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An L1-norm based Optimization Method for Sparse

Redundancy Resolution of Robotic Manipulators
Zhan Li and Shuai Li

Abstract—For targeted motion control tasks of manipulators, it
is frequently necessary to make use of full levels of joint actuation
to guarantee successful motion planning and path tracking. Such
way of motion planning and control may keep the joint actuation
in a non-sparse manner during motion control process. In order
to improve sparsity of joint actuation for manipulator systems, a
novel motion planning scheme which can optimally and sparsely
adopt joint actuation is proposed in this paper. The proposed
motion planning strategy is formulated as a constrained L1 norm
optimization problem, and an equivalent enhanced optimization
solution dealing with bounded joint velocity is proposed as well.
A new primal dual neural network with a new solution set
division is further proposed and applied to solve such bounded
optimization which can sparsely adopt joint actuation for motion
control. Simulation and experiment results demonstrate the
efficiency, accuracy and superiority of the proposed method for
optimally and sparsely adopting joint actuation. The average

sparsity (i.e., -‖θ̇‖p where θ denotes the joint angle) of the
joint motion of the manipulator can be increased by 39.22%
and 51.30% for path tracking tasks in X-Y and X-Z planes
respectively, indicating that the sparsity of joint actuation can be
enhanced.

Index Terms—Redundancy resolution, dynamic neural net-
work, kinematic control, sparsity

I. INTRODUCTION

In recent years, various manipulators have emerged to

facilitate humans to help improve their work efficiency and

quality of life [1], [2]. The solution for inverse kinematics

is a fundamental issue to find proper joint actuation con-

figuration to fulfill end-effector manipulation tasks before

utilization of operability of manipulators. However, strong

coupled nonlinearity always exists in the mapping between a

joint space and a Cartesian workspace of a manipulator. It is

rather difficult to handle this problem by obtaining analytical

solutions in the joint space level through directly solving

the coupled nonlinear equations which are used to describe

the kinematic characteristics of manipulators. Therefore, the

kinematic control problem in the joint space is converted into

a problem at a joint velocity level.

Some early works reveal the kinematic control solutions

can be directly obtained by solving the pseudoinverse of the

Jacobian matrix of a manipulator without any physical con-

straints. Such way of processing may lead to unexpected local

instability and even need more computational costs which are
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not afforded, but it still suffers from the drawback of neglect-

ing additional necessary performance indices (e.g., joint limits

or task-oriented constraints) with unexpected computational

burdens. Applying recurrent neural networks to solve motion

planning with additional optimization requirement can be a

promising route to achieve excellent optimization performance

for accurate motion control of manipulators [3], [4], [5]. For

instance, in [6], discrete zeroing neural network models were

reformulated as an equality-constrained quadratic program-

ming to perform kinematic control of manipulators. In [7],

an adaptive projection neural network was utilized to control

the manipulator with unknown physical parameters and have

shown promising tracking performance. In [8], the mobile

manipulator’s time-varying disturbances could be elegantly

suppressed by a robust zeroing neural-dynamics.

Towards accurate motion control of manipulators for adopt-

ing joint actuation in a sparse manner, it may be a feasible way

to propose a sparse redundancy resolution for manipulators

in the level of joint angular velocity. To achieve such goal,

the designed redundancy resolution scheme for manipulators

is supposed to be formulated as an L1-norm based sparse

optimization paradigm. However, currently there is almost

no related work on an L1-norm based sparse redundancy

resolution for manipulators. Motivated by these points, differ-

ent from conventional L2-norm based redundancy resolution

paradigms [9], [10], [11] for kinematic control of manipulators

in a non-sparse manner, this paper aims to make break-

throughs by proposing a redundancy resolution method which

is able to sparsely and optimally modulate joint actuation,

and a primal dual neural network for such sparsity-based

resolution scheme is developed. The contributions of this brief

are summarized as follows. 1) This brief proposes an L1-norm

based sparse redundancy resolution method for kinematic

control of manipulators with joint limits. 2) A new primal

dual neural network with a new solution set is proposed for the

L1-norm based sparse redundancy resolution with additional

bounded joint velocity. 3) Both simulation and experiment

results demonstrate the efficiency of the proposed L1-norm

based redundancy resolution for the manipulator with the

sparsity of the joint motion enhanced.

II. PROPOSED SPARSE REDUNDANCY RESOLUTION OF

MANIPULATORS

In this section, inspired by L1-norm based sparse paradigms

in signal processing [12], [13], [14], we propose to formulate

the sparse redundancy resolution of the manipulator into the

L1-norm based optimization problem.
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A. L1-based Optimization for Redundancy Resolution

In this brief, the following L1 norm (‖ ·‖1) based optimiza-

tion for redundancy resolution is proposed:

minimize ‖θ̇‖1

subject to Jθ̇ = ṙd

θ̇ ∈ Ω = {η− ≤ θ̇ ≤ η+}.

(1)

where θ denotes the joint angle variable of the manipulator,

J denotes the Jacobian matrix, rd denotes the desired path of

the end-effector, η− and η+ receptively denote the lower and

upper limits of joint velocity.

It is worth mentioning here that, L0-norm based optimiza-

tion is not strictly convex and can be seen as a NP-hard

computational problem, and thus L1-norm based optimization

is chosen as the sparse alternative to remedy the weakness

of using L0-norm based paradigm. As the velocity kinematics

equation is acting as a constraint on joint velocity rather than

joint angle or acceleration, the proposed sparse optimization

is focusing on joint velocity resolution and can be utilized for

velocity feedback control.

In order to solve the optimization problem (1), we need to

firstly define the following Lagrange function:

L = ‖θ̇‖1 + λT (Jθ̇ − ṙd) (2)

where λ ∈ R3 denotes the Lagrange multiplier vector.

By differentiating the Lagrange function above with respect

to θ̇ and λ, we have the following group of equations:
{

∂L

∂θ̇
= JTλ+ ∂‖θ̇‖1

∂θ̇
= JTλ+ sgn(θ̇)

∂L
∂λ

= Jθ̇ − ṙd
(3)

where sgn(θ̇) = [sgn(θ̇1), sgn(θ̇2), · · · , sgn(θ̇n)]
T with

sgn(θ̇i) =






1, if θ̇i > 0

0, if θ̇i = 0

−1, if θ̇i < 0

According to the design principle of primal dual neural

network [15], [16], the corresponding primal dual neural

network for solving (1) is constructed as follows:
{

ǫθ̈ = −θ̇ + PΩ(θ̇ −
∂L

∂θ̇
)

ǫλ̇ = Jθ̇ − ṙd
(4)

where ǫ > 0 denotes the parameter to scale the convergence,

and PΩ(·) denotes the linear piecewise projection function

with the solution set Ω, i.e.,

PΩ(z) =





z+, z > z+

z, z− ≤ z ≤ z+

z−, z < z−
. (5)

Due to the existence of sgn(θ̇) which is not smooth,

the primal dual neural network solver (4) may encounter

unexpected computation difficulties in the solution process and

has degraded convergence performance, so it is not a good

alternative for solving optimization problem (1) to achieve the

sparse redundancy resolution. In order to remedy this, we

propose to reformulate the optimization problem (1) in the

ensuring subsection.

Fig. 1. The partition of (αi, θ̇i) plane to construct projection P
Ωi

(·).

B. Enhanced Solution with Bounded Joint Velocity

To make the optimization problem (1) solved by the primal

dual neural network, we equivalently propose a new optimiza-

tion formulation:

minimize hTα

subject to Jθ̇ = ṙd

θ̇ ∈ Ω

(6)

where hT = [1, 1, · · · , 1], αT = [α1, α2, · · · , αn], and a new

solution set Ω = {θ̇ ∈ Ω and − α ≤ θ̇ ≤ α} is de-

fined. Optimization formulation (6) is the general optimization

paradigm which is ready to solve the L1-norm based sparse

optimization problem (1) with bounded joint velocity, through

additionally introducing the variable α to restrict the joint

velocity θ̇ simultaneously. Under the circumstances, the joint

velocity variable possess a preset boundary η− ≤ θ̇ ≤ η+ and

a dynamic limit −α ≤ θ̇ ≤ α.

In order to solve optimization problem (6), we have to

define the following Lagrange function for such enhanced

formulation:

L = hTα+ λT (Jθ̇ − ṙd). (7)

By differentiating the Lagrange function above with respect

to the unknown variables θ̇, α and λ, we would get the

following group of equations:






∂L

∂θ̇
= JTλ

∂L
∂α

= h
∂L
∂λ

= Jθ̇ − ṙd

. (8)

According to the aforementioned design procedure of the

primal dual neural network for solving optimization problems,

we can have the following new primal dual neural network

solver for the sparse optimization of redundancy resolution:





ǫ

[
θ̈
α̇

]
= −

[
θ̇
α

]
+ P

Ω

([
θ̇
α

]
−

[
∂L

∂θ̇
∂L
∂α

])

ǫλ̇ = Jθ̇ − ṙd

(9)

where the solution set cone Ω =
⋃n

i=1
Ωi with boundaries

η−i ≤ θ̇i ≤ η+i and −αi ≤ θ̇i ≤ αi.
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For the properties of the newly-proposed linear piecewise

projection function P
Ω
(·) with the new divided solution set Ω,

we have

P
Ω

([
θ̇
α

])
=

n⋃

i=1

P
Ωi
(

[
θ̇i
αi

]
) (10)

and its subparts can be expanded as follows:

P
Ωi

([
θ̇i
αi

])
=






[
θ̇i
αi

]
, |θ̇i| ≤ η+i and |θ̇i| ≤ αi

[
η+i
αi

]
, θ̇i ≥ η+i and αi ≥ η+i

[
−η+i
αi

]
, θ̇i ≤ −η+i and αi ≥ η+i

[
η+i
η+i

]
, αi ≤ η+i and θ̇i ≥ −αi + 2η+i

[
−η+i
η+i

]
, αi ≤ η+i and θ̇i ≤ αi − 2η+i

[
(θ̇i + αi)/2

(θ̇i + αi)/2

]
, |αi| ≤ θ̇i ≤ −αi + 2η+i

[
(θ̇i − αi)/2

(−θ̇i + αi)/2

]
, αi − 2η+i ≤ θ̇i ≤ −|αi|

[
0
0

]
, |θ̇i| ≤ −αi

(11)

with its new divided solution sets in the (αi, θ̇i) plane shown

in Fig. 1. So the linear piecewise projection operator P
Ωi
(·)

is based on the divided solution set Ωi to guarantee the

convergence of the optimization solver. As compared with

previous works [15], [16], this paper proposes a new linear

piecewise projection function with a new solution set Ω. The

new solution set Ω expands the original divided three solution

subsets with five more new ones.

C. Enhanced Solution without Joint Velocity Bounds

If the joint velocity bound θ̇ ∈ Ω = {η− ≤ θ̇ ≤ η+}
is not involved for the aforementioned enhanced optimization

formulation, the solution set Ω reduces to another new solution

set Ω̃. Thus the correspondingly the optimization problem (6)

reduces to

minimize hTα

subject to Jθ̇ = ṙd

θ̇ ∈ Ω̃.

(12)

The primal dual neural network solver (9) can be utilized to

solve optimization problem (12) with the new solution set Ω̃,

and the corresponding linear piecewise projection function for

such a solution set cone Ω̃ is

P
Ω̃i

([
θ̇i
αi

])
=






[
θ̇i
αi

]
, |θ̇i| ≤ αi

[
(θ̇i + αi)/2

(θ̇i + αi)/2

]
, θ̇i ≥ |αi|

[
0
0

]
, |θ̇i| ≤ −αi

[
(θ̇i − αi)/2

(−θ̇i + αi)/2

]
, θ̇i ≤ −|αi|

(13)
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Fig. 2. Circle path tracking performance in X-Y and X-Z planes of the
manipulator synthesised by the proposed motion control method which uses
part of the actuators.
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Fig. 3. Position errors of the end point of the manipulator for tracking
the desired circle path in X-Y and X − Z planes by the proposed sparse
optimization method.
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Fig. 4. Joint velocity of the manipulator resolved by the proposed method in
X-Y and X-Z planes, the joint velocity is limited by the set bounds.

Comparing the linear piecewise projections P
Ωi
(·) and P

Ω̃i

(·),
we can easily see that involvement of the joint velocity bounds

can make the solution set cone with more boundary lines to

divide the phase plane (αi, ηi). Optimization (12) without

joint velocity bounds can be regarded as the special case of

optimization (6) with joint velocity bounds.

III. RESULTS

A. Simulation Verification

In the simulation, the desired end-effector motion is con-

figured as a circle planned in X-Z and X-Y planes with its

radius being 0.12 m. The radius of the targeted circle path has

to be constrained by the manipulability index
√

det(JT J) to

preserve the reachability under fixed mechanism parameters in

the D-H table of the manipulator. The joint velocity bounds

for the manipulator is set as -0.3 rad/s and 0.3 rad/s.

1) Path Tracking: Fig. 2 shows the generated trajectory

by the proposed method. In this figure, the piecewise straight

lines in blue represent the body of the manipulator, and the

curves in red represent the trajectory of the end-point/effector.

It can be obviously seen that the generated trajectories of the

manipulator successfully both track the desired circle path.

Furthermore, Fig. 3 shows the position errors of the end-

point/end-effector of the manipulator for tracking the desired
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(c) Optimally adopting sparse joint
actuation in X-Z plane
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Fig. 5. Sparsity evaluation of the joints of the manipulator for motion control
in X-Y and X-Z planes.

circle path synthesised by the proposed method, and we could

evidently see that the errors can be reached to a level of

4 × 10−4 m in X-Y plane and a level of 3 × 10−4 m in

X-Z plane. These results show that, the accuracy of the

motion control for the manipulator model can be guaranteed by

the proposed sparse optimization method. As compared with

the results reported in previous works [15], [16], the motion

planning and control results in this work can achieve the same

level of tracking accuracy for the end-effector/end-point of the

manipulator. Fig. 4 shows the joint angular velocity resolution

by the proposed sparse optimization method in both X-Y and

X-Z planes. From Fig. 4(a), we can evidently see that, for

the motion control task in X-Y plane, joint velocity of Joint

5 is always turned down, joint velocity of Joint 2 is almost

turned down during the whole motion process, and actuation

of Joint 3 and Joint 6 is turned down in some time periods

(e.g., around 0 s-5 s and 10 s-17.5 s for Joint 3, around 4.5

s-10 s and 17 s-20 s for Joint 6). For the motion control task in

X-Z plane shown in Fig. 4(b), we can see that joint velocity

of Joint 5 and Joint 6 is turned down during the whole motion

process, joint velocity of Joint 1 and Joint 3 is turned down

in some time period (e.g., around 3 s-7 s and 16 s-19 s for

Joint 1, around 8 s-16 s and 17 s-29 s for Joint 3). Reviewing

the circle path tracking performance in Fig. 2 and Fig. 3, we

conclude that, with optimally adopting the joint actuation by

the proposed method, the circle path tracking task can still be

fulfilled with promising position error performance, although

some joints’ velocities are turned down for some periods.

2) Sparsity Evaluation: Joint sparsity comparisons are

made with and without the proposed method. The sparsity

metric is computed by the aforementioned index −‖θ̇‖p.

Fig. 5 shows the comparisons of sparsity metric −‖θ̇‖p
(p = 2, 1.5, 1, 0.8, 0.6, 0.4) with optimally adopting sparse

joint actuation and with using full joint actuation based on

the method in [16] which are without sparse optimization for

circle path tracking in both X-Y and X-Z planes. From the

figure, we can see that, after optimally adopting sparse joint

actuation by the proposed method, the sparsity is enhanced
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Fig. 6. Comparisons on the kinetic energy of the links between the proposed
method and the method without sparse optimization.

promisingly, especially when p = 0.4 is set. Table I

quantitatively shows the computed average sparsity in the two

cases. When optimally adopting sparse actuation of joints, the

average sparsity metric value is -5.19±2.45 and -3.17±1.27

in X-Y and X-Z planes respectively. Nevertheless, when full

actuation is used for all joints, the average sparsity metric

value is -8.54±3.34 and -6.51±2.23 in X-Y and X-Z planes

respectively. The average sparsity can be increased by around

39.22% and 51.30% in X-Y and X-Z planes respectively.

These results indicate that the proposed method can increase

the sparsity of joint angles when fulfilling the same circle path

tracking task. Fig. 6 shows the comparison results of the total

kinetic energy of the links of the manipulator system based on

the proposed sparse method in this paper and the method [16],

and we can see that the proposed method can achieve lower

level of kinetic energy variations.

TABLE I
AVERAGE SPARSITY OF THE MANIPULATOR SYSTEM DURING MOTION

CONTROL EXPERIMENTS

Desired path plane Optimally adopting sparse Using actuation of
for motion control actuation joint actuators all joints

X-Y plane -5.19±2.45 -8.54±3.34
X-Z plane -3.17±1.27 -6.51±2.23

B. Experiment Validation

In the experiment sessions, the tracking paths for the end-

effector are respectively set as the circle path with diameter

0.24 m in X-Y plane and X-Z plane. Figs. 7 and 8 show

the path tracking performance correspondingly. We could

obviously observe that, with utilizing the proposed sparse

redundancy resolution scheme, the end-effector/end-point of

the manipulator system can keep tracking the desired circle

path(s) in both X-Y and X-Z planes well with promising

accuracy. Fig. 8 further shows the position errors of the end-

effractor/end-point during path tracking tasks in both X-Y
and X-Z planes synthesised by the proposed method, we

can evidently see that the position errors in three dimensions

[Ex, Ey, Ez] are rather small (< 6 × 10−3 m). Fig. 9 shows

the joint angles from Joint 1 to Joint 6 i.e., θ resolved by

the proposed method in both X-Y and X-Z planes. In X-Y
plane, Joint 5’s angle is kept constant during the whole motion
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Fig. 7. Experimental path tracking performance in X-Y plane and X-Z
plane for the manipulator system.
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Fig. 8. Experimental position tracking errors in X-Y plane and X-Z plane
for the manipulator system.
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Fig. 9. Experimental joint angles in X-Y plane and X-Z plane for the
manipulator system.

process, the joint angles of Joint 3 and Joint 6 are keeping

constant in some periods, and Joint 3’s actuation is always kept

as a low motion level. In X-Z plane, the actuation of Joint

5 and Joint 6 is off during the whole motion process, the the

joint angles of Joint 1 and Joint 3 are keeping constant in some

periods. The experiment results demonstrate the efficiency of

the proposed L1-norm based method for motion planning and

control together with the low-level servo controller.

IV. CONCLUSION

In this brief, an L1-norm based optimization paradigm and

a corresponding new primal dual neural network have been

proposed for sparse redundancy resolution of manipulators.

Simulation and experiment results demonstrate the efficiency,

accuracy and superiority of the proposed method with sparsity

enhanced. For the future works, the extended works can

be developing anti-noise dynamic neural networks [17], [18]

for sparse redundancy resolution with robust performances.

Moreover, effective algorithms for Lp-norm (0 ≤ p < 1) based

sparse redundancy resolution which is not strictly convex are

required to be developed, by integrating sparse representation

methods using multivariate Laplace function or multivariate

Geman-McClure function [19].
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