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Abstract—This paper presents a new variant of the orthogonal
matching pursuit (OMP) algorithm for reducing the computa-
tional complexity of the digital predistortion (DPD) behavioral
model in the forward path. The proposed spectral weighting OMP
(SW-OMP) algorithm focuses on selecting the most relevant basis
functions to compensate for the out-of-band residual distortion
which may eventually be masked by the dominant in-band
residual error. This basis selection is carried out in an off-line
process that does not affect the computational complexity of
the real-time closed-loop DPD but, on the contrary, reduces its
complexity while enhancing the robustness. Experimental results
show that by selecting the DPD coefficients with the SW-OMP, the
inherent ACLR and NMSE degradation suffered when reducing
the number of coefficients is mitigated under strong nonlinear
operation, when compared to using the basis functions selected
by the classical OMP algorithm.

Index Terms—5G mobile communication, power amplifiers,
digital predistortion linearization.

I. INTRODUCTION

D IGITAL predistortion (DPD) linearization is the most
common and widespread solution today to cope with

the power amplifier’s (PA) inherent linearity versus efficiency
trade-off. The use of 5G spectrally efficient waveforms featur-
ing high peak-to-average power ratio (PAPR) and occupying
wider bandwidths in multiple antenna transmitters [1] only ag-
gravates such compromise. When considering wide bandwidth
signals, carrier aggregation or multi-band configurations [2] in
high efficient transmitter architectures, such as Doherty PAs,
envelope tracking PAs or outphasing transmitters, the number
of parameters required in the DPD model to compensate for
both static nonlinearities and dynamic memory effects can be
unacceptably high. This has a negative impact in the DPD
model extraction/adaptation process, because it increases the
computational complexity which may provoke over-fitting and
uncertainty in the DPD estimation stages [3]. However, by
applying regularization techniques [4] we can both avoid the
numerical ill-conditioning of the estimation and reduce the
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number of coefficients of the DPD function in the forward
path, which ultimately impacts the baseband processing com-
putational complexity and power consumption.

The objective of such regularization techniques is to en-
force the sparsity constraint on the vector of parameters
by minimizing the number of active components (i.e., `0-
norm) subject to a constraint on the `2-norm squared of the
identification error. Unfortunately, this is a non-deterministic
polynomial-time hard (NP-hard) combinatorial search prob-
lem. Therefore, in the field of DPD linearization, several
sub-optimal approaches have been proposed targeting both
robust identification and model order reduction such as: the
least absolute shrinkage and selection operator (LASSO), used
for example by Wisell et al. in [5] and consisting in a `1-
norm regularization; the Ridge regression, used for example
by Guan et al. in [6] and consisting in a `2-norm regularization;
the sparse Bayesian learning (SBL) algorithm, used by Peng
et al. in [7]; or the orthogonal matching pursuit (OMP), a
greedy algorithm for sparse approximation used in [8] by
Reina et al. to select the most relevant basis functions of
the DPD function. Considering the use of these algorithms in
an off-line search to obtain the most relevant basis functions
(which thus obviates the computational complexity needed for
an online implementation), Mozos compares in [9] the DPD
performance when reducing the number of coefficients of the
DPD function by using LASSO, Ridge or OMP algorithms.
For a certain PA nonlinear behavior, the basis sets selected
by these algorithms yielded similar coefficient reduction ver-
sus NMSE/ACLR degradation, although the OMP algorithm
presented slightly better performance.

This paper is not aimed at providing an overview or com-
parison on the existing model order reduction techniques as
found in [10]. Instead, in this paper an alternative approach
to the classical OMP algorithm which is based on a spectral
weighting strategy is proposed. This new approach is oriented
to select the most relevant DPD basis functions by paying
special attention to the out-of-band distortion compensation.
When the mean squared error is mainly dominated by the
linear part, by adding spectral weighting (through in-band
notching of the reference signal and the DPD basis functions)
the OMP algorithm can focus on the subset of parameters that
better contribute to minimize the mean squared error which is
dominated by the out-of-band distortion.

The remainder of this paper is organized as follows. In Sec-
tion II, the proposed spectral weighting orthogonal matching
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Fig. 1. Block diagram of the SW-OMP off-line search process and DPD
linearization architecture.

pursuit (SW-OMP) algorithm is described in detail. Section
III shows the experimental test bench and discusses the
experimental results, showing the advantages of the proposed
SW-OMP algorithm in regard to the order reduction of the
DPD function. Finally, conclusions are given in Section IV

II. SPECTRAL WEIGHTING ORTHOGONAL MATCHING
PURSUIT (SW-OMP) ALGORITHM

A. Description of the off-line basis functions selection process

The objective is to build a robust and accurate DPD lin-
earizer that meets the linearity levels specified in commu-
nications standards making use of the minimum necessary
number of coefficients. Reducing the number of coefficients
has a beneficial impact on the amount of FPGA resources [11]
(e.g., less DSP48 slices and RAM memory blocks in Xilinx
FPGAs) required for the implementation of the DPD in the
forward path. An off-line study of the most relevant basis
functions involved in the characterization of the PA nonlinear
distortion is conducted a priori in order to be later used for
DPD purposes. The search of the most relevant components,
given a general behavioral model descriptor (e.g., full Volterra
series, generalized memory polynomial, etc.), is carried out
only once in an off-line process. To further enhance the
DPD linearization performance obtained with the subset of the
selected components, we propose to use the SW-OMP, which
is oriented toward emphasizing the out-of-band distortion part
of the mean squared error. The whole process is schematically
depicted in Fig. 1 and described in the following:

1) Collect the input-output data of the PA with a test signal
having the same statistical properties as the one that will
be later used for the transmission.

2) Run off-line (e.g., in a PC running Matlab) the proposed
SW-OMP algorithm to obtain a sorted set of the most
relevant basis functions that better characterize the PA

nonlinear distortion with special emphasis on the out-of-
band distortion. This search is done only once.

3) Build the closed-loop DPD taking into account the basis
functions previously selected by the SW-OMP algorithm.
The identification of the DPD will be well-conditioned,
robust and may take only few iterations to converge.

In the following subsection we will provide a detailed descrip-
tion of the SW-OMP algorithm.

B. PA Behavioral Modeling Identification

Following the notation in Fig. 1, the estimated PA behavioral
model output ŷ can be defined as:

ŷ = Φxŵpa (1)

where ŵpa is the O× 1 vector with the estimated coefficients
and Φx is the L×O data matrix containing the basis functions
or components.

As explained before, the objective is to minimize the num-
ber of active components (i.e., `0-norm) subject to a constraint
on the `2-norm squared of the identification error,

min
ŵpa
‖ŵpa‖0 (2)

subject to ‖y −Φxŵpa‖22 ≤ ε

where y is the L×1 vector of measured data at the PA output.
To overcome this NP-hard combinatorial search problem,
greedy algorithms, such as the OMP, have been proved useful
to deal with this minimization problem.

In order to minimize the number of coefficients being
required by the DPD function in the forward path, we assume
that the optimal subset of selected basis functions of the DPD
function will be the same as that used for PA behavioral mod-
eling. In the following, we consider the generalized memory
polynomial (GMP) behavioral model in [12],

ŷ[n] =

Na−1∑
i=0

Pa−1∑
p=0

αpi · x[n− τai ]
∣∣x[n− τai ]

∣∣p +

Mb∑
j=1

Nb−1∑
i=0

Pb∑
p=1

βpij · x[n− τ bi ]
∣∣x[n− τ bi − τ bj ]

∣∣p + (3)

Mc∑
j=1

Nc−1∑
i=0

Pc∑
p=1

γpij · x[n− τ ci ]
∣∣x[n− τ ci + τ cj ]

∣∣p
where αpi, βpij and γpij are the complex coefficients

describing the model, and τa, τ b and τ c (with τ ∈ Z and
τ0 = 0) are the most significant non-consecutive delays of
the input signal x[n] that better contribute to characterize
memory effects. The most relevant delays can be either
found empirically or by using a greedy algorithm such as
the proposed SW-OMP. The total number of coefficients is
O = PaNa +PbNbMb +PcNcMc. From now on, the original
coefficients of the GMP, αpi, βpij and γpij , are mapped for
simplicity into wr coefficients, with r = 0, 1, · · · , O − 1.

Consequently, the L × O data matrix in (1) containing
the basis functions or components (intended either for PA
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Fig. 2. Spectra of the filtered PA outputs for different alpha values.

identification or for DPD linearization), Φx, can be defined
as

Φx =
(
ϕx[0],ϕx[1], · · · ,ϕx[n], · · · ,ϕx[L− 1]

)T
(4)

where ϕx[n] =
(
φx0 [n], φx1 [n], · · · , φxr [n], · · · , φxO−1[n]

)T
is

the O × 1 vector with the basis functions at time n.
In the following subsection we will describe the SW-OMP

algorithm capable to find the most relevant basis functions
from Φx and to be later used in the DPD linearizer.

C. Description of the SW-OMP algorithm

In order to select the most relevant basis functions by paying
special attention to the out-of-band distortion compensation,
the proposed SW-OMP targets the minimization of an in-band
notched version of the mean square error. Consequently, the
PA output and all the basis functions will be notched in-band.

Therefore, as described in [13], the PA output is filtered in
the frequency domain as follows,

Yf [k] = Γ{Y [k]} =
Y [k]

1 + α|Y [k]|2
(5)

with α being a parameter to control the notching level (see
Fig. 2) and with Y [k] being the discrete Fourier transform
(DFT) of y[n],

Y [k] = DFTN{y[n]} =

N−1∑
n=0

y[n]e−j
2π
N kn (6)

where k = 0, · · ·N − 1 with N ≥ L. Similarly, each basis
function in the frequency domain is filtered as follows,

Υx,f [k] = Γ{Υx[k]} = (7)(
Γ{ψx

0 [k]}, · · · ,Γ{ψx
r [k]}, · · · ,Γ{ψx

O−1[k]}
)T

with ψx
r [k] (r = 0, · · · , O − 1) being the DFT of φxr [n] and

Γ{·} the filtering operator. In the frequency domain, the N×O
matrix of filtered basis functions is defined as

Ψx,f =
(
Υx,f [0], · · · ,Υx,f [k], · · · ,Υx,f [N − 1]

)T
. (8)

Now, S(m) is defined as the support set containing the
indices of the basis functions building the model. Considering
that mmax is the number of basis functions under study (i.e.,
mmax = O), the proposed SW-OMP algorithm is defined in
Algorithm 1.

Algorithm 1 Spectral Weighting Orthogonal Matching Pursuit
1: procedure SW-OMP (Yf ,Ψx,f )
2: initialization:
3: E(0) = Yf − Ŷ(0); with Ŷ(0) = 0

4: S(0) = {}
5: for m = 1 to mmax do
6: i(m) = arg min

i
min
ŵpa,i

∥∥E(m−1) −Ψx,f,{i}ŵpa,i

∥∥2
2
≈

arg max
i

∣∣∣ΨH
x,f,{i}E

(m−1)
∣∣∣

7: S(m) ← S(m−1)⋃ i(m)

8: ŵ
(m)
pa =

(
ΨH

x,f,S(m)Ψx,f,S(m)

)−1
ΨH

x,f,S(m)Yf

9: Ŷ(m) = Ψx,f,S(m)ŵ
(m)
pa

10: E(m) = Yf − Ŷ(m)

11: end for
12: return S(mmax)

13: end procedure

At every iteration, the basis function that better contributes
to minimize the filtered residual error is selected and added
to the support set S(m). The elements of Ψx,f,S(m) have been
normalized in power to simplify the index i(m) calculation in
line 6 of the Algorithm, which can be obtained by maximizing
the absolute value of the correlation between the filtered basis
function Ψx,f,{i}

(
i.e, Ψx,f,{i} = Γ

{
DFTN{Φx,{i}}

})
and

the filtered residual error E(m−1) of the previous iteration.
After a complete SW-OMP search, we obtain a vector S(mmax)

with the indices of all the original basis functions (active
components) sorted according to their relevance. Then, by
using some information criterion, such as the Akaike (AIC) or
the Bayesian (BIC) [8], it is possible to determine the optimum
number of coefficients (mopt), where mopt < mmax. Finally,
the subset of selected basis functions, ϕx,S(mopt) [n], is used
in (9) to carry out the DPD (i.e., ϕu[n] = ϕx,S(mopt) [n]).

D. Closed-loop Digital Predistortion

Thanks to the SW-OMP algorithm we can define the closed-
loop DPD function in the forward path by properly selecting
the most relevant basis functions that contribute to minimizing
the out-of-band distortion. The input-output relationship at the
DPD block in Fig. 1 is defined as

x = u + Φuŵdpd (9)

where ŵdpd =
(
ŵ0, ŵ1, · · · , ŵP−1

)T
is the P × 1 (with

P < O) estimated vector of coefficients of the DPD behavioral
model, Φu is the L× P data matrix (n = 0, 1, · · · , L− 1),

Φu =
(
ϕu[0],ϕu[1], · · · ,ϕu[n], · · · ,ϕu[L− 1]

)T
(10)

and where ϕu[n] =
(
φu0 [n], φu1 [n], · · · , φur [n], · · · , φuP−1[n]

)T
is the P ×1 vector containing the P (with P < O) previously
selected basis functions using the SW-OMP algorithm
(i.e., ϕu[n] = ϕx,S(mopt) [n]). Following the direct learning
approach, the DPD coefficients can be estimated iteratively
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by using the least squares (LS) criterion,

ŵi+1
dpd = ŵi

dpd + µ
(
ΦH

u Φu

)−1
ΦH

u e (11)

where µ is a weighting factor. The L×1 error vector is defined
as e = y

G0
− u, where G0 is the desired PA linear gain.

E. Other considerations

The benefit of using the SW-OMP is to reduce the com-
putational complexity of the DPD behavioral model in the
forward path. The SW-OMP algorithm is inherently stable
and the index search is repeated until the upper-bound mmax

on the number of active coefficients is reached, or until the
norm of the filtered residual error

∥∥E(m)
∥∥
2

falls below the
noise tolerance threshold. The running time depends on both
the number of coefficients considered in the search and on
the digital signal processor used for running the algorithm.
However, by comparing the SW-OMP algorithm with the
Less Relevant Basis Removal (LRBR) brute-force technique
presented in [10] in terms of computational time, the OMP is
21 times faster, while the accuracy of the search is similar to
that obtained with OMP. The computational complexity of the
SW-OMP in comparison to the OMP is slightly higher due
to the FFT transformations and filtering operations. However,
when running an off-line SW-OMP search (e.g., in a PC
running Matlab instead of in a FPGA) considering a high
number of coefficients (e.g., > 300 coeff.), the computa-
tional time devoted to calculate the Fourier transforms and
filtering operations is negligible. Instead, thanks to the SW-
OMP search, some benefits in the DPD forward path are
obtained in terms of robustness (e.g., fast convergence in just
3 iterations when considering the use of different input data
featuring different PAPR), flexibility (e.g., trade-off between
the number of selected coefficients and the DPD linearization
performance) and reliability (by selecting the most relevant
basis the over-parametrization is avoided which yields to a
properly conditioned and accurate coefficient estimation).

III. EXPERIMENTAL TEST-BENCH AND RESULTS

A. Experimental Test-bench

The test bench shown in Fig. 3 was used to conduct exper-
imental validation of the SW-OMP technique. To emulate a
LTE carrier-aggregation transmission, two 20 MHz bandwidth
channels and one 10 MHz channel were grouped as shown in
Fig. 2. The PAPR of the waveform has been limited to 9.5 dB
by using the peak cancellation crest factor reduction technique.
The DPD processing blocks run in a PC with Matlab, which
is also employed to interface the waveform generation and
acquisition instruments. The direct RF generation of the LTE
carrier-aggregated signal was carried out through the arbitrary
waveform generator M8190A from Keysight, considering a
clock rate of 7.968 GHz and 14 bits. The device under test
was a class AB-biased GaN pHEMT 6 W PA delivering 28.6
dBm mean output power at 2140 MHz (downlink base-station
LTE band). The gate bias was chosen to maximize efficiency
at the price of showing severe nonlinear behavior. Finally, a
digital storage oscilloscope (DSO Keysight 90404A) was used

to acquire the RF output signal with 8-bit resolution and at
sampling rate of 20 GS/s.

B. Experimental Results

For the experimental results, we considered a GMP be-
havioral model with a configuration of polynomial orders
and memory terms that resulted in an initial dictionary of
mmax = 596 basis functions. The use of 596 coefficients
in the GMP model resulted in an ill-conditioned estimation.
By using the Moore-Penrose inverse (i.e., (ΦH

u Φu)−1ΦH
u ) the

coefficients estimation was inaccurate and some regularization
was required. With the SW-OMP we addressed the over-
parametrization problem by properly selecting the most rel-
evant basis functions that minimize the out-of-band distortion.

After applying the SW-OMP search and the BIC approx-
imation, we obtained a reduced set (being sorted according
to their relevance) of around mopt = 350 active components,
which resulted in a perfectly well-conditioned estimation. In
addition, as shown in Fig. 4, further pruning was considered by
selecting some of the most relevant components of S(mopt) and
by taking into account different notching levels (i.e., different
α values in (5) as shown in Fig. 2). We empirically found that
α = 5 · 105 is the maximum notching level that guarantees
the minimum in-band level required for accurate selection of
the most relevant basis. The DPD linearization performance
was evaluated in terms of ACLR and NMSE. As expected
(see Fig. 4), under severe nonlinear behavior of the PA, the
selection made by using the SW-OMP with the highest α
outperforms the classical OMP approach and is more robust
against the inherent ACLR degradation suffered when reducing
the number of coefficients of the DPD function.

In addition, in order to show the convergence speed and
robustness of the closed-loop DPD when considering different
data bursts with different PAPR values at each iteration, Fig.
5 and Fig. 6 show, respectively, the linearization performance
of the DPD operating with 50 and 150 properly selected co-
efficients and considering different notching levels. By taking
into account this particular PA nonlinear behavior, the target
of −45 dBc of ACLR is only met when using a minimum of
150 coefficients of the GMP behavioral model (see Fig. 6).
Fig. 7 shows the output power spectra before and after DPD
linearization when considering 150 coefficients being properly
selected with the SW-OMP algorithm and when considering
the highest notching level (i.e., α = 5 · 105). However, the
advantage given by conducting a previous SW-OMP search
in comparison to the classical OMP search, is more evident
when fewer coefficients are considered in the DPD (e.g., only
50 coefficients in Fig. 5) to compensate for the PA severe
nonlinear behavior.

IV. CONCLUSION

The proposed SW-OMP algorithm emphasizes the impor-
tance of the out-of-band distortion in the OMP residual error,
forcing the selection of the DPD components that better
compensate for the adjacent channel spectral regrowth. Exper-
imental results showed that, thanks to the proposed SW-OMP
technique, the inherent ACLR and NMSE degradation suffered
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Fig. 5. PAPR and ACLR vs # of iterations, with 50 coeff. SW-OMP DPD.

when significantly reducing the number of coefficients can be
mitigated (and improved in comparison to the classical OMP
under severe PA nonlinear behavior), while the robustness of
the DPD is enhanced, since no further adaptation is required
after 3 iterations.
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