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Saturated PI Control for Nonlinear System with

Provable Convergence: An Optimization Perspective
Zhan Li and Shuai Li

Abstract—The saturated PI (proportional-integral) based
method is widely applied in nonlinear system control fields. It
can be regarded as a black-box type approach which utilizes
the system output’s tracking error and its integral information,
with the saturated control input. However, as details of the
plants may not be necessary to investigate, the saturated PI
control methods has to empirically tune the proportional and
integral parameters to guarantee reliable convergence, making
its convergence mechanism can not be generally interpreted. In
this brief, for the first time, the convergence of the saturated
PI control scheme is proved through the optimization solver
based on a primal dual neural network. Illustrate examples
including control of an inverted-pendulum mobile vehicle and
a manipulator demonstrate the efficiency of the saturated PI
control methods based on the proposed optimization formulation.

Index Terms—Saturation; PI control; nonlinear system

I. INTRODUCTION

PID (proportional-integral-derivative) control approaches

have been widespread applied in numerous engineering fields

in past decades, and methods based on PID disciplines have

achieved great success in many scenarios even if the plants

to be controlled are highly nonlinear with strong modeling

uncertainties [1]. The classic PID control methods mainly

take advantage of tracking error with its time-derivative and

time integrating information in a black-box manner, which

dynamic architectures or mathematical modelings of plants

are not necessary to be known accurately. In many industrial

control process, as the derivative (D) mode in PID control may

amplify noises, making the D mode in PID control is often

not involved. As a result, the PID control paradigm reduces to

the PI control paradigm with D mode obliterated [2], [3]. In

mathematics, The general PI control discipline is depicted by

u = Kpe+Ki

∫ t

0

edt (1)

where u denotes the control input (action), e denotes the track-

ing error for the system output, and Kp,Ki are parameters to

be tuned.

In order to achieve promising control performances based

on the PI control method or its variants on nonlinear systems,

the parameter tuning issue plays an important role to guarantee

its applicability. One of most well-known method for tuning
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the parameters is the Ziegler-Nichols (ZN) rule [4], and the

ZN rule is empirical without theoretical verification according

to the time and frequency responses of plants. Some other

empirical tuning methods have been proposed, showing the

way of tuning parameters plurally exist [5]. These methods are

efficient for linear systems, and can be used for some nonlinear

systems which can be linearly approximated. However, such

empirical way of processing parameter tuning might face

with increased indeterminacy of parameter tuning and the

specific convergence properties may not be reached. Zhao and

Guo investigated the second order nonlinear uncertain system,

and proposed an efficient tuning method of parameters with

convergence explicitly shown [6]. The convergence of the

closed-loop control with PI controller equipped is expected

to let parameter tuning follow a specific known manner.

The saturation of control input is usually required due to

physical limitation of actuators, and it can make plants more

stable and prevent unexpected outputs [7], e.g., attitude control

of quadrotor model [8], robust output regulation of singular

system [9], saturated PI control of direct current buck power

converters [10], saturated PID control of joint motion for

robots [11], [12]. For the nonlinear system, the input into it

may usually result in unexpected overshoot due to the tuning

of parameters Kp,Ki, which may exert instability to the entire

closed-loop control system [13]. Under these considerations,

the input u may need saturation to overcome the shortcomings

of empirical parameter tuning. Therefore, for PI controllers,

constraints on the control input u are proposed to make the

system more stable.

In this brief, motivated by interpreting the convergence

properties of the saturated PI control methods, to the best of

our knowledge, this paper might be the first work to propose a

interpretation on the saturated PI control of nonlinear systems

in an optimization paradigm. Such an optimization-based

perspective is governed by a primal dual neural network model

with provable convergence. Illustrate examples demonstrate

the efficiency of the saturated PI control methods based on

the optimization formulation for control of nonlinear systems.

II. PROBLEM FORMULATION

In this brief, the nonlinear affine system is investigated for

the saturated PI controller, as nonlinear affine systems are

widely encountered in many engineering applications [14],

[15]. Generally, the nonlinear affine system is depicted as

follows

ẋ = f(x) + g(x)u (2)

where x ∈ Rn denotes the state variable, f(x) : Rn → Rn

denotes the nonlinear mapping, g(x) : Rn → Rn×m, and the
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input of the system is u ∈ Rm that has to satisfy the saturation

condition u− ≤ u ≤ u+. When the PI control method is used

to control the nonlinear affine system, the control input is

u = Kd(x− xd) +Ki

∫ t

0

(x− xd)dt (3)

where xd denotes the reference for the output variable x. In

this case, the nonlinear affine system equipped the PI controller

becomes

ẋ = f(x) + g(x)[Kd(x− xd) +Ki

∫ t

0

(x − xd)dt] (4)

From this mathematics expression, it is hard to directly prove

the convergence of the closed-loop system syntheses by the

PI controller. One way is to differentiate it at its both left and

right sides and to form a higher-order nonlinear system, which

makes it more complicated to analyze the convergence.

In another way of general analysis, for such nonlinear affine

system (2), it can be rewritten as

g(x)u = ẋ− f(x) (5)

In this case, the control input u of the nonlinear affine

system can be solved by

u = g−1(x)[ẋ − f(x)] (6)

where g−1(·) : Rn → Rn×m denotes the inverse of the

nonlinear mapping array of g(·), i.e., the solution process of

the control input can be depicted by Au− b = 0 where

A = g(x), b = ẋ− f(x)

Consider the solution for the controller u is equivalent to

the control input u of the PI controller (1), we can further

have

A[Kd(x− xd) +Ki

∫ t

0

(x− xd)dt] = b (7)

As e = x− xd, the solution of the PI controller can be

A[Kde+Ki

∫ t

0

edt] = b (8)

If we define z =
∫ t

0 x̃dt, the above equation further becomes

A(Kdż +Kiz) = b (9)

As e → 0 when t → +∞, and the parameters Kd and Ki can

be solved. So our goal is to let the control input u as small

as possible due to saturation but it will satisfy the constraint

equation Au− b = 0 for the PI control.

In this brief, we would like the state variable x converges

to xd with only one control parameter k > 0, thus we have

ẋ− ẋd = −k(x− xd) (10)

Considering the nonlinear affine system (2), we have

g(x)u = −k(x− xd) + ẋd − f(x) (11)

In this case, the coefficients of the equations to solve the

control input are

A = g(x), b = −k(x− xd) + ẋd − f(x) (12)

III. THE PROPOSED METHOD

In this brief, the proposed saturated PI control paradigm in

an optimization perspective is formulated by

minimize ‖u‖2/2

subject to Au− b = 0 (13)

u− ≤ u ≤ u+

u ∈ Ω

where Ω denotes the feasible solution set for saturated control

input u. The equivalent from of (14) is

minimize ‖u‖2/2 + k0‖Au− b‖2/2

subject to Au− b = 0 (14)

u− ≤ u ≤ u+

u ∈ Ω

Construct the Lagrange function for the optimization above

L(u, λ) = ‖u‖2/2+k0‖Au− b‖2/2+λT (Au− b) ∈ R (15)

where λ ∈ Rn denotes the Lagrange multiplier. The partial

derivative of L(u, λ) is

∂L(u, λ)

∂u
= u+ k0A

T (Au− b) +ATλ (16)

Therefore, according to the design principle of primal dual

neural network [16], we construct the following optimization

solver model
{

ǫu̇ = −u+ PΩ(u− ∂L(u,λ)
∂u

)

ǫλ̇ = Au− b
(17)

where PΩ(·) denotes the linear projection operator, i.e.,

PΩ(u > u+) = u+, PΩ(u ≤ u−) = u− and PΩ(u
− < u <

u+) = u. The primal dual neural network (17) further becomes

{

ǫu̇ = −u+ PΩ(−k0A
T (Au − b)−ATλ)

ǫλ̇ = Au− b
(18)

By defining e = Au − b, the controller synthesized by the

optimization solver further becomes

{

ǫu̇ = −u+ PΩ(−k0A
T e −ATλ)

λ = 1
ǫ

∫ t

0 edt
(19)

i.e., the saturated controller is depicted by

ǫu̇ = −u+ PΩ(−k0A
T e−AT 1

ǫ

∫ t

0

edt) (20)

For the saturated controller (20) based on the optimization

solver, when the state variable u converges to its equilibrium

point, e → 0 as t → +∞ is achieved. For the convergence

properties of the saturated controller in the optimization per-

spective, we have the following theoretical results.

Theorem. For tracking control of nonlinear affine system (2)

by solving Au− b = 0, the saturated controller u− ≤ u ≤ u+

synthesized by (20) based on the optimization solver can make

the tracking control error e converge to zero.
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(a) Tracking control performance with k = 10
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(b) Tracking control performance with k = 20
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(c) Tracking control performance with k = 100
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(f) Control input u with k = 100
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(g) Tracking error with k = 10
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(h) Tracking error with k = 20
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(i) Tracking error with k = 100

Fig. 1. The tracking control performances with different parameters k synthesized with the saturated control input u.

Proof. Define a new tentative variable ξ = u −
PΩ(−k0A

T e − AT
∫ t

0 edt/ǫ), then the dynamic equation of

the primal dual neural network becomes

ǫu̇ = −ξ (21)

we can define a Lyapunov function V = uTu/2, its time-

derivative is

V̇ = uT u̇ = −uT ξ/ǫ (22)

= −uT (u− PΩ(−k0A
T e−AT

∫ t

0

edt))/ǫ (23)

By defining v = −k0A
T e−AT

∫ t

0 edt/ǫ, we have

V̇ = −uT (u − PΩ(v))/ǫ (24)

According to the properties of linear projection function [17],

[18], one can have

uT (u− PΩ(v)) ≥ uTu (25)

Thus, by defining v = −k0A
T e−AT

∫ t

0
edt/ǫ, we have

V̇ = −uT (u − PΩ(v))/ǫ ≤ −
1

ǫ
uTu ≤ 0 (26)

It indicates that (20) can guarantee the convergence of Au− b
to zero to solve the saturated controller of nonlinear affine

system (2). The proof is complete. �

IV. ILLUSTRATIVE RESULTS

A. Example 1: Second-order Nonlinear Affine System

Let us consider the following second-order nonlinear affine

system as follows
{

ẋ1 = x2

ẋ2 = − sinx1 − cosx2 + cos(sinx1)u
(27)

Our goal is to let the state variable x1 of the nonlinear affine

system (27) to track the desired trajectory xd = sin 2t with

suitable saturated control action input u ∈ R, and the control

input u is limited by u− ≤ u ≤ u+ with u+ = −u− = 10.

Parameters ǫ = 0.001 and k0 = 1 is set for the optimization

solver based on primal dual neural network (20). According to

the proposed control method with saturated control input, the

corresponding controller’s coefficient matrix and vector are

A =

[

1
cos(sinx1)

]
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(b) Control input v
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(c) Error performance

Fig. 2. The tracking control performances with different parameters k synthesized by the saturated controller u.

(a) Circle path tracking
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(b) Joint angular velocity
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(c) Position error of the end-effector

Fig. 3. The tracking control performances of the manipulator system (30) synthesized by the saturated controller u.

and

b =

[

−k(x1 − xd) + ẋd − x2

−k(x2 − xd) + ẋd + sinx1 + cosx2

]

Fig. 1 shows the comprehensive results for control of the

nonlinear affine system (27) synthesised by the proposed

saturated controller based on optimization solver. Seen from

Figs. 1(a)-(c), starting from a randomly-generated inial value,

state variable x1 is able to track the desired trajectory xd

well, especially in cases of k = 20 and k = 100, and the

corresponding tracking errors are shown by Figs. 1(g)-(i). The

control inputs u are shown by Figs. 1(d)-(f), and one can

observe that all the control inputs’ amplitudes are limited to

the saturation boundaries. Moreover, with different parame-

ters k = 10, 20, 100 configured, we can see that the faster

convergence can be achieved and the steady-state errors can

be lowered by the controller. From these results on saturation

control of the nonlinear affine system (27), we can conclude

that the proposed controller based on the optimization solver

can possess promising tracking performances, and the control

performances can be enhanced by increasing the parameter k
without empirical tuning of parameters as the conventional

PI controller. Such empirical tuning of parameters of PI

controllers may lead to overrun of the control input u, making

saturation for u be no longer in force.

B. Example 2: Control of Inverted-pendulum Mobile Vehicle

Let us consider the inverted-pendulum mobile vehicle

whose motion dynamics state-space equations are depicted by

the following nonlinear affine system [19], [20]


















ẋ1 = x2

ẋ2 =
mc(x

2

4
lb−g cosx3) sin x3−cx2+u

M+mc sin2 x3

ẋ3 = x4

ẋ4 =
(M+mc)g sin x3+(cx2−u−mblbx

2

4
sin x3) cosx3

(M+mb sin2 x3)lc

(28)

where xi (i = 1, 2, 3, 4) denotes the ith state variable, g
denotes the gravity acceleration, c denotes the motion friction

factor. Specifically, x1 is the horizontal position of the vehicle

with x2 being its velocity, x3 is the angle of the pendulum with

x4 being its velocity. As the inverted-pendulum mobile vehicle

is a under-actuated system, the main control goal focuses on

control of the pendulum angle to the desired angle yd with

single input control action u, so the system output is y = x3.

The parameters of the inverted-pendulum mobile vehicle are

M = 1, mc = 0.2, lc = 0.3, b = 0.05 and g = 9.8. We

establish the saturated controller with its solution coefficients

constructed as follows. Firstly, let v = cx2 − u, then (28)

becomes


















ẋ1 = x2

ẋ2 =
mc(x

2

4
lb−g cos x3) sin x3−v

M+mc sin2 x3

ẋ3 = x4

ẋ4 =
(M+mc)g sin x3+(v−mblbx

2

4
sin x3) cosx3

(M+mb sin2 x3)lc

(29)

Since x3 is the system output and the control target is to let

y = x3 converge to yd. According to the control method based

on the optimization formulation, the saturation controller de-

sign problem transfers from designing the saturated controller

u to designing the saturated controller v, and the coefficients
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are A = [a1, a2]
T and B = [b1, b2]

T where a1 = 1,

a2 = 1/(M +mb sin2 x3)lc, b1 = −k(x3−yd)+ ẏd−x4, and

b2 =− k(x4 − yd) + ẏd

−
(M +mc)g sinx3 + (−mclcx

2
4 sinx3) cos x3)

(M +mb sin
2 x3)lc

.

In this example, the saturated controller v is to fall within

[−6, 6], the desired trajectory is set as yd = sin t cos t+ 0.25,

and parameter k = 100 is configured. Fig. 2 shows the control

performance synthesized by the proposed controller. One can

observe that, the desired trajectory yd can be well tracked

by the state output y, the tracking error can reach less than

10−2, and simultaneously the controller v is saturated within

the range [−6, 6].

C. Example 3: Kinematics Control of Manipulator

Consider following the velocity kinematics equation of the

redundant manipulator system

ṙ = Jθ̇ (30)

where J ∈ R3×n denotes the Jacobian matrix of the ma-

nipulator, θ̇ ∈ Rn denotes the joint angular velocity, and

ṙ ∈ R3 denotes the velocity of position vector rd of the end-

effector. Obviously, the velocity kinematics equation of the

manipulator is an over-actuated nonlinear affine system. For

tracking desired path rd of the end-effector, we design the

following controller

Jθ̇ = −k0(r − rd) + ṙd (31)

As the control input is set as u = θ̇, now we can define

A = J, b = −k(r − rd) + ṙd (32)

In this example, the kinematics model is based on the

Kuka manipulator [21], and the Jacobian matrix J ∈ R3×7 is

obtained through the D-H parameter table in [21]. The desired

path of the end-effector is set as a circle with its position being

rd = [0.15 cos0.5t, 0.5 sin0.5t, 0]T (m). The saturated control

input for the kinematics control is the joint angular velocity

θ̇ ∈ R7 with each of its entry within [-0.2,0.2] (rad). The

parameter configuration is ǫ = 0.0001, k0 = 1 and k = 10.

Fig. 3 illustrates the performance by the saturation controller

u, and it can be seen that the end-effector can track the desired

path well with promising accuracy. All of these results validate

efficiency of the proposed saturation controller formulated by

the optimization solver.

V. CONCLUSION

In this brief, motivated by interpreting the convergence

properties of the saturated PI control methods, to the best

of our knowledge, this paper is the first work to propose a

interpretation on the saturated PI control of nonlinear systems

in an optimization paradigm. Such an optimization-based

perspective is governed by a primal dual neural network model

with provable convergence. Illustrate examples demonstrate

the efficiency of the saturated PI control methods based on

the optimization formulation for control of nonlinear systems.
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