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LightSleepNet: Design of a Personalized Portable
Sleep Staging System Based on Single-Channel

EEG
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Abstract—This paper proposed LightSleepNet - a light-weight,
1-d Convolutional Neural Network (CNN) based personalized ar-
chitecture for real-time sleep staging, which can be implemented
on various mobile platforms with limited hardware resources.
The proposed architecture only requires an input of 30s single-
channel EEG signal for the classification. Two residual blocks
consisting of group 1-d convolution are used instead of the
traditional convolution layers to remove the redundancy in the
CNN. Channel shuffles are inserted into each convolution layer to
improve the accuracy. In order to avoid over-fitting to the training
set, a Global Average Pooling (GAP) layer is used to replace the
fully connected layer, which further reduces the total number
of the model parameters significantly. A personalized algorithm
combining Adaptive Batch Normalization (AdaBN) and gradient
re-weighting is proposed for unsupervised domain adaptation. A
higher priority is given to examples that are easy to transfer
to the new subject, and the algorithm could be personalized for
new subjects without re-training. Experimental results show a
state-of-the-art overall accuracy of 83.8% with only 45.76 Million
Floating-point Operations per Second (MFLOPs) computation
and 43.08 K parameters.

Index Terms—Sleep staging, Light-weight architecture, Chan-
nel shuffle, CNN, Personalized healthy equipment

I. INTRODUCTION

Sleep is important for humans to keep the nervous system
functioning well. Unfortunately, more than 20 percent of the
adult population are suffering from various sleep disorders
[1]. Sleep staging can be applied for the diagnosis and treat-
ment of sleep disorders [2]. Polysomnography (PSG) based
sleep staging is widely used in clinical practice. It is the
golden standard as experts label the sleep stages according to
the recorded Electroencephalography (EEG), Electrooculogra-
phy (EOG), Electromyography (EMG) and Electrocardiogram
(ECG). However, it is difficult to apply at home due to the
complex operation process of sleep staging. In addition, the
requirement for real-time sleep staging is emerging while
exploring effective methods to improve the sleep quality, such
as sounds, lights and electrical stimulation [3]. As a result of
the development of the wearable personal health monitoring
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devices in recent years, a long-term, real-time, high-precision
sleep staging algorithm is required for implementation in
various portable devices [4].

Hardware-friendly algorithms with low computational com-
plexity have been explored to fit sleep staging process in
wearable devices. Traditional machine learning based methods
[5–7], such as decision tree [6] or support vector machine [7]
based classifiers, can be implemented in wearable or mobile
devices, but suffer from low accuracy, usually lower than 80%
[6]. Deep learning based algorithms have been widely applied
to improve the performance of biomedical signals (e.g. EEG)
processing in recent years [8, 9]. A considerable amount of
literature [10–18] has been published on automatic sleep stag-
ing based on deep learning. The SeqSleepNet [11] achieved
an accuracy of near 90%. However, it suffers from a difficult
compromise between observation latency and computational
complexity, since it requires ten raw EEG epochs together as
the input. Time-Distributed Deep CNN has been applied to
fit the requirement of real-time processing [17], showing a
promising result but the computational complexity is high.

The individual differences raise another challenge for auto-
matic sleep staging system. Features extracted from the EEG
signals distribute differently between the training set and test
set, which makes the algorithms mentioned above unreliable
for new subjects. Traditional solutions require fine-tuning
using labeled data from the target subject for personalization
[19]. However, professional knowledge is required for raw data
labeling, which is unavailable at home. [12] proposed to solve
this problem with adversarial training, but there was sleep
information lost in the training process, which resulted in a
low accuracy. [20] proposed to apply weighted kernel logistic
regression for handcrafted feature extraction. However, a re-
training of the network is required for most domain adaptation
methods, which is both hardware hungry and power hungry.

This paper proposes a light-weight personalized sleep stag-
ing algorithm, which is denoted as LightSleepNet. The pro-
posed architecture is suitable for implementation on various
mobile platforms for real-time processing. To reduce the
negative influence of individual differences, unlabeled data can
be used to personalize for new subject without re-training. A
1-d CNN is designed for the feature extraction from 30s single-
channel EEG epochs. In order to remove the redundancy in
the CNN, residual blocks consisting of group 1-d convolution
bring a dramatic reduction on the complexity of the network.
Channel shuffles are inserted into each convolution layer to
improve the accuracy. In order to avoid over-fitting to the
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training set, a Global Average Pooling (GAP) layer is used
to replace the fully connected layer, which further reduces the
total number of the model parameters by 12 times.

In order to further improve the algorithm robustness to
individual differences without a significant increase of the
complexity, a personalized unsupervised domain adaptation
algorithm is proposed. Inspired by [21], the gradient contribu-
tion of different samples could be re-weighted to improve the
generalization. In our proposed work, a higher priority will
be given to those examples that are easier to transfer to new
subjects based on the gradient re-weighting in training. The
proposed Adaptive Batch Normalization (AdaBN) [22] based
method is designed for subject-specific adaptation, which
normalizes the intermediate output of CNN from training set
and the data from the new subject to a similar distribution.

The rest of the paper is organized as follows. Section II
introduces the proposed light-weight architecture and details of
the proposed low complexity solution to improve the algorithm
robustness to individual differences. Section III illustrates the
experimental results, while Section IV concludes the work.

II. ARCHITECTURE OF THE PROPOSED LIGHTSLEEPNET

A. The Process of the LightSleepNet

Fig.1A illustrates the proposed LightSleepNet. It consists
of five 1-d convolutional layers (as illustrated in the orange
blocks) and one GAP layer to lower the dimension of the fea-
ture map as well as to reduce the workload for classification.

The input is a 30s single-channel EEG epoch, which is
denoted as Xi. The 1-d CNN is built with residual blocks
consisting of 1-d group convolution. As illustrated in Fig.1B,
there are three steps in each 1-d convolutional layer:

1) 1-D group convolution with its filters:
As the step 1 of Fig.1B shows, the j-th channel output
feature for the i-th sample can be calculated as follow:

outn(i, j) = biasn(j) +
∑
u

weightn(j, u) ∗ inn(i, u)

(1)
where j = [1, ..., Cout]. ∗ is the convolution operation
and u is the corresponding index of input channel be-
longing to the same group with the j-th output channel.
n = [1, 2, ..., 5] is the index of this convolution layer.

2) adaptive batch normalization:
BN layers transform the features xj into yj as

yj = γj
xj − E(Xj)√

V ar(Xj)
+ βj (2)

where xj and yj are the input and output scalars of the
BN, respectively, with j = [1, ..., U ]. U is the feature
dimension. Xj ∈ ℜN is the j-th column of the input
feature. N is the size of a batch, chosen as 40 in this
paper. γj and βj are the training parameters.

3) rectified linear unit (ReLU) activations: relu(x)=max(0,x)
A channel shuffle is inserted after each 1-d convolutional

layer to improve the information independence introduced
by group convolution. The channel dimension of the output
from group convolution is reshaped into (g, Cin

g ). It is then
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Fig. 1. (A) The overall architecture of LightSleepNet. Cout and Cin are the
numbers of feature channels in output and input respectively. k is the kernel
size of convolution. g is the number of group for convolution. s is the stride
with a default value of 1. (B) Three steps in 1-d convolutional layer (the
orange blocks in (A)). The vectors in step 1 example the input and output of
the 1-d group convolution.

transposed to (Cin

g , g), before flattened as the input of next
layer. In order to assist the network training with multi-scale
information, residual connection is inserted between every two
convolution layers to form a residual block. The input x is
mapped by the residual block through the function F (∗) as

y = F (x,Wi) + x (3)

where Wi are the parameters of the residual block.
A Dropout layer is applied after the residual blocks for

regularization with a 50% probability randomly setting some
of the input tensor as zero. A GAP layer is inserted after
the Dropout layer. A smaller fully connected layer with a
dimension of 128×5 is applied to the output of the GAP layer.
A Softmax layer is applied to the output of the fully connected
layer for classification. There are five optional outputs, Wake,
N1, N2, N3 and REM, according to the sleep staging definition
by the American Academy of Sleep Medicine (AASM).

B. Training Process Design

The traditional cross entropy loss imposes equal importance
for different samples, whereas every sample does not con-
tribute the same for the generalization. There are samples hard
to learn, which is usually a noise in the EEG signal and has
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lesser contribution to the generalization with uncertain predic-
tions (i.e. large gradients). Those samples may deteriorate the
training process. There are also samples easy to learn, which
is easy to transfer to new subject with confident predictions
(i.e. small gradients), contributing more to the generalization.
We quantify the difficulty of samples by the norm of gradient
and suppress those gradients from noise samples with lower
weight, while giving high priority to those gradients from easy-
to-transfer samples. Fig.2A illustrates the gradient distribution
for sleep staging. Gradient density is used to represent the
number of samples within a specific gradient range. It is noted
that there is a high gradient density in easy-to-transfer samples
and low density in noise samples. We could give high priority
to those samples with high gradient density. We propose to
replace the CrossEntropy loss in our model with a modified
version to apply the re-weighting:

Lweighted =
1

N

N∑
i=1

βiL
i
CE (4)

where Li
CE is the Cross-Entropy loss for the i-th sample. N

is the number of samples in one batch. βi is the weight of
gradient for the i-th sample.

βi =
GD(gi)

N
(5)

where gi is the gradient of the i-th sample and GD(gi) is the
gradient density of gradient gi.

After the re-weighting, the gradient distribution is illustrated
in Fig.2B, in which those samples easy-to-transfer initially
focused on low gradient move right whereas those noise
samples move left, which increases the number of samples
with moderate gradient in the center region of the distribution.
As the gradients are amplified for almost sixty times, a
learning rate scheduler is applied for the adaptive learning
rate adjustment.
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Fig. 2. (A) Gradient Distributed Before Weighting (B) Gradient Distributed
After Weighting.

C. The AdaBN based Personalized Adaptation

In order to improve the personalized adaptation, domain
adaptation with unlabeled data from the new subject was
applied. In the proposed work, AdaBN was used for subject-
specific adaptation. AdaBN normalized features from training
set and from the new subject to a similar distribution with
zero bias and one variance without additional training cost.
The AdaBN is applied after every convolution layer.

The implementation of BN improves the similarity of the
input distribution of each layer. The efficiency and robustness

of the training process are improved as well. However, the
data distribution and statistic values are different between the
training and the test set when there is a significant domain
shift. The normalization process is unable to normalize these
two datasets into a similar distribution since the statistic
values in the target domain are not used. Compared to BN,
it is better to use AdaBN when there are different statistic
values between training stage and test stage, since the data
distribution of the target domain is taken into consideration
by the AdaBN. With unlabeled data from a new subject, the
batch statistic values are calculated offline or online based on
forward propagation. With those statistic values, the feature
distribution in new subjects would also be normalized to a
similar distribution with zero bias and one variance. Each layer
receives a similar input distribution for both data originated
from the training set and a new subject. As a result, the
domain shift between different subjects is alleviated with
personalized adaptation. The process of training and testing
with personalized adaptation is described in Algorithm 1.

Algorithm 1 The process of training and testing with person-
alized adaptation.
Input: The set of input EEG epochs of source domain, Xs

n; The
corresponding sleep stages labels of source domain, Y s

n ; The set
of unlabeled EEG epochs of target domain, Xt

n;
Output: The corresponding sleep stages labels of target domain, Y t

n ;
1: Training:
2: for epoch < 100 do
3: Forward Propagation to get prediction Ŷ s

n for the EEG input
Xs

n from source domain;
4: Calculating the CrossEntropy Loss with function LCE =

− 1
N

∑N
j=1

∑5
i=1 Y

s
jilog(Ŷ

s
ji);

5: Calculating the reweighting loss with weights corresponding
to samples Lweighted =

∑N
i=1

GD(gi)

N2 Li
CE ;

6: Backward Propagation to update the model;
7: end for
8: Testing:
9: for all neuron j in DNN do

10: Calculating neuron responses xj on all EEG signals Xt
n of

target domain;
11: Update the mean and variance of the target domain for that

neuron using online algorithm: µt
j = E(xt

j), σ
t
j =

√
V ar(xt

j)

12: end for
13: for all neuron j in DNN do
14: Calculating BN output on all EEG signals Xt

n of target
domain for neuron j: yj = γj

xj−E(Xj)√
V ar(Xj)

+ βj

15: end for
16: Forward Propagation to get prediction Y t

n for the EEG input Xt
n

from target domain using the BN output calculating above;
17: return Y t

n ;

D. The Computational Complexity of the LightSleepNet

Figure 3 shows that there is a trade-off between the ac-
curacy (ACC) and the complexity of the network. The best
performance is achieved with a residual block number of 2.

Table I compares the ACC and computational complexity
between different cases. It shows the improvement by applying
group convolution, GAP layer, residual blocks and channel



4

shuffles. In the proposed work, the number of parameters of
one group convolution layer can be calculated as:

(k ∗ Cin

g
∗ Cout + Cout) ∝

1

g
(6)

As a result, the number of parameters could be reduced by g
times, where g is the number of groups. The FLOPs of that
layer can be calculated as:

(k ∗ Cin

g
∗ Cout + Cout) ∗

Lout

s
∝ 1

g ∗ s (7)

where Lout is the length of the output feature. s is the stride
size and k is the kernel size. According to eq.(7), the FLOPs
could also be reduced by g times. As a result, the group
convolution brings a 12 times reduction with a higher accuracy.

For the fully connected layer, the number of parameters and
FLOPs can be calculated as:

Nin ∗Nout +Nout (8)

where Nin and Nout are the counts of the input and output
features, respectively. An Nout = 5 is used for the sleep
staging in the proposed work. The using of the GAP layer
reduced the value of Nin from 96256 to 128. As a result,
a number of 480k parameters reduction and an improve of
3.24% accuracy improvement are achieved. The introduce of
channel shuffle features a 1.25% improvement of the accuracy.

TABLE I
COMPARISON OF THE ACC AND NUMBER OF PARAMETERS BETWEEN THE

PROPOSED WORK UNDER DIFFERENT CASES

Methods Parameters FLOPs ACC

LightSleepNet 43.08K 45.76M 77.42%
Group Residual Block*1+GAP 17.93K 26.88M 76.17%
Group Residual Block*2+GAP 43.08K 45.76M 77.42%
Group Residual Block*3+GAP 76.10K 70.80M 77.09%
Group Residual Block*4+GAP 126.41K 89.69M 77.11%

Traditional Residual Block*2+GAP 526.4K 496.45M 75.84%
Group Residual Block*2 523.72K 46.24M 71.14%

Group Block*2+GAP 43.08K 45.76M 74.35%
LightSleepNet Without Shuffle 43.08K 45.76M 76.17%
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Fig. 3. Performance Changing With The Number Of Block

It is noted that in Fig.3, the accuracy first increases with the
model depth and then decreases due to over-fitting. In order
to deal with the over-fitting issue, dropout layer, regulariza-
tion term and unlabeled data are used. In addition, a group
convolution and GAP layer based lightweight network is used
to control the model complexity. It integrates fewer model
parameters and features higher parameter efficiency.

III. EXPERIMENTAL RESULTS

The proposed model was evaluated using Sleep-EDF dataset
[23], which contains 20 healthy patients with overnight 100Hz-
sampled EEG records and corresponding sleep patterns based
on AASM. Only the Fpz-Cz channel was used for training
and testing. The single-channel Fpz-Cz with 20 fold cross-
validation was used for evaluation, where both nights from
each subject were used. In the test stage, there will be no
subjects who have already appeared in the training set.

There are 43.08K parameters in the proposed model. The
proposed light-weight model prevents the algorithm from
over-fitting. In addition, the model can be stored in on-chip
SRAM, which greatly reduces the power consumption in
reading/writing the memory. The calculation complexity is
45.76 MFLOPs. The proposed work is implemented on the
snapdragon 810 platform. It features a less than 1% occupation
of the CPU resources.

Table II illustrates the comparison between the proposed
LightSleepNet and highly-efficient convolution blocks in com-
puter vision in the terms of accuracy, the number of param-
eters, and the computational complexity. The block proposed
in IGCV1 [24], super separable convolution [25] and Time-
Distributed Deep CNN [17] was re-implemented for compari-
son purposes. The experimental results show that the proposed
work achieves the best in accuracy with a good trade-off in the
number of parameters. As the first and fourth rows in Table II
show, the proposed personalized adaptation methodology con-
tributes a 1.44% improvement for the task without additional
parameter and computation cost in inference. [10] proposed a
classical deep CNN architecture in sleep staging. However, the
accuracy performance is worse than most of the light-weight
architectures listed in Table II due to the over-fitting with the
Sleep-EDF dataset.

The proposed work is also compared with state-of-the-art
designs in Table III. [5] features a higher accuracy than the
proposed work, but it belongs to the non-independent dataset
splitting, in which, data of all subjects has been occurred in the
training set, which is equivalent to remove the influence of in-
dividual differences and it is not suitable for new subjects who
have never seen before. [13] achieves the best performance
in single-channel sleep staging. However, it is power hungry
while the computational complexity of the proposed work is
much lower, which makes the proposed work a better solution
for wearable devices. Furthermore, the proposed scheme could
be easily applied to EEG signal processing tasks where there
is no sufficient data for pre-training.

IV. CONCLUSION

This paper proposed LightSleepNet - a single-channel EEG
based, high accuracy personalized sleep staging architecture
with high parameter efficiency and low computational com-
plexity. The proposed framework can be implemented on
various mobile platforms with limited hardware resources.
It achieves a state-of-the-art overall accuracy of 83.8% with
only 45.76 MFLOPs computation and 43.08 K parameters.
The latency of the proposed framework is less than 30s for
sleep staging with an input of one 30s single-channel EEG
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TABLE II
COMPARISON OF THE ACC ,NUMBER OF PARAMETERS AND OMPUTATION COMPLEXITY

W N1 N2 N3 REMMethods Parameters FLOPs ACC Test Data TP FN TP FN TP FN TP FN TP FN
The proposed Method 43.08K 45.76M 78.86% 11012 1938 316 198 488 3495 821 1755 175 1278 549
LightSleepNet+AdaBN 43.08K 45.76M 78.05% 11012 1915 339 185 501 3495 821 1755 174 1242 585

LightSleepNet+Gradient Weighting 43.08K 45.76M 77.59% 11012 1915 339 205 481 3539 777 1639 290 1260 567
LightSleepNet 43.08K 45.76M 77.42% 11012 1848 406 164 522 3539 777 1716 213 1242 585
DeepCNN[10] 614.02K 22.07M 73.36% 11012 1645 609 89 597 3150 1166 1736 193 1443 384
IGCV1 big[24] 234.95K 208.02M 75.70% 11012 2028 226 178 508 3237 1079 1736 193 1151 676
IGCV1 small 40.13K 34.98M 74.42% 11012 1848 406 240 446 3150 1166 1678 251 1260 567

Super Separable Convolution[25] 8.26K 8.66M 74.90% 11012 1983 271 150 536 3323 993 1504 425 1278 549
Time-Distributed Deep CNN[17] 226.53K 654.72M 73.27% 11012 1938 316 253 433 2891 1425 1736 193 1268 559

TABLE III
COMPARISON WITH THE STATE OF THE ART USING EEG FPZ-CZ CHANNEL

Methods Dataset Test Data Overall Metrics Per-class F1-Score
ACC MF1 kappa W N1 N2 N3 REM

Proposed Method Sleep-EDF 42308 83.8 75.3 0.78 90 31 88 89 78
LightSleepNet Without Personalized Adaptation Sleep-EDF 42308 83.3 75.3 0.77 90 33 88 89 76
IEEE TNSRE17[10] Sleep-EDF 41950 82.0 76.9 0.76 85 47 86 85 82
ISCAS20[12] Sleep-EDF 41950 82.9 75.6 0.77 - 90 24 87 95 82
Arxiv19 [13] Sleep-EDF 41950 85.2 79.6 0.79 - - - - -
NCA17 [5] Sleep-EDF 15136 91.3 77.0 0.86 98 30 89 86 83
IEEE TNSRE18[14] Sleep-EDF 37022 81.44 72.2 - 81 40 85 76 79
EMBC18[15] Sleep-EDF 37022 82.6 74.2 0.76 90 33 87 86 75
IEEE TBE 18[16] Sleep-EDF 37022 81.9 73.8 0.74 76 32 87 87 91
BSN 19[17] Sleep-EDF 41950 83.5 - - 89 44 85 86 77

TABLE IV
PER-CLASS METRICS FOR THE LIGHTSLEEPNET

Class TP FN Sensitivity Specificity
W 7456 829 0.90 0.98
N1 644 2160 0.23 0.98
N2 15663 2136 0.88 0.91
N3 5075 628 0.89 0.98
REM 6559 1158 0.85 0.93

epoch. The proposed framework could be personalized for
new subject using unlabeled data without re-training, in which
the accuracy of LightSleepNet is improved without additional
training and computation cost.
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