
UC Davis
UC Davis Previously Published Works

Title
Multiplier-Free Implementation of Galois Field Fourier Transform on a FPGA

Permalink
https://escholarship.org/uc/item/7xk994nx

Journal
IEEE Transactions on Circuits & Systems II Express Briefs, 66(11)

ISSN
1549-7747

Authors
Girisankar, Sree Balaji
Nasseri, Mona
Priscilla, Jennifer
et al.

Publication Date
2019-11-01

DOI
10.1109/tcsii.2019.2894361

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xk994nx
https://escholarship.org/uc/item/7xk994nx#author
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 11, NOVEMBER 2019 1815

Multiplier-Free Implementation of Galois Field
Fourier Transform on a FPGA

Sree Balaji Girisankar, Mona Nasseri, Member, IEEE, Jennifer Priscilla ,

Shu Lin, Life Fellow, IEEE, and Venkatesh Akella , Member, IEEE

Abstract—A novel approach to implementing Galois field
Fourier transform (GFT) is proposed that completely elimi-
nates the need for any finite field multipliers by transforming
the symbols from a vector representation to a power repre-
sentation. The proposed method is suitable for implementing
GFTs of prime and nonprime lengths on modern FPGAs that
have a large amount of on-chip distributed embedded memory.
For GFT of length 255 that is widely used in many applica-
tions, the proposed memory-based implementation exhibits 25%
improvement in latency, 27% improvement in throughput, and
56% reduction in power consumption compared to a finite field
multiplier-based implementation.

Index Terms—Galois field Fourier transform, RS-codes, BCH-
codes, FPGA.

I. INTRODUCTION

FOURIER Transform over a Galois (finite) field (GFT) and
its inverse (IGFT) are some of the most computationally

demanding tasks in the implementation of Bose-Chaudhuri-
Hocquenghem (BCH) and Reed-Solomon (RS) codes. Finite
field multiplication is the bottleneck in implementing the GFT,
so several techniques have been proposed in research literature
to reduce the number of multiplications required. A substitu-
tion and pre-computation based technique is proposed in [1] to
compute GFT for prime lengths greater than 2 over GF(2m) for
arbitrary m that saves about one-quarter of the multiplications
compared to a brute-force implementation. There have been
research efforts that use a FFT style implementation of
GFT to reduce the number of multiplications [2]–[4]. In [5]
researchers have proposed methods that can reduce the num-
ber of multiplications from n2 to 1

4 n(log2 n)2 over GF(pm)

where p is a prime value and n log2 n for GF(22r), for
an arbitrary value of r, and Wu et al. [6] improve this

further to O(n(log2(n))log3/2
2) using the cyclotomic method.

Ghouwayel et al. [2] present the hardware design and imple-
mentation of cyclotomic Fast Fourier Transform (CFFT) over
GF(2m) by reformulating the method presented in [3]. Though
the architecture has some advantages because some of the

Manuscript received November 1, 2018; accepted December 29, 2018. Date
of publication January 21, 2019; date of current version November 1, 2019.
This brief was recommended by Associate Editor C. W. Sham. (Corresponding
author: Venkatesh Akella.)

The authors are with the Department of Electrical and Computer
Engineering, University of California at Davis, Davis, CA 95616 USA (e-mail:
akella@ucdavis.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2019.2894361

results of the computation are reused instead of computing
them again, the number of finite field multipliers used in their
method is the same as in [5].

In this brief we propose a technique to implement GFT that
does not use any finite field multipliers. The main insight of
this brief is that by transforming the GFT computation from a
vector representation to a power representation, we can replace
multiplication by wrap around carry addition. The challenge
is to do the conversion from the vector to power and back
efficiently. We proposed to use the extremely large on-chip
embedded memory available in modern FPGAs as ROM (read-
only memory) to store the precomputed conversion tables. On
a Virtex 7 there is about 37 Mb of embedded memory (called
Block RAM). This is sufficient to create the ROMs for GFT
computation on finite field up to a length of 1023, which meets
the requirements of many emerging applications. For example,
in the new iterative soft-decision decoding of RS codes [7] -
the application that motivates the work presented in this brief -
GFT of length 127 is required. Recent FPGAs such as Stratix
10 TX2800 from Altera has about 229Mb of memory with
over 11721 M20K blocks. With more memory, the proposed
scheme can be easily extended to larger field sizes if nec-
essary. At the end of this brief we also propose a simple
technique to reduce the memory requirements for prime length
implementation by taking advantage of the cyclic property of
multiplications over Galois Field.

In an FPGA the embedded memory blocks can be config-
ured as extremely wide word ROMs. So, it allows a highly
parallel vector processing style implementation, which results
in extremely low latency and very high throughput. Note that
this is only possible because the embedded memory on a
FPGA is very flexible and can be configured with extremely
large word size. For example, when n is 1023, the proposed
architecture accesses 1023 10-bit words (i.e., 10230 bits) in
parallel each clock cycle (227 MHz) which represents an
aggregate memory bandwidth of 2.3 Tb/s. This allows the
computation of GFT of length 1023 in 1027 clock cycles with
a throughput of 2.5 Gbps, using about 52% of the on-chip
memory resources on the FPGA.

The rest of this brief is organized as follows. We start with
a high level overview of the GFT computation and how we
propose to implement it by converting it from vector to power
representation using ROMs in Section II. Next, in Section III
we describe the details of the proposed architecture and a
method to reduce the memory requirements in some cases. We
present the results of our implementation on a Virtex 7 FPGA

1549-7747 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:20:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4660-2221
https://orcid.org/0000-0003-3014-5326

1816 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 11, NOVEMBER 2019

TABLE I
GF(23) POWER AND VECTOR REPRESENTATION FOR PRIMITIVE

POLYNOMIAL p(a) = 1 + a + a3

and comparison with related work, including a traditional finite
field multiplier based implementation in Section V.

II. HIGH LEVEL OVERVIEW OF THE PROPOSED SCHEME

GF(2m) represent the Galois field of 2m where m is a
positive arbitrary integer and n = 2m − 1. Suppose a =
(a0, a1, . . . , an−1) is a vector over GF(2m) and β is a primi-
tive element in GF(2m) such that βn = 1 and every nonzero
element α in GF(2m) can be expressed as β j,0 ≤ j ≤ n − 1.
The GFT of a is a vector b = (b0, b1, . . . , bn−1) whose tth

component, for 0 ≤ t ≤ n is given by,

bt =
n−1∑

k=0

akβ
kt = a0β

0 + a1β
t + a2β

2t + · · · + an−1β
(n−1)t (1)

This is the inner product of (a0, a1, . . . , an−1) and
(1, β t, β2t, . . . , β(n−1)t) [8]. A symbol in GF(2m) can either
be represented in vector form or its corresponding power form
shown in Table I.

Addition can be implemented in hardware very efficiently
using the vector representation using just simple XOR gates,
but multiplication is challenging because it needs a finite field
multiplier. However, the power representation can be used for
the multiplication as follows. Equation (1) can be represented
in matrix notation:
[
b0 b1 b2 . . . bn−1

] = [
a0 a1 a2 . . . an−1

]

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

β0 β0 β0 . . . β0 = 1
β0 β1 β2×1 . . . βn−1

β0 β2 β2×2 . . . β(n−1)×2

...
...

... . . .
...

β0 βn−2 β2×(n−2) . . . β(n−1)×(n−2)

β0 βn−1 β2×(n−1) . . . β(n−1)×(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(2)

For prime length n, the exponents of β in a row (column) are
distinct. Note that the powers of β are computed as (k × t)
mod (2m−1). The row vector of inputs a is variable but values
inside the square matrix follows the fixed pattern and can be
stored in read-only memory (ROM) as a look up table for use
in arithmetic operations. For example, consider the GFT for
a vector a of length 7 in GF(23) where n = 7 and m = 3.
Using Equation (1), the values that are to be computed are,

b0 = a0β
0 + a1β

0 + a2β
0 + a3β

0 + a4β
0 + a5β

0 + a6β
0

b1 = a0β
0 + a1β

1 + a2β
2 + a3β

3 + a4β
4 + a5β

5 + a6β
6

b2 = a0β
0 + a1β

2 + a2β
4 + a3β

6 + a4β
1 + a5β

3 + a6β
5

Algorithm 1 Computing GFT
GFT({a0a1a2 · · · an−1})

Initialize {b0b1b2 · · · bn−1} = 0
for i = 0 to n − 1 do

for k = 0 to n − 1 do
x = Power(ak)
y = (x + (i ∗ k) mod n) mod n
z = Vector(y)
if ak == 0 then

bi = bi ⊕ 0
else

bi = bi ⊕ z
end if

end for
end for

b3 = a0β
0 + a1β

3 + a2β
6 + a3β

2 + a4β
5 + a5β

1 + a6β
4

b4 = a0β
0 + a1β

4 + a2β
1 + a3β

5 + a4β
2 + a5β

6 + a6β
3

b5 = a0β
0 + a1β

5 + a2β
3 + a3β

1 + a4β
6 + a5β

4 + a6β
2

b6 = a0β
0 + a1β

6 + a2β
5 + a3β

4 + a4β
3 + a5β

2 + a6β
1

The computation akβ
t is traditionally done using a GF

multiplier where both ak and β t are in vector form. In the
proposed hardware implementation we convert the input sym-
bol from vector representation to power representation so that
both ak and β t are in power form. The powers are then added
using Wrap around carry-addition. Finally the power represen-
tation is converted back to vector representation. For example,
consider the computation of ak ∗ β4 where ak = 001 and
β4 = 110. Instead of standard GF multiplication we will
convert ak into its power representation from the vector rep-
resentation which give us β0 according to Table I. So, ak ∗β4

becomes β0 ∗β4 which is β4 in the power representation. We
convert this back to the vector representation which gives us
110 using Table I.

The method is summarized in Algorithm 1. Where Power(x)
and Vector(x) denote power and vector representations of x
respectively.

III. PROPOSED ARCHITECTURES

We propose two architectures - Serial In Parallel Out (SIPO)
and Parallel In Serial Out Architecture (PISO) which differ
in how the inputs arrive and how outputs are produced. In
SIPO architecture (see Fig. 1) inputs a0 to an−1 come in
serially. PowerROM converts vector representation to power
representation. The depth of this ROM is n + 1 and the width
is m = log2(n + 1) bits. So, the size of the PowerROM is
(n + 1) × log2(n + 1). BetaROM consists of powers that are
needed to be added with the inputs. The size of BetaROM is
n + 1 × (log2(n + 1) × n). In both the architectures, the val-
ues of BetaROM are pre-computed. The adder unit performs
wrap-around carry addition where the carry is added back to
get the final result. Then the VectorROMs are used to con-
vert from power to vector representation. The size of each
VectorROM is (n + 1) × log2(n + 1). If dual-port memory is
used the number of VectorROMs needed is � n

2�. The output

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:20:59 UTC from IEEE Xplore. Restrictions apply.

BALAJI GIRISANKAR et al.: MULTIPLIER-FREE IMPLEMENTATION OF GFT ON FPGA 1817

Fig. 1. Serial In Parallel Out(SIPO) Architecture.

Fig. 2. Parallel In Serial Out(PISO) Architecture.

of the VectorROM goes to the multiplexers. The Multiplexer
selects outputs zero if the input is zero or selects the output
of VectorROM otherwise. These are accumulated together by
Galois field addition, i.e., using XOR gates. In this architec-
ture once ak is received, ak ∗ βz is calculated in parallel for
all z values according to kth column of the square matrix in
equation (2). After all the inputs have arrived, the outputs b0
to bn−1 are available simultaneously.

In PISO architecture shown in Fig. 2, inputs a0 to an−1 are
assumed to be available in parallel, so we start computing the
outputs from b0 to bn−1 one by one (serially). PowerROM
converts vector representation to power representation. The
depth of this ROM is n+1 and the width is log2(n+1) bits. The
main difference between SIPO and PISO is that we replicate

TABLE II
THE POWER REPRESENTATION OF βj ∗ βz = βj+z

TABLE III
EXAMPLE OF POWER REPRESENTATION OF βj+z FOR GF(23) AND

PRIMITIVE POLYNOMIAL p(a) = 1 + a + a3 (WHERE β0 = β7 = 1)

multiple copies of this PowerROM to facilitate parallel look-
up. With dual-port ROMs, the number of PowerROMs needed
is � n

2�. BetaROM consists of powers that are needed to be
added with the inputs. The size of BetaROM is (n + 1) ×
(log2(n+1)×n). The adder unit is wrap-around carry addition
where the carry is again added with the result to get the final
result. Then the VectorROMs are used to convert from power
to vector representation. The size of each VectorROM is n +
1 × log2(n + 1). The number of VectorROMs needed are � n

2�.
These outputs are XOR-ed together (as in the previous case)
to get the final output. The control unit for this architecture is
very simple as it just generates the address for the BetaROM.

IV. ARCHITECTURE OPTIMIZATION FOR PRIME LENGTH

For prime length GFT computations, the cyclic property of
Galois field can be used to decrease the memory usage of
proposed architectures. The idea here is to form a table of the
multiplication results of ak ∗βkt in (1) over GF(2m) which are
distinct values. As mentioned before ak an element in GF(2m)

can be expressed as β j. For simplicity it is assumed βkt = βz.
Table II shows the power representation of β j ∗ βz = β j+z for
0 ≤ z, j < n and Table III shows the β j+z for GF(23) and
primitive polynomial p(a) = 1 + a + a3. When β j is zero, the
result is zero too. Note that each column of the Table II for
1 ≤ j < n can be obtained by cyclic shift of the j = 0 column
by j. Each column in Table II and Table III includes distinct
values. This property is true when n is prime.

Table IV shows the vector representations of the β j+zs of
Table III. The content of each column is the shifted version of
the second column (that belongs to β0 = 1), by j. For exam-
ple for input equal to 5, the second column is shifted by 6,
because the power representation of 5 is β6. The second col-
umn of Table IV is the vector representation of β0 to β6 which
is available to us in the VectorROM. As a result, in the opti-
mized method, BetaROM and PowerROMs can be removed
from the implementation shown in Fig. 1 and replaced by
a smaller ROM of size n which contains the indices of the

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:20:59 UTC from IEEE Xplore. Restrictions apply.

1818 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 66, NO. 11, NOVEMBER 2019

TABLE IV
VECTOR REPRESENTATIONS OF THE βj+zS FOR GF(23) AND PRIMITIVE

POLYNOMIAL p(a) = 1 + a + a3

Fig. 3. Optimized prime length SIPO architecture with critical path
highlighted consisting of n − 1 full adders.

VectorROM. We call this the IndexROM. Therefore to calcu-
late ak ∗ βk×j, we look up the index value of the input in the
IndexROM, which is simply the ath

k element of IndexROM,
then to generate the ak ∗ βk×js for 1 ≤ j < n, just add the
index to k × j and then look up the VectorROM to obtain the
result. Fig. 3 shows the optimized architecture for GF(23) and
example below illustrates the details of the optimization.

Assume input ak = 2 and k = 3. According to Equation (1),
a3 should be multiplied by: [β0, β3, β6, β2, β5, β1, β4]. We
generate IndexROM that contains indices of the VectorROM.
The contents of the VectorROM and IndexROM are as follows.
VectorROM=[1, 2, 4, 3, 6, 7, 5], IndexROM=[1, 2, 4, 3, 7,
5, 6]. Since a3 = 2, its index in IndexROM is 2. The vector
representation of a3 ∗β0 is the second element of VectorROM
(because VectorROM[2]=2). To compute the rest of the values,
the shifted value which is k×j should be added to 2 (the index).
For a3∗β3, one can add the index to k (k = 3) which results in
5, therefore VectorROM [5]=a3∗β3 = 6. Similarly to calculate
a3 ∗ β6, index is added to 2 × k; 2 + 2 × k = 1 mod 7, and
VectorROM[1]=1, then a3 ∗ β6 = 1, and so on.

V. EVALUATION AND RESULTS

The proposed SIPO architecture was synthesized and imple-
mented on a Xilinx xc7vx485tffg1761-2 Virtex 7 FPGA using
Vivado version 2017.4 tools. Resource utilization, timing,

throughput and power consumption of the architecture for
various values of n and GF(2m) are tabulated in Table V.
For n ≤ 63, number of BRAMs used is 0 because syn-
thesis tools do not infer BRAMs for smaller memories. As
n increases, throughput increases due to the higher paral-
lelism in the proposed architecture and the peak throughput
is 3.64 Gbps and then the throughput decreases. Note that
this is because of the increase in interconnect delay as the
fanout of the PowerROM increases from 255 to 1023 which
results in a decrease in the clock frequency from 547 MHz to
227 MHz. Note that the clock frequency is high because the
design uses very few logic resources (about 11% even for the
largest design) as most of the logic is simple XOR gates and
full adders which can be implemented very efficiently on a
modern FPGA. On a Virtex 7 the proposed architecture scales
up to GF(210) beyond that the available Block RAM becomes
the bottleneck, but as we discussed above, the optimized archi-
tecture can be used to reduce the ROM requirements which
would allow GFT of length greater than 1023. However, length
n = 1023 or less is adequate in most applications.

Table VI shows the results of GFT implementation on
the exactly the same FPGA (Xilinx xc7vx485tffg1761-2)
using finite field multipliers for comparison. We use hybrid
Karatsuba multiplier as in [9] with Montgomery reduction
array for the implementation of GFTs. This is the most effi-
cient multiplier design for the size of multipliers required
for implementing the GFTs of interest in this brief. We use
Gappmair algorithm [1] for prime length GFTs, i.e., when n
is 7, 31, 127, and Good-Thomas algorithm [10] when n is
not prime, i.e., for 15, 63, 255, 511, and 1023. Good-Thomas
algorithm is efficient because it uses a divide and conquer
strategy but it can only be used if the factors are prime. Given
the difference in algorithms used, the results in Table VI can
be counter-intuitive in some cases - for example, the resource
utilization for n =255 is lower than n =127 and the power
consumption of n =31 is higher than the implementation for
n =63. Overall the results show that memory based imple-
mentation not only requires fewer FPGA resources such as
LUTs and slice registers but also exhibits lower latency, higher
throughput and significantly lower power consumption. For
GFT of length 255 that is widely used in many applica-
tions, the proposed memory based implementation exhibits
25% improvement in latency, 27% improvement in through-
put, and 56% reduction in power consumption compared to
a finite field multiplier based implementation. In terms of
resource utilization, the proposed implementation requires sig-
nificantly less slice registers (4399 vs 17283) and LUTs (7106
vs 11885) but uses 94 Block RAMs, which a multiplier based
implementation does not need.

Figure 4 shows that the proposed memory based imple-
mentation is better than a multiplier based implementation as
the size of the GFT increases. This is because a multiplier
based implementation uses almost 13.5X more slice registers
and 4.5X more lookup tables when we go from n = 511
to n = 1023 which more than offsets the power consump-
tion of the clocked memory blocks. Furthermore, given the
utilization of the FPGA is more in the multiplier based imple-
mentation, the interconnect power is significant also. In an

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:20:59 UTC from IEEE Xplore. Restrictions apply.

BALAJI GIRISANKAR et al.: MULTIPLIER-FREE IMPLEMENTATION OF GFT ON FPGA 1819

TABLE V
RESOURCE UTILIZATION AND PERFORMANCE OF THE PROPOSED MULTIPLIER-FREE GFT IMPLEMENTATIONS

TABLE VI
RESOURCE UTILIZATION AND PERFORMANCE OF MULTITPLIER-BASED GFT IMPLEMENTATIONS

Fig. 4. Scaling Power with GFT Size.

ASIC implementation these trade-offs might be different - for
example, the multiplier based implementation will be realized
directly with complex gates instead of look-up tables and the
interconnect can be more efficient as well (does not have to
go through repeaters), so the multiplier based implementation
might be more competitive with the proposed memory based
implementation when it comes to power consumption.

VI. CONCLUSION

Galois Field Fourier Transform (GFT) is an important
operation in signal processing and digital communication
applications that rely on RS and BCH codes. Though there
have been many advances in reducing the number of finite
field multipliers required to compute the GFT, it is still a bot-
tleneck especially when it comes to n FPGA implementation.
In this brief we show how on-chip embedded memory can be
used to implement GFTs without using any multipliers. We

show that the proposed designs are superior to multiplier based
implementation in terms of latency, throughput and power
consumption in addition to register and LUT requirements.
The Inverse Galois Fourier transform (IGFT) of a is a vector
b = (b0, b1, . . . , bn−1) whose tth component, for 0 ≤ t ≤ n is
given by, bt = ∑n−1

k=0 akβ
−kt = a0β

0 +a1β
−t +a2β

−2t +· · ·+
an−1β

−(n−1)t, so the same architecture and implementation
scheme can be used for IGFT as well.

REFERENCES

[1] W. Gappmair, “An efficient prime-length DFT algorithm over finite fields
GF(2m),” Eur. Trans. Telecommun., vol. 14, no. 2, pp. 171–176, 2003.

[2] A. Al Ghouwayel, Y. Louët, A. Nafkha, and J. Palicot, “On the FPGA
implementation of the Fourier transform over finite fields GF(2m),”
in Proc. Int. Symp. Commun. Inf. Technol. (ISCIT), Sydney, NSW,
Australia, 2007, pp. 146–151.

[3] P. V. Trifonov and S. V. Fedorenko, “A method for fast computation of
the Fourier transform over a finite field,” Problems Inf. Transm., vol. 39,
no. 3, pp. 231–238, 2003.

[4] X. Wu, Z. Yan, N. Chen, and M. Wagh, “Prime factor cyclotomic Fourier
transforms with reduced complexity over finite fields,” in Proc. IEEE
Workshop Signal Process. Syst. (SIPS), 2010, pp. 450–455.

[5] Y. Wang and X. Zhu, “A fast algorithm for the Fourier transform over
finite fields and its VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 6, no. 3, pp. 572–577, Apr. 1988.

[6] X. Wu, Y. Wang, and Z. Yan, “On algorithms and complexities of cyclo-
tomic fast Fourier transforms over arbitrary finite fields,” IEEE Trans.
Signal Process., vol. 60, no. 3, pp. 1149–1158, Mar. 2012.

[7] S. Lin, K. Abdel-Ghaffar, J. Li, and K. Liu, “Iterative soft-decision
decoding of reed-solomon codes of prime lengths,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), 2017, pp. 341–345.

[8] A. Reyhani-Masoleh and M. A. Hasan, “Low complexity bit parallel
architectures for polynomial basis multiplication over GF(2m),” IEEE
Trans. Comput., vol. 53, no. 8, pp. 945–959, Aug. 2004.

[9] C. Grabbe, M. Bednara, J. Teich, J. von zur Gathen, and J. Shokrollahi,
“FPGA designs of parallel high performance GF(2233) multipliers,” in
Proc. ISCAS, 2003, pp. 268–271.

[10] I. J. Good, “The interaction algorithm and practical Fourier analysis,” J.
Roy. Stat. Soc. B, vol. 20, no. 2, pp. 361–372, 1958.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 13,2022 at 17:20:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

