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Abstract—Low-density parity-check (LDPC) codes are nor-
mally categorized into random structure or regular structure.
In this paper, we introduce a new type of LDPC codes which
is of semi-regular style. The parity-check matrices of the new

LDPC code type are composed of sub-matrices termed tree-

permutation matrices (TPMs). These TPMs are “semi-regular”
and are constructed in a systematic way. Using the x 2 identity
matrix and anti-diagonal matrix as an example, we illustrate
how 2™ x 2™ TPMs are formed. During the formation of the
2M 5 2M TPMs, we further apply the hill-climbing algorithm to

avoid short cycles. Finally, we construct a girth-8 TPM-LDPC
code with a base matrix of sizet x 24 and a girth-10 TPM-LDPC
code with a base matrix of size3 x 10. We implement the TPM-

to be conducted in parallel and can achieve a high decod-
ing throughput. Moreover, there are more choices of TPMs
compared with CPMs for a given matrix size. Hence, a larger
girth and/or a fewer number of short cycles can potentially be
achieved for TPM-based LDPC codes.

In Sect. I, we will introduce a way to construct TPMs,
representations and characteristics of TPMs, and simple algo-
rithms for computing the products and transpose of TPMs. In
Sect. lll, we define TPM-LDPC codes and show the sufficient
condition for cycles to exist. After that we propose an efficient
way to construct a high-girth TPM-LDPC code systematically.

LDPC decoders on a FPGA and compare the simulation results Then we explain how to avoid the RAM access conflicts in the

and decoder complexity with other LDPC codes.

Index Terms—FPGA implementation, low-density parity-check
code, tree-permutation matrix

I. INTRODUCTION

decoder design. Finally in Sect. IV, we show the simulation

results of our proposed TPM-LDPC codes and compare the
results and decoder complexity with other regular and irregular
LDPC codes.

Il. TREEPERMUTATION MATRICES

As one of the two known classes of Shannon limit- ) ) ) )
approaching codes, low-density parity-check (LDPC) code Ve first make use o x 2 permutation matrices to illustrate
has been widely studied and used [1-4]. Most commoanS?W to c_onstruct_TPMs. Thgre are only tW9 different 2
used LDPC codes are of quasi-cyclic nature. The pari'fjterm“tat'on matrices — the identifyx 2 matrix (denoted by
check matrices of quasi-cyclic LDPC (QC-LDPC) codes uggx2) and the anti-diagonal x 2 matrix (denoted bylz.).
circulant permutation matrices (CPMs) as their sub-matricd@ CONStruct TPMs, we refer to Fig. 1 and start with a matrix
[1, 2, 5]. Due to the regular structure of these parit);-hat contains only a single element “1” as shown at the top.

check matrices, simple and high-throughput encoders/decoderk) To construct Layer-1 TPMs, we replace the ‘1’ at the top

can be implemented [3, 6, 7]. LDPC codes can also be
constructed from random matrices or random permutation
sub-matrices [8, 9]. While better error performance could
be obtained, encoder/decoder complexity and throughput are)
the major issues. For example, the FPGA simulation re-
sults in [9] have shown that random-permutation-matrix-based
cyclically-coupled LDPC (RP-CC-LDPC) codes can outper-
form cyclically-coupled QC-LDPC (CC-QC-LDPC) codes in
terms of bit error performance. However, the RP-CC-LDPC
decoder requires much more memory storage and does not)
support parallel decoding compared with the CC-QC-LDPC
decoder.

In this paper, we propose a new type of matrices called
tree-permutation-matrice@PMs) and apply them in the con-
struction of LDPC codes. TPMs are not as regular as CPMs
but also not as random as random-permutation matrices. Thu$)
we describe TPMs asemi-regularmatrices. Like QC-LDPC
codes, TPM-based LDPC codes allow decoding operations
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with eitherTo.o (a1,0 = 1) or Inxo (a1, = 0). There
are only two possibilities and hendg;, = 2 possible
Layer-1 TPMs, the size of which atex 2.

To construct Layer-2 TPMs, the 1's in each Layer-
1 TPM are replaced with eithefoy o Or Toyo. FOr
each Layer-1 TPM, there aiZ = 4 possible choices
(az,0a2,1 = 11,10,01,00). Hence the total number of
Layer-2 TPMs equalsV, = 22 x N; = 23 = 8. The
size of each Layer-2 TPM ig? x 22.

To construct Layer-3 TPMs, the 1's in each Layer-
2 TPM are replaced with eithels o or Ioyo again.
For each Layer-2 TPM, there an®” 16 possible
choices. Hence the total number of Layer-3 TPMs equals
Ny = 22" x N, = 27 = 128. The size of each Layer-3
TPM is 23 x 23.

TPMs in subsequent layers are generated in a similar
manner. It can be easily shown that at Layérthere are
22" =1 different TPMs, the size of which agd? x 2M.

The tree expansion is illustrated in Fig. 2. We also denote
PM as a Layerd TPM matrix formed byI,., and
Izyo.
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Fig. 1. Forming tree-permutation matrices by replacincheéatin the upper
layer with a2 x 2 permutation matrix.
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Fig. 3. The general tree representation of a tree permntatiatrix.

Algorithm 1 Multiplication of two P} TPMs
1. P[0 « PA[0] @ Pyl0], V0] « 0
2: for node = 1;node < 2M — 2:node + + do
3 parent < (node —1)/2
if node is oddthen
V[node| + Vparent] x 2 + P 4[parent]
else
V[node] + V[parent] x 2 — P a[parent]

Py [node] + P 4[node] ® P glnode + V[nodel]
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A. Multiplication of TPMs

It can be easily verified that TPMs formed Ryx 2 per-
mutation matrices are closed under multiplication. One igay
to consider all possible multiplications and then build aklo
up table to simplify the computation. The table can be large
depending on the value df7/. On the other hand, each TPM

permutation matrix. At Layed/, each TPM will have a size is represented by a tree vector. To find the product of two

of ZM x ZM,

Referring to Fig. 2, a Layed TPM formed by expanding
2 x 2 permutation matrices repeatedly can be defined by R

“tree” vector

V:

(a1,0,a2,0,02,1,030,03,1,032,033, - - - ,
ap L0, AM 1y -+ -y aM722M71,1) (1)

in which each element is either a “1” or “0”. When the eleme

TPMs, we can make use of their corresponding tree vectors,
perform appropriate and simple module-2 additions, andearr
Ea new tree vector that represents the TPMs’ product. The
procedures to compute the product of two TPMs with size
2M x 2M are shown in Algorithm 1. In Algorithm 1P, and
Pg denote the tree vectors of the two TPMs to be multiplied;
V is a vector used to locate the corresponding elements in
the two tree vectors; anl,,; represents the tree vector of the
roduct of the two TPMs.

assumes the value “1” and “0”, it represents an expansidm wit

Ioyo andIoyo. respectively. It can be readily shown that

o a2M x 2M jdentity matrix will be associated with the

all-zero tree vector witl2™ — 1 elements; and
o a2M x 2M TPM has a fixed coluntnif and only if at

B. Transpose of a TPM

least one branch transversing from the top to the bottom Similar to multiplication, the transpose operation on a TPM
of the tree (in Fig. 2) assumes all “0” values, e.g., th&an be conducted effectively based on its tree vector. The

branch all,O = a270 = a3,0 — . = aM,O = 0.

1A permutation matrix has a fixed column (or row) if and onlytibierlaps
with the identity matrix in at least one column (or row) [10].

transpose of a TPM with size™ x 2™ is computed with
the method shown in Algorithm 2. In Algorithm & and

PT represent the tree vectors of a TPM and its transpose,
respectively; and/ is a vector used to locate the corresponding
elements in the two tree vectors.



Algorithm 2 Transpose of &/ TPM current girth, we do not need to consider the previous portio

1: PT[0] + P[0], V[0] + 0 (i.e., original tree vector) of a TPM when searching for a
2: for node = 1;node < 2M — 2:node + + do higher girth, but only need to focus on the expanded par (i.e
3 parent + (node —1)/2 new elements in the tree vector that define the expansion).
4: if node is oddthen Because of this advantage, hill-climbing algorithms [13] 1

5: V[node] < V[parent] x 2 + P[parent] can be easily used in searching for high-girth TPM-LDPC
6  else codes. In the hill-climbing algorithms, the process is diéd

7 V[node] + V[parent] x 2 — P[parent] into several steps and in each step, each element is optimize
o P [node + Vinode]] « Plnode] with an adaptive cost. For TPMs, this adaptive cost can be

simplified because after we have achieved a giitiFPM-
LDPC code, we do not need to consider cycles shorter than
2] after expanding the code.

In order to reduce the computational intensity when search-

IIl. TPM-BASED LDPC CODES

We define a TPM-based parity-check matixpy; as ing for high-girth TPM-LDPC codes using hill-climbing algo
rithms, we first focus on small-size TPMs. When the size of
To,0 To1 ... Tor ) ™ .
T, T, , R TPMs is small, the conditions of each sub-matrix we need to
Hrpm = " " " (2) consider is relatively small. Then we expand the TPMs to try

to achieve a larger girth. For example, the construction of a
girth-8 TPM-LDPC code witl8 x 10 base matrix is presented
where eachT;; indicates a TPM matrix, and/ and L a5 follows. We replace each ‘1’ in th& x 10 base matrix
correspond to the number of rows and columns of the parityith a randomly choser23 x 23 TPM. Note that there are
check base matrix. We further define the corresponding LDRZ -1 _ 193 different 23 x 23 TPMs. Then we minimize

code of the TPM-based parity-check matrix as a TPM-basg@th number of cycle-4 by varying the TPMs one-by-one. If

Tij10 Tro1g . Tioin-

LDPC code. all cycle-4s are eliminated and a girth-6 TPM-LDPC code is
found, we expand the TPMs to the size2dfx 2¢ and attempt
A. Cycle Evaluation to minimize the number of cycle-6. At this step, the initial

To evaluate the cycles of a TPM-based LDPC code, we cRgart of the matrix (or tree vector) is fixed and we only need
apply the following theorem [11]. to consider the expanded part. In addition, all the choides o

Theorem 1:Let C be a code which can be described by 1€ €xpanded part will not lead to new length-4 cycles so the
parity-check matrixiL = (Q;;), where the(i, j)-th entry Q;; calculation only includes the paths of potential lengthyéle.

represents @ x ¢ permutation matrix. If there exists a cycIeThen the conditions to t_ra\_/erse will be reduced dis_tindﬂ_y.
of length 21 which including the indiceso, i1, . ..,4,_, and all cycle-6s cannot be eliminated after a number of iteretjio

oy j1s s it (is # iss1, js 2 jesss forall s €0,1,...,0— We expand each TPM again to becoiiex 2° and repeat the

1), then the product of the matrices operation. _
. . . When the size of a TPM becomes large, there will be
Qio,jo @iy jo Qir,i1 @iy gy = Qiv—1.5i1 Qi i (3) an enormous number of possible combinations after each

has a fixed column expansion. It can be very time-consuming to try all the daesi

Moreover, in the previous section, we have stated thatcgmbinations. Therefore, we will randomly pick some of thes
TPM has a, fixed column if and onI)’/ if there exists an alicombinations and select the one with the minimum cost. b thi

zero branch in its tree representation. Therefore, a cydse way, the TPM-LDPC code can be further "optimized” with the

if the tree vector corresponding to (3) contains an all-zeFﬁst h|II-(r:]I|rcr;b|ng atl)go_nthm_e\lf]eg _\I{Vg&nl_tgﬁélzeés 'a'f%e'”{)"'
branch. Furthermore, the tree vector can be readily evadual 'S Method, we obtain a girth- ' code with a base

based on the tree vectors of the component TPMs in (3) usiﬁt@mx of 5'2_84 x 2.4’ and a girth-10 TPM-LDPC code with
abase matrix of siz8 x 10.

Algorithms 1 and 2.

B. Code Construction C. Parallel Decoding and Message Storage

Recall that a2 x 2M TPM has22"'~1 different combi-  In [9] it has been shown that during the decoding pro-
nations. In the design of a TPM-based parity-check matroess, conflicts of RAM access for messages will occur when
Hrpnm shown in (2), there will be a tremendous number acandom-permutation matrices are used to replace the airtul
possible combinations to considerM is large. Fortunately, permutation matrices in QC-LDPC codes. In the case of
it can be readily shown that if BlTpy has already achieved TPM-based LDPC codes, such conflicts can be avoided when
a girth of g, expanding each ‘1’ it rpy with I, andI,y» the messages are properly stored and the number of parallel
will result in @ newH’.,,, with girth no less thary. processors are chosen with care.

Hence, we can start our code construction using small-sizecor TPM-LDPC codes, & TPM has a siz&’ x 2.
TPMs and consider small girth first. Then we expand tHe can also be characterized 2}* smaller TPMs each of
TPMs and try to achieve a higher girth. Since the expansisize 2’2 x 2> where M, + M, = M. For example, each of
will not lead to new cycles whose length is smaller than thte 23 x 23 TPMs shown in Fig. 4 can be characterized by (i)
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Fig. 5. Bit error rates of different codes.
Fig. 4. lllustration of possibility of parallel decoding dPM-based LDPC

code.
10°
—e—QC-LDPC(3-10), z=4096,g10
—+—TPM(3-10), z=4096,g10
21 (= 2) smaller2? x22(= 4x4) TPMs, or (ii)2%(= 4) smaller 102 T
2! x 21(= 2 x 2) TPMs. To avoid conflicts of RAM access,
the degree of parallelismi’ must equal2?z for some Mo. 10°* A
Moreover, the2*2 check-to-variable/variable-to-check’ (+ \
V) messages corresponding to eaxd¥ x 2z small TPM 10°
must be assigned t6: = 22 different RAMs. Then, the ff
condition that twoC < V messages in the same RAM are 10° <
needed at the same time will never happen. From Fig. 4, it can \ T~
be visualized why parallel decoding can be performed withou 10"
RAM access conflicts whef¥ = 2. In fact, it can also be seen ., o~
that parallel decoding can be performed wh@n= 4. o
In addition, we need to use a group of RAMs (caléattiress .
RAM9 to store the address information of the RAMs storing 02 24 26 28 3 32
C < V messages. Due to the possibility of parallel decoding, Eb/NO(dB)

the number and size of such kind of RAMs in a TPM-LDPC ) )
decoder are reduced compared with those needed in randgigi—f'lo Bit error rates of QC-LDPC code and TPM-based LDPGeosth
permutation-matrix LDPC decoders [9].

IV. SIMULATION RESULTS
We first construct and simulate TPM-LDPC codes with the ¢ 16 x 96 CC-QC-LDPC code with: = 1024, andg = 8
following parameters. and length98304 _
e J=4,L =24, M = 12 (sub-matrix sizez x z = 4096 x * 16 >x 96 CC-QC-LDPC code with: = 512, g = 6 and
4096), g = 8, a code rate of;/6 and a code length of length 49152

98304 Comparing codes with length8304, the CC-QC-LDPC
o J=4,L =24, M = 11(z = 2048),¢9 = 6, a code rate code accomplishes the best BER, outperforming our proposed
of 5/6 and a code length of9152 TPM-based LDPC code by about 0.015 dB and QC-LDPC

For both cases, we optimize the girth of the LDPC code®de by about 0.03 dB. Comparing codes with lengfih52,
using the fast hill-climbing method [13]. The decoder ishe CC-QC-LDPC code outperforms our proposed TPM-based
implemented on an Altera Stratix IV E FPGA. ThroughoutDPC code by about 0.02 dB. However, the CC-QC-LDPC
our simulations,an additive white Gaussian noise (AWGN)ode reaches an error floor at around=!'* whereas our
channel is assumed. Moreov&@ belief propagation decodingproposed TPM-based LDPC code does not show an error floor
iterations are used and 4-bit quantization is applied in APCGbelow 10~ '3,
decoding. The BER results are plotted in Fig. 5. We also plotNext, we construct and simulate a TPM-based LDPC code
the BER of the following codes for comparison. with the following parameterd: = 3, L = 10, z = 4096, g =

« Regular4 x 24 QC-LDPC codes with: = 4096, ¢ = 8 10, code rate of7/10, and a code length 40960. The BER

and length98304 curve is plotted in Fig. 6. We also show the BER of & 10



TABLE |
HARDWARE | NFORMATION OF THE DECODERIMPLEMENTATIONS. TPM-LDPC codes make use of fewer memory resources and

have a higher throughput compared with RP-CC-LDPC codes.
Compared with QC-LDPC codes, TPM-LDPC codes require

| Code [ A ] B [ C [ D | more resources in implementation but can provide a slightly
Parallelism degred 32 32 4 32 better BER performancender a base-matrix size df x 24
ALUTs 65,178 87,479 31,660 70,342 | gand an expansion factor af= 4096.
Registers 45,336 49,322 13,564 43,801

Memory bits 1706372 2,580 891 | 4.207280 | 2.395.296 The target application of the proposed TPM-LDPC codes is

Clock 100 MAz | 100 MHz | 100 MHz | 100 MHz | optical communication. Thus codes with medium code rates
Throughput 155 Gbps| 1.55 Gbps| 0.182 Gbps| 1.55 Gbps| and relatively long lengths are simulated in the paper. & th
future, we will look into the TPM-LDPC code performance

and decoder complexity for (i) code rate of 0.9 (for data

regular QC-LDPC code withh = 4096 and g = 10 in the storage applications) and 0.5 (for Wirelgss communi_cayion
same figure. Both codes cannot achieve a girthdft » — and also (||)_ short code lengths of 4K bits and 1K bits. We
4096 using the fast hill-climbing algorithm. The results showP!an to publish these new results soon.
that the proposed TPM-LDPC code not only outperforms the
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