

pulses increasing memristances of M1-M4 in steps. Reset circuits Res1-Res4 are used to reset

memristors when their memristances exceed a threshold (at the same time generating the carry

pulse).
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connected to the input of Pi+1.

The present Pascaline architecture supports different number bases, which are defined by the

length of the memristor programming pulses (from pulse generators Pi) and thresholds of reset

circuits Vt. For example, using 10 ms programming pulse width, we have obtained a base-5 oper-

ation, as demonstrated in Figure 2d. The size of the base can be programmed by tuning the pulse

width. For instance, the memristor device emulated here, allows a maximum base size determined

by d(Rmax −Rmin)/(β∆τ∆V )e, ∆τ being the pulse width, ∆V the difference between the pulse

amplitude and the threshold voltage, VT , and d e denotes the ceiling value. A memristive analog

of a French monetary (nondecimal) Pascaline could be realized by programming pulse widths for

each digit or selecting different values of Vt, that, according to the reset circuit configuration in

Figure 2a, introduces additional constraints to the size of the base.

Finally, addition and subtraction with the memcomputing Pascaline is presented in Figure

3. The decimal operation regime has been obtained using 6 ms wide programming pulses. The

voltage thresholds, indicated by the digital readouts in Figs. 3 (a) and 3 (b), are determined by

the internal parameters of memristors. In the case of the selected device used for emulating the

Pascaline, the resistance levels linearly depend on time and pulse amplitude. As an example of

addition, we show that 1642 (the year when the first mechanical calculator was built) plus 373

equals 2015. The subtraction is implemented using nine’s complements (the same method is used

with the mechanical Pascaline). So, in order to subtract 373 from 2015, we add 373 to the nine’s

complement of 2015 – 7984 – and find the nine’s complement of the addition result (8357) – 1642
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Figure 2: Building blocks of the memristive Pascaline. a. Schematics of the reset circuit

Resi connected to a memristor. Ri = RR,2 = 10 kΩ, RR,1 = 470 Ω, C1 = 10 µF, A1(2) are

MCP6542 comparators (Microchip), D1 is a common silicon diode, D2 is a low forward voltage

germanium diode, and Vt is approximately 0.8 V. b. Schematics of the memristor emulator. The

microcontroller continuously updates the resistance of digital potentiometer according to a pre-

programmed equation. The applied voltage is measured by the analog-to-digital converter (ADC).

c. Measured I−V curves of memristor driven by an AC voltage source. d. Response of the circuit

shown in a to a train of -2.5 V amplitude, 10 ms width pulses applied to the top terminal of M1.

Under these conditions, the circuit implements base-5 arithmetics (note that the memristor resets

by the fifth pulse). VM is the voltage on the memristor, Vt is the threshold voltage, A2,out is the

output voltage of the op-amp 2 in a.
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Figure 3: Base-10 addition and subtraction with the memcomputing Pascaline. a. Addition:

1642+373 = 2015. b. Subtraction (implemented using nine’s complements): 2015−373 = 1642.

The complements of the first input number and output number are shown in parentheses. VM,i are

the voltages on each of the four memristors.
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–, which is the answer to the subtraction problem.

In summary, we have demonstrated a memcomputing Pascaline that is able to add and sub-

tract using the multiple levels of memory elements (memristors in the present case). Even though

we have used emulators of memristors, this machine can be fabricated with actual nano-scale

devices and operate also with memcapacitors or meminductors 6, albeit in a slightly different ar-

chitecture, potentially offering lower energy consumption. The machine can support any type of

numerical base, and is the first experimental demonstration of multi-digit arithmetics with multi-

level memory devices, an important step forward for future massively-parallel and high-density

computing architectures.
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2. Œuvres de Pascal (La Haye, 1779).

3. Backus, J. Can programming be liberated from the von neumann style? a functional style and

its algebra of programs. Comm. Assoc. Comp. Machin. 21, 613–641 (1978).

4. Di Ventra, M. & Pershin, Y. V. The parallel approach. Nature Physics 9, 200 (2013).

5. Traversa, F. & Di Ventra, M. Universal memcomputing machines. IEEE Trans. Neur. Netw.

Learn. Syst. (in press) (2015).

9



6. Di Ventra, M., Pershin, Y. V. & Chua, L. O. Circuit elements with memory: Memristors,

memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009).

7. Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems.

Advances in Physics 60, 145–227 (2011).

8. Chu, H.-L. et al. Programmable redox state of the nickel ion chain in dna. Nano Letters 14,

1026–1031 (2014).

9. OKelly, C., Fairfield, J. A. & Boland, J. J. A single nanoscale junction with programmable

multilevel memory. ACS Nano 8, 11724–11729 (2014).

10. Di Ventra, M. & Pershin, Y. V. Memory materials: a unifying description. Materials Today

14, 584 (2011).

11. Pershin, Y. V. & Di Ventra, M. Practical approach to programmable analog circuits with

memristors. IEEE Trans. Circ. Syst. I 57, 1857 (2010).

12. Pershin, Y. V. & Di Ventra, M. Experimental demonstration of associative memory with

memristive neural networks. Neural Networks 23, 881 (2010).

13. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion

model for the electric pulse induced resistance change effect in transition-metal oxides. Phys.

Rev. Lett. 98, 146403 (2007).

14. Driscoll, T., Kim, H.-T., Chae, B. G., Di Ventra, M. & Basov, D. N. Phase-transition driven

memristive system. Appl. Phys. Lett. 95, 043503–1–043503–3 (2009).

10



15. Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-

inspired computing using phase-change materials. Adv. Mater. 23, 3408 (2011).

16. Kim, K.-H. et al. A functional hybrid memristor crossbar-array/cmos system for data storage

and neuromorphic applications. Nano Letters 12, 389–395 (2012).

17. Xu, H. et al. The chemically driven phase transformation in a memristive abacus capable of

calculating decimal fractions. Sci. Rep. 3, 1230 (2013).

18. Driscoll, T., Pershin, Y. V., Basov, D. N. & Di Ventra, M. Chaotic memristor. Applied Physics

A (in press) (2010).

19. Chua, L. O. & Kang, S. M. Memristive devices and systems. Proceedings of IEEE 64, 209–

223 (1976).

Acknowledgements Y.V.P. was supported by National Science Foundation grant ECCS-1202383. M.D.

was supported by CMRR.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to Y.V.P. (email:

pershin@physics.sc.edu).

11


