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Truncated Prediction Output Feedback Control of a Class of
Lipschitz Nonlinear Systems with Input Delay
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Abstract—This brief addresses an output feedback control
design for Lipschitz nonlinear systems in the presence of input
delay. A nonlinear observer is introduced to estimate the system
states. A truncated predictor state feedback, which is the con-
ventional predictor state feedback law with the distributed term
dropped, is implemented with the estimated states. Lyapunov-
Krasovskii functionals are constructed to establish conditions
under which this observer-based truncated predictor feedback
law asymptotically stabilize the system at the origin. The effec-
tiveness of the proposed method is demonstrated on the Chua’s
circuit.

Index Terms—Chua’s circuit, input delay, Lipschitz nonlinear-
ity, output feedback

I. INTRODUCTION

Time delays are ubiquitous in practical systems due to the
time taken for transmission of signals, transport of materials,
etc. The presence of time delays, if not considered in the
controller design, may seriously degrade the performance of
the controlled system. For the analysis and control of circuit
systems, time delay must be included during the process of
modeling when the geometric dimensions become electrically
large and the frequency content of signal waveform increases
[1]. Indeed, the importance of addressing delay in the control
design has been well recognized for a long time [2].

One basic idea in tackling input delay is to predict the
evolution of the state variable for the delay period and then
use the predicted state for control. One of the early results
for input-delayed linear systems is the Smith predictor [3],
which is a frequency-domain method, and has been widely
used in industry. In the time domain, it has been shown that a
state predictor satisfies a delay-free state space equation, and
control design can be developed with the prediction [4]. The
predictor-based method transforms the state with an integral
operator in the state transformation. However, it encounters
difficulties in practical implementation and does not guarantee
exponential stability of the original system [5], [6], despite the
control design is simplified by the state transformation. An
alternative method, based on the prediction and referred to
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as the Truncated Prediction Feedback (TPF), is to ignore the
troublesome integral part and make the prediction based solely
on the exponential of the system matrix. This idea stemmed
from low gain control of the systems with input saturation
[7], where the input is kept low such that its contribution to
the prediction can be safely neglected [8]–[10], where both
state feedback and output feedback designs are considered.
The TPF developed in [8]–[10] are for open loop systems
that are not exponentially unstable. The TPF for general open
loop systems, including exponentially unstable ones, was later
developed in [11].

Control design for nonlinear systems with input delay is
much more involved than that for the linear systems counter-
part. Several results can be found in the literature [12]–[17]
that address this problem. However, few results are available
on output feedback control for input-delayed nonlinear sys-
tems. Although there have been many results developed on
the observer design for Lipschitz nonlinear systems [18]–[20],
the output feedback or observer-based control design is non-
trivial, due to the fact that the separation principle does not
hold in general for nonlinear systems.

This brief considers the output feedback control design for
a class of Lipschitz nonlinear systems with input delay. The
state feedback controller is not applicable in many practical
occasions where only system output signals are accessible.
An estimated state based truncated predictor feedback control
is developed, which leads to several extra integral terms
corresponding to the system state and the observation error, all
resulting from the truncation errors. To guarantee the closed-
loop stability, a set of conditions for the output feedback
control problem are established. Different from the stability
analysis given in [21] for linear systems, the stability analysis
in this brief is put in the framework of Lyapunov-Krasovskii
functionals. To facilitate the calculation, we convert these
conditions to LMIs with a set of iterative scalar parameters.
Although the controller and the observer cannot be designed
independently, the observer gain can be calculated for a fixed
solution to the conditions for the control gain design which can
be solved first. Stabilization of a chaotic circuit is introduced
as an example to demonstrate the proposed design.

II. PROBLEM STATEMENT

We consider control design for a class of Lipschitz nonlinear
systems with input delay

ẋ(t) = Ax(t) +Bu(t− h) + φ(x(t)), (1)
y(t) = Cx(t), (2)

where x ∈ Rn is the state, u ∈ Rp is the input, y ∈ Rq
is the measurement output, h ∈ R+ is the input delay, A ∈
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Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices with
(A,B) being controllable and (A,C) being observable, and
φ : Rn → Rn, φ(0) = 0, is a Lipschitz nonlinear function with
a Lipschitz constant γ. For any two constant vectors a, b ∈ Rn,

‖φ(a)− φ(b)‖ ≤ γ‖a− b‖. (3)

From the system dynamics (1), we have

x(t) = eAhx(t− h) +

∫ t

t−h
eA(t−τ)Bu(τ − h)dτ

+

∫ t

t−h
eA(t−τ)φ(x(τ))dτ. (4)

The first term, eAhx(t − h), is a truncated predictor of the
system state at t based on x(t − h). The truncated predictor
output feedback control input is constructed as

˙̂x(t) =Ax̂(t) +Bu(t− h) + φ(x̂(t))

+ L(Cx̂(t)− y(t)), (5)

u(t) =KeAhx̂(t), (6)

where K and L denote the control gain matrix and the
observer gain matrix, respectively, to be designed later. Let
x̃(t) = x̂(t)−x(t). Substituting (6) into (1) and using (4) and
(5) give the resultant closed-loop dynamics as

ẋ(t) =Ax(t) +BKeAh (x(t− h) + x̃(t− h)) + φ(x(t))

= (A+BK)x(t)−BK(λ1(t) + λ2(t) + λ3(t))

+BKeAhx̃(t− h) + φ(x(t)), (7)
˙̃x(t) = ˙̂x(t)− ẋ(t)

= (A+ LC)x̃(t) + φ(x̂(t))− φ(x(t)), (8)

where

λ1(t) =

∫ t

t−h
eA(t−τ)BKeAhx(τ − h)dτ, (9)

λ2(t) =

∫ t

t−h
eA(t−τ)BKeAhx̃(τ − h)dτ, (10)

λ3(t) =

∫ t

t−h
eA(t−τ)φ(x(τ)))dτ. (11)

It is worth mentioning that the extra terms λ2 and λ3 in (7)
are due to the errors in the truncation, which correspond to the
observation error and the nonlinear term φ(x(t)), respectively.

Specifically, the controller and the observer gains in (5) and
(6) are defined, respectively, as

K = −BTP1 and L = −P−1
2 CT, (12)

where P1 and P2 are both positive definite matrices to be
designed.

The control objective in this brief is to design the output
feedback control input (5) and (6) such that the closed-loop
system (7) is globally asymptotically stable at the origin. In
other words, the control design problem is to find possible
positive definite matrices P1 and P2 such that the control law
(5) and (6) with the gains (12) globally stabilizes system (1).

III. PRELIMINARY RESULTS

This section presents a couple of preliminary results, which
are useful for the stability analysis.

Lemma 1: [22] For a positive definite matrix P , and a
function x : [a, b] → Rn, with a, b ∈ R and b > a, the
following inequality holds(∫ b

a

xT(τ)dτ

)
P

(∫ b

a

x(τ)dτ

)

≤ (b− a)

∫ b

a

xT(τ)Px(τ)dτ. (13)

Lemma 2: [17] For a positive definite matrix P , the follow-
ing identity holds

eA
TtPeAt − eωtP = −eωt

∫ t

0

e−ωτeA
TτReAτdτ, (14)

where ω ≥ 0 is a scalar and

R = −ATP − PA+ ωP.

Furthermore, if R is positive definite, then

eA
TtPeAt < eωtP. (15)

IV. MAIN RESULT

This section establishes the conditions for the positive
definite matrices P1 and P2 such that the truncated predictor
output feedback control in (5) and (6) stabilizes the system
(1).

To start the analysis, let us try a Lyapunov function candi-
date

V0 = xT(t)P1x(t) + x̃T(t)P2x̃(t). (16)

With (12), the closed-loop dynamics in (7) and (8) can be
re-written as

ẋ(t) = (A−BBTP1)x(t) +BBTP1(λ1(t) + λ2(t) + λ3(t))

−BBTP1e
Ahx̃(t− h) + φ(x(t)), (17)

˙̃x(t) = (A− P−1
2 CTC)x̃(t) + φ(x̂(t))− φ(x(t)). (18)

The derivative of V0 along the trajectories of (17) and (18)
can be evaluated as

V̇0 =xT(t)(ATP1 + P1A− 2P1BB
TP1)x(t)

+ x̃T(t)(ATP2 + P2A− 2CTC)x̃(t)

+ 2xT(t)P1BB
TP1(λ1(t) + λ2(t) + λ3(t))

− 2xT(t)P1BB
TP1e

Ahx̃(t− h) + 2xT(t)P1φ(x)

+ 2x̃(t)TP2(φ(x̂)− φ(x))

≤xT(t)(ATP1 + P1A− P1BB
TP1 + P1P1

+ 3(P1BB
TP1)2)x(t) + ∆1(t) + ∆2(t) + ∆3(t)

+ x̃T(t)(ATP2 + P2A− 2CTC + P2P2)x̃(t)

+ φT(x)φ(x) + (φ(x̂)− φ(x))T(φ(x̂)− φ(x))

+ x̃T(t− h)eA
ThP1BB

TP1e
Ahx̃(t− h)

≤xT(t)(ATP1 + P1A− P1BB
TP1 + (3α2 + 1)P1P1

+ γ2I)x(t) + ∆1(t) + ∆2(t) + ∆3(t)

+ x̃T(t)(ATP2 + P2A− 2CTC + P2P2 + γ2I)x̃(t)

+ αeω1hx̃T(t− h)P1x̃(t− h), (19)
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where Lemma 2 is used to derive the last inequality provided
that

R1 = −ATP1 −AP1 + ω1P1 > 0, (20)

with ω1 ≥ 0, α is positive real numbers such that

αI ≥ P 1
2BBTP

1
2 , (21)

and
∆i(t) = λTi (t)λi(t), i = 1, 2, 3.

The remaining part of the analysis is to explore the bounds
on ∆i, i = 1, 2, 3.

From (9) and (10), and by Lemmas 1 and 2 with the
condition

R2 = −AT −A+ ω2I > 0, ω2 ≥ 0, (22)

we have

∆1 =

∫ t

t−h
xT(τ − h)eA

ThP1BB
TeA

T(t−τ)dτ

×
∫ t

t−h
eA(t−τ)BBTP1e

Ahx(τ − h))dτ

≤h
∫ t

t−h
xT(τ − h)eA

ThP1BB
TeA

T(t−τ)

× eA(t−τ)BBTP1e
Ahx(τ − h))dτ

≤α2h

∫ t

t−h
eω2(t−τ)xT(τ − h)eA

TheAhx(τ − h)dτ

≤α2he2ω2h

∫ t

t−h
xT(τ − h)x(τ − h)dτ, (23)

and similarly,

∆2 ≤ α2he2ω2h

∫ t

t−h
x̃T(τ − h)x̃(τ − h)dτ, (24)

where the inequality (21) is used.
On the other hand, from (3) and (11), we have

∆3 =

∫ t

t−h
φT(x(τ))eA

T(t−τ)dτ

∫ t

t−h
eA(t−τ)φ(x(τ))dτ

≤ h
∫ t

t−h
φT(x(τ))eA

T(t−τ)eA(t−τ)φ(x(τ))dτ

≤ h
∫ t

t−h
eω2(t−τ)φT(x(τ))φ(x(τ))dτ

≤ heω2hγ2
∫ t

t−h
xT(τ)x(τ)dτ. (25)

For the term ∆1 shown in (23), we consider the following
Krasovskii functional

V1(t) = eh
∫ t

t−h

(
eτ−txT(τ − h)x(τ − h) + xT(τ)x(τ)

)
dτ.

A direct evaluation gives that

V̇1(t) = − eh
∫ t

t−h
eτ−txT(τ − h)x(τ − h)dτ

− xT(t− 2h)P1x(t− 2h) + ehxT(t)x(t)

≤ −
∫ t

t−h
xT(τ − h)x(τ − h)dτ + ehxT(t)x(t). (26)

For the term ∆2 shown in (24), we consider the following
Krasovskii functional

V2(t) = eh
∫ t

t−h

(
eτ−tx̃T(τ − h)x̃(τ − h) + x̃T(τ)x̃(τ)

)
dτ.

A direct evaluation gives that

V̇2(t) ≤ −
∫ t

t−h
x̃T(τ − h)x̃(τ − h)dτ + ehx̃T(t)x̃(t). (27)

For the term ∆3 shown in (25), we consider the following
Krasovskii functional

V3(t) = eh
∫ t

t−h
eτ−txT(τ)x(τ)dτ

A direct evaluation gives that

V̇3(t) = − eh
∫ t

t−h
eτ−txT(τ)x(τ)dτ

+ ehxT(t)x(t)− xT(t− h)x(t− h)

≤ −
∫ t

t−h
xT(τ)x(τ)dτ + ehxT(t)x(t). (28)

For the term x̃T(t− h)P1x̃(t− h) in (19), we consider the
following Krasovskii functional

V4(t) =

∫ t

t−h
x̃T(τ)P1x̃(τ)dτ.

A direct evaluation gives that

V̇4(t) = x̃T(t)P1x̃(t)− x̃T(t− h)P1x̃(t− h). (29)

Now, let

V = V0 + α2he2ω2h(V1 + V2) + heω2hγ2V3 + αeω1hV4.

From (19) and (23)–(29), we have that

V̇ ≤ xT(t)Q1x(t) + x̃T(t)Q2x̃(t), (30)

where

Q1 = ATP1 + P1A− P1BB
TP1 + (3α2 + 1)P1P1

+ α2he(2ω2+1)hI +
(
he(ω2+1)h + 1

)
γ2I, (31)

Q2 = ATP2 + P2A− 2CTC + P2P2 + αeω1hP1

+
(
γ2 + α2he(2ω2+1)h

)
I. (32)

Theorem 1: Consider the nonlinear system (1). The output
feedback control law (5) and (6) with (12) globally asymptot-
ically stabilizes the system (1) at the origin if the following
conditions are satisfied, for W = P−1

1 > 0, P2 > 0, α > 0,
ω1 ≥ 0, ω2 ≥ 0,

αW ≥ BBT, (33)

W

(
A− 1

2
ω1I

)T

+

(
A− 1

2
ω1I

)
W < 0, (34)(

A− 1

2
ω2I

)T

+

(
A− 1

2
ω2I

)
< 0, (35) H1 −BBT W

W − 1

γ̄
I

 < 0, (36)

[
H2 − 2CTC P2

P2 −I

]
< 0, (37)
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where

γ̄ =α2he(2ω2+1)h +
(
he(ω2+1)h + 1

)
γ2,

H1 =
(
3α2 + 1

)
I +WAT +AW,

H2 =
(
γ2 + α2he(2ω2+1)h

)
I +ATP2 + P2A+ αeω1hP1.

Proof: It is easy to see that the conditions in (33), (34)
and (35) are equivalent to the conditions specified in (21),
(20) and (22), respectively. With (31) and (32), it can be
shown by Schur Complement that conditions (36) and (37)
are respectively equivalent to Q1 < 0 and Q2 < 0, which
further implies from (30) that V̇ (t) < 0. Thus, the closed-
loop dynamics (7) and (8) are globally asymptotically stable
at the origin. This completes the proof.

Remark 1: The conditions shown in (33)–(37) can be
checked by standard LMI routines for a set of fixed values.
Note that ω2 in (35) can be determined independently. The
conditions in (33), (34) and (36) have to be checked simulta-
neously. With the possible solution P1 obtained by computing
(33), (34) and (36), a possible solution P2 of (37) can then be
computed for a fixed P1, which indicates that the designs of
the observer and the feedback law are coupled.

V. AN EXAMPLE

We consider an input-delayed voltage feedback Chua’s
circuit system, as shown in Fig. 1. The new output feedback
Chua’s circuit [23] with input delay can be described by the
following equations

dv1
dt (t) = G

C1
(v2(t)− v1(t))− 1

C1
f(v1),

dv2
dt (t) = 1

C3
i3(t)− G

C2
(v2(t)− v1(t)),

di3
dt (t) = − 1

L (v2(t) +R0i3(t) + u(t− h)),

where v1 and v2 denote the voltage across C1 and C2,
respectively, i3 denotes the current through L, G = 1/R, and
f(v1) characterizes the v-i property of the nonlinear resistor
NR with a slope Ga in the inner region and Gb in the outer
region, and the breakpoint voltage E of the Chua’s diode, i.e.,
f(v1) = Gbv1 + 0.5(Ga −Gb)(|v1 + E| − |v1 − E|).

Let x1 = v1/E, x2 = v2/E, x3 = i3/(EG), ε = C2/C1,
ρ = C2/(LG

2), r0 = R0C2/(LG), a = Ga/G b = Gb/G
and τ = Gt/C2. The following non-dimensional equations of
the system can be formulated, ẋ1 = ε(x2 − (1 + b)x1 − a−b

2 (|x1 + 1| − |x1 − 1|)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −ρx2 − r0x3 − ρu.

(38)
From Fig. 1, we have that the output is y = v1. To facilitate
the controller design, we re-arrange (38) into the state-space
form of (1) with

A =

 −ε(1 + b) ε 0
1 −1 1
0 −ρ −r0

 , B = −

 0
0
ρ

 ,
φ =

 0
0

a−b
2 (|x1 + 1| − |x1 − 1|)

 , C =
[
E 0 0

]
.

For the simulation study, the following values of the circuit
parameters are chosen:

C1 = 10 nF, C2 = 100 nF, L = 18.68 mH, R0 = 16 Ω,

Ga = −0.75 mS, Gb = −0.41 mS, E = 1 V, R = 1.75 kΩ.

The circuit parameters imply that ε = 10, ρ = 16.3945, r0 =
0.1499, a = −1.3125 and b = −0.7175. The time delay h =
0.03 s of the system is fixed, and the Lipschitz constant γ =
5.95 is computed.

( )u t h

( )u t

(̂ )x t

( )v t

R

R

CC vv
L

R
N

i

Fig. 1. Output feedback Chua’s circuit.

With α = 0.01 and ω1 = ω2 = 0.1, the solutions for P1

and P2 to satisfy (33)–(37) can be calculated as

P1 = W−1 =

 0.0045 0.0121 0.0042
0.0121 0.0703 0.0045
0.0042 0.0045 0.0064

 ,
and

P2 =

 0.5081 −0.4567 0.2043
−0.4567 1.4390 −0.1414
0.2043 −0.1414 0.1573

 .
By (12), we have

K = [0.0689, 0.0738, 0.1049],

and

L =

 −5.3798
−1.1193
5.9824

 .
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1
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4

6

v1v2

i
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Fig. 2. Open-loop phase portrait.
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The initial conditions x(0) = [1, 0.8,−0.9]T and x̂(0) =
[0.1, 0, 0]T are chosen for the system (38) and the observer
(5), respectively. The open-loop dynamic responses are plotted
in Fig. 2, which shows the chaotic “double scroll” attractor
pattern. With the inclusion of a voltage feedback loop into the
nominal Chua’s circuit, the asymptotic stability of the closed-
loop system in the presence of input delay is achieved, as
shown in Figs. 3–5.
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Fig. 3. Closed-loop responses: h = 0.03.
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Fig. 4. Control input: h = 0.03.
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Fig. 5. Estimation errors: h = 0.03.

VI. CONCLUSIONS

In this brief, we have developed a truncated prediction
output feedback design for a class of Lipschitz nonlinear
systems with input delay. The stability analysis is carried out in
the framework of Lyapunov-Krasovskii functionals. Sufficient
conditions for the asymptotic stability are presented in LMIs
with a set of iterative scalar parameters. The proposed design
method has been successfully applied to stabilize a chaotic
circuit with input delay by output feedback.
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