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Minimum-Variance State and Fault Estimation for

Multi-Rate Systems

with Dynamical Bias

Yuxuan Shen, Zidong Wang and Hongli Dong

Abstract—This paper is concerned with the joint state and
fault estimation problem for a class of multi-rate systems \ith
dynamical bias. To reflect real practice, the multi-rate sanpling
is considered which allows the sensor sampling rate and theate
update rate to be different. The sensor is subject to the sens
fault that changes according to a dynamic equation. Insteadf
applying the traditional lifting technique, we introduce a time-
varying delay into the measurement equation so as to transfm
the multi-rate systems into single-rate ones. The aim of tlsi
paper is to develop a joint state and fault estimation algohm
with minimized estimation error covariance. The recursionof the
estimation error covariance is first derived, and appropriate esti-
mator gains are then characterized that minimizes the estiration
error covariance. A simulation example on the DC servo systa
is given to confirm the usefulness of the developed recursistate
and fault estimation algorithm.

Index Terms—Fault estimation, sensor fault, multi-rate sam-
pling, dynamical bias.

I. INTRODUCTION

of reasons such as sensor aging and random sensor failure.
Such a phenomenon, customarily known as sensor fault, would
largely degrade the estimation performance and it is tbezef
necessary to acquire the information of the sensor faut wit
hope to mitigate the impact from the sensor fault. Recently,
the fault estimation problems for SRSs with sensor faulehav
been widely investigated [3], [9]. In [5], the joint estiraat
problem for the state and the sensor fault has been studied
for discrete-time systems and, subsequently, a faultdote
controller design scheme has been proposed. Unfortunately
the joint state and fault estimation (JSFE) problem for MRSs
has received little attention despite its practical sigaifice,

and this gives rise to the main motivation of our current
investigation.

In practical systems, it is quite common that the system
noises consist of white noises and the strongly correlated
noises, where the latter are callemhdom biaseghat could

In the area of signal processing and control engineeringe either constant or dynamic [14]. As early as in 1990,

state estimation has been a long-standing research togic e random bias has been characterized by a dynamical
has received considerable research interest [1], [2]..[24] equation in [7] where the joint state and random bias es-
date, plenty of research results have been obtained on {fdgation problem has been considered. Thereafter, the stat
state estimation problems where the developed algorittams Gstimation problems for SRSs with random bias have received
be generally classified intf ., Kalman, set-membership andegnsiderable research attention [8], [10], [18]. For exmp

moving-horizon state estimation approaches [11]-{13}].[1 in [18], the state estimation problem has been studied for
In industrial systems such as aluminium electrolysis catid 3 class of two-dimensional systems with random bias and
power networks, owing to the diverse physical features gleasurement quantization, and a recursive state estimatio
the system components, it is often the case that the stgigorithm has been designed. Note that the corresponditey st

update rate is different from the sensor sampling rate, i.@stimation problems for MRSs with random bias have not been

the system is anulti-rate systen{MRS) [15]. For MRSs, the considered yet, and this constitutes another motivatiothisf
state estimation algorithms developed for single-ratéesys paper.

(SRSs) are no longer applicable, and this triggers the tecen
research attention on the state estimation algorithms REM  \1otivated by the above discussions, in this paper, we aim

[4], [16], [17], [20]. Up to now, most available results for, so\e the JSFE problem for MRSs subject to dynamical
MRSs have been obtained based on the traditional liftifg,s The main contributions of this paper atd:the JSFE

technique which leads to a high computation burden due dQiimation problem is, for the first time, studied for MRSs
the augmentation. with dynamical bias where the considered fault model isequit

In engineering practice, the measurement output of theo a1 2) different from the traditional lifting technig that
sensors are often subject to abrupt changes due to a var %n leads to high computational burden, a novel method
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is put forward to convert the MRSs into SRSs through the
introduction of a time-varying delay into the measurement
equation; and 3) the proposed JSFE algorithm is in the
recursive form and therefore suitable for online applicati

Notation The notation used here is fairly standa¢¥. and
G~! represent the transpose and the inverse of the matrix
respectivelyE{a} represents the expectation of the random
variablea. The Kronecker delta functiodi(m, n) is a binary
function that equalsg if m = n, and equal$) otherwise.
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[I. PROBLEM FORMULATION In the following, we introduce a new notation
Consider the following class of discrete-time systems: F(8) 2 f(n), In<s<lnii. (6)

x(s +1) = A(s)z(s) + B(s)w(s) + E(s)h(s) (1)  Similarly, one hasf(s) = f(s— ps) for I, < s < l,41. From

wherez(s) € R™ is the system state and(s) € R™ is the the definition of f(s), it is obvious that

process noise. The initial valug0) is a random variable with f(s), if I, <s+1<l
the meanz(0) and the covarianc& (0). h(s) € R™» stands fls+1)= G(s—=b+1)f(s), if s+1=1I,41.
for the random bias with the following dynamics: _ ) .

Then, f(s + 1) is further rewritten as

h(s+1)=H(s)h(s) + A(s 2 7 Y(s)F
(5+1) = H(s)h(s) + A(s) 2) Fls+1) = G(s)f(s)

whereA(s) € R™ is a zero-mean Gaussian sequence with the
covariance\(s) > 0. The initial valueh(0) of the random bias Where
is a zero-mean Gaussian random variable with the covarian 7 7
s) = (1=46(s+ 1,1, I+6(s+1,1,.1)G(s—b+1
I1(0). H(s), A(s), B(s), and E(s) are known time-varying &) ( +1)) ( +1)G( )

matrices with compatible dimensions. andé(-,-) is the Kronecker delta function. Furthermore, with
In this paper, the sampling period of the sensomi€ (6), 4(s) is rewritten as

lm+1—1lmn whereb > 1 is a positive integet.,, is the sampling o _ B B B

instant of the sensor withn being the order number of the yls) = Cls ps)w(‘s: ps) + D(s = ps)uls = ps)

sampling instant. The measurement model of the sensor is + F(s —ps)f(s). (1)

_ Remark 1:In this paper, to estimate the fault, the dynamics
Ylm) = Cllm)a(lm) + D(lm)ollm) + Flm) ) () of the fault are required to be known [6]. Nevertheless,npti
wherey(l,,,) € R™ is the measurement output and,,) € that the update period of the fault is it is impossible to
R™ is the measurement nois€i(l,,), D(l,,), and F'(I,,,) obtain the relationship betweef(s + 1) and f(s). To solve
are known time-varying matrices with compatible dimensionsuch a problem, in this paper, we introduce a new notation
f(lm) is the unknown sensor fault evolving according to [6]f(s) that satisfies (6), and the relationship betweén+ 1)
and f(s) is known. Then, the dynamics df(s) is obtained

Fllmt1) = Glm) f (lm) (4) and an estimator can be designed to estinfétg. Note that,
whereG(l,,,) is a known time-varying matrix with compatiblewith the help of (6), the estimate of the fauftl,,,) can be
dimensions. easily obtained from the estimate §fs).

The process noise(s) and the measurement noisg,,, ) From (1) and (7), it is obvious that the MRS is now
satisfy transformed into a SRS with the time-varying delay To
tackle the addressed JSFE problem, we design the estimator
E{w(s)} =0, E{w(s)w" (t)} = W(s)d(s,1), of the following form:
E{v(lmn)} = 0, E{v(lm)v" (In)} = V (lm)S (L, In) A
i(s+1) = As)i(s) + E(s)h(s) + Ka(s) (1)
whereW (s) andV (l,,,) are known time-varying matrices with
compatible dimensions. C(s —ps)i(s —ps) — F(s — Ps)f(s))
Assumption 1The random variables(0), ~(0), A(s), w(s),

andv(l,,,) are mutually independent. As +1) = H(s)h(s) + Ka(s )(y(s)_
In I|ter§1t_ure, a typ_lcal approa_ch to dealing with MRS_s is to O(s Vi (s — ps) — Fs — ps) f(s ))

use the lifting technique to obtain an augmented state eguat

with an increased state update period, which gives rise to f(3+ 1)=G(s )f(s)+K3( )( (5)—

heavy computational load. In this paper, instead of utitizihe .

lifting technique, we aim to reconstruct a new measurement C(s—ps)i(s—ps)— F(s—ps)f(s ))

equation with a decreased sampling period. Here, the zero- A

order hold strategy is adopted to compensate the measutemuwtherez(s) is the estimate of the statg(s), h(s) is the esti-

(8)
— ps

at the non-sampling instants of the sensor. mate of the bia®(s), f(s) is the estimate of (s), and K (s),
With the zero-order hold strategy, the actual measuremdit(s), K3(s) are the estimator gain matrices to be designed.
used by the estimator is Moreover, we sef:(0) = z(0) andh(0) = f(O) =0.
A _ _ Denoting the state estimation error@s{s) = x(s) — z(s),
9(s) 2 yln), In <8 <lnta the bias estimation error ag (s) £ h(s) — h(s), and the fault
with 7,, being the largest measurement sampling instant gRstimation error as;(s) £ f(s) — f(s), we have
is not Iarger thars andln+1 £, +0b. +1)=A B +E
Definep, £ s—1I,, (I, < s < l,41). Then, the measurement cals +1) =Als)es(s) + Bls)w(s) + Els)en(s)
y(s) is rewritten as - Kl(s)(C’(s — ps)ex(s — ps)
y(s) = C(s = ps)a(s — ps) + D(s = ps)v(s — ps) + D(s = ps)o(s — ps) + F(s = ps)ef(S))

+ F(s—ps)f(s—ps)- (5) en(s+1) =H(s)en(s) + A(s)
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— K»(s) (C(s — ps)ex(s — ps)
+D(s = po)uls = ps) + Fls = p,)es(s))
er(s+1) =G(s)es(s) = Ka(s) (Cls = pa)eals - py)

+D(s = po)ols = pa) + Fls = p.)es(s)).

Denotinge(s) = [ef(s) ef(s) e?(s)]T, we have the
following augmented system
(s +1) = A(s)e(s) — K(s)C(s — po)els = pa) + TA(5)
— K(s)D(s — ps)v(s — ps) + B(s)w(s)  (9)
where
A(s) & A(s) = K(s)F(s — ps),
B A(s) E(s) 0
A(sy£| 0 H(s) 0 |,
0 0 G(s)
K(s) 2 [KT(s) Kf(s) Ki(s)]",
Fls—p)2[0 0 F(s—py)], I2[0 1 0]"
B(s) 2 [BT(s) 0 0]",C(s—ps) 2 [C(s—ps) 0 0].

The aim of this paper is to design the estimator (8) such that

the estimation error covariance (EE€)s)
is minimized.

= Efe(s)e” (s)}

IIl. M AIN RESULTS
Lemma 1.The EECP(s+1) is calculated by the following
recursion:

P(s+1)

A(s)I"
(s)

(s)
(10)

VAT (s) + B(s)W (s)B” (s) +
(s)C ps)C" (s — ps
(s)D —ps)D" (s — ps) K
- P1(s) - Pa(s) — P35 (s)

=A(s)P(s IA
+ K (s)C(s — ps) P(s — VK
+ K(s)D(s = ps)V (s
P (s) —
where

321 (S) é
Po(s) &

(s — ps)}C'T(s - pS)KT(S)a
(s = ps)}D (s = ps) K7 (s).

/:l(s)IE{e(s)eT
A(s)E{e(s)vT

Proof: It is easily known from Assumption 1 and (9) that

(10) is true. Therefore, the proof is omitted here. |
From Lemma 1, we know that the calculation of the EE
needs the calculations 0¥, (s) and Z(s), for which some
preliminary results are presented as follows.
Lemma 2:0(s) = E{e(s)v” (s — ps)} is calculated by

for ps =0

11
for ps >0 (1)

_Tl (S)a
where
1—1

Ti(s) 2 (1—6(1,ps)) Zl:[ A(s —7)

CDs— pv
ps)V(S - Ps)-

=

x K (s
K(s—1)D(

(5 - Ps)

+ s —

the proof is complete.

Proof: From the definition ofps, we know thatp, takes
values in the sef0,1,2,...,b— 1} and

|

The proof of this lemma is divided in the following two
cases.

Case 1:ps = 0. For ps; = 0, it is obvious that

E{e(s)v” (s — ps)} = E{e(s)v" (s)} = 0.
Case 2:p, > 0. By introducing

for s =1,

ps—1+1, forl, <s<lnii.

A(t) £ E{K(t)C(t — pr)e(t — pe)v” (s — ps)
+ K(H)D(t — p)o(t — p)oT (s — po)},
we have
E{e(s)v” (s — ps)}

=A(s — 1)E{e(s — 1)vT (s — ps)} — A(s — 1)

_H (s = )E{e(s — p 0" (s — o)}

pe i—1

5(1,p) Y [LAls - )a

i=2 j=1

(s —1i) —

A(s—1).

Accordingly, what we need to do is to calculatgs — i)
(1 <4 < ps). From the definition ops, we know thats—p, =
ln. Forl <i < ps, one has

ln:s—ps<s—i§s—1:fn+ps—1<fn+1,

and therefores — i — ps_; = s — ps. FOri = py, it is obvious
thats —i—ps—; = s —ps. Accordingly,A(s—1i) (1 < i < py)
is rewritten as
A(s — i) :E{K(S - 7’)0(5 — ps)e(s — pS)UT(S — ps)
 +R(s—)D(s = paJu(s — po)o (s = p,)}
=K(s—14)D(s — ps)V (s — ps).

Therefore, one has

E{e(s)07(s — ps)} = — (1= 3(1,p)) S [ Als — )
i=2 j=1
I:(( i)D(s — ps)V (s — ps)
— K(s=1)D(s — ps)V (s — ps).

[ |
Remark 2:In Lemma 2, instead of simply applying the

elementary equality to avoid the calculationi®fe(s)v” (s —

ps)}, we have derived the exact form Bf e(s)v? (s —ps)}. It

is worth mentioning that the calculation Bf e(s)v” (s — ps)}

is nontrivial due to the existence of the time-varying deday
Lemma 3:The termQy(s) = E{e(s)eT (s — p,)} is recur-

sively calculated by

QQ (S) = {
where

To(s) 2 A(s — 1)Q(s — 1)

P(s),
TQ(S),

for ps =0

12
for ps >0 (12)
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—K(s—1)C(s — ps—1 — 1)P(s — ps—1 — 1). Remark 3:In this paper, the fault estimation problem is
concerned for a class of MRSs with dynamical bias. A novel
Proof: The proof of this lemma is similar to that of yethod is put forward to convert the MRSs into SRSs and

Lemma 2 and is therefore omitted here. ®  the proposed method has less computation complexity as
Theorem 1:The estimator gains that minimize the EEGompared to the lifting technique. First, in Lemma 1, the
P(s) are given as follows: recursion of the EEC is derived. Then, with the help of
Ki(s) = [I 0 O} K(s), (13) Lemmas 2-3,.the estimator gqins that minimize the. EEC as
_ well as the minimal EEC are given in Theorem 1. It is worth
Ky(s)=[0 I 0 If(s)’ (14) noting that both the state and the fault are well estimated wi
Ks(s)=1[0 0 I]K(s) (15) the proposed estimation algorithm.

where
IV. AN ILLUSTRATIVE EXAMPLE
K(s) £ ¥(s)07'(s), In the simulation example, we consider the JSFE problem
O(s) 2 F(s — ps)P(s)FT (s — ps) for a DC servo system [22] subject to random bias where the
~ = system parameters in (1)-(2) are given as follows:
+C(s — po)P(s — ps)CT (s — py) ystem p: | (1)-(2) are g
+ D(s— ps)V (s — ps) DT (5 — py) 1.12+0.3sin(s) 0.213 —0.333
- . A(s) = 1 0 0 |,b=2
+ F(s — ps)Q2(s)C" (s — ps) 0 1 0
~ T nil -
+C(s = ps) 2 () (s = ps) 0.45 0.26 0.12 + 0.2 sin(s)
+ F(s — ps)(s)DT (s — ps) E(s) = [0.43 0.33 4 0.2cos(s) 0.28 :
+ D(s — ps)QF (s)FT (s — ps), :0.33 0.34 0.25
U(s) 2 A(s)P(s)FT (s — ps) + A(5)20(s)CT (5 — ps 0.31 0.12 0.26 0.8
(#) () (s) 1()T )+ Al ) H(s)=10.37 021 034|,B(s)=|0|,F(ln) = H
A(s)0(s)D" (s — ps). 052 0.15 0.25 0
Moreover, the minimal EEC is given b [ i )
Y n s given by Cllm)=|, 2+511n(lm) ﬂ D(ly) = [8 ‘;ﬂ . A(s)=0.151.

P(s+1)=—U(s)0 1 (s)TT(s) + A(s)P(s) AT (s) L

+ B(s)W(s)BT (s) + IA(s)I7. The covariances of the process noisgs) and the measure-
ment noisev(l,,,) are 0.1 and 0.15, respectively. The initial
Proof: With the help of Lemmas 1-3, one has conditions are given ag(0) = [0.52 —0.56 0.55]T

P(s+1) —K( $)0(s)K " (s) + A(s)P(s
K(s)F(s — ps)P(s) A" (s
(S)P(S)FT(S—ps) K"
()W (s)B" (s) + TA(s
(8)Q22(s)C7 (s — ps) K

(5)C (s — ps)S23 (5) AT (5)
(8)21(s)D" (s — ps) K (5)
(8)D(s — ps)Q ()AT (s).

)AT (s)
)
(s

5)

I
(s)

)

;3'>| Udl

;3'>| ’le

’le

We are now ready to derive the estimator gains that mini-
mize the EEC. The EEQ@(s + 1) is rewritten as

P(s+1) =K (5)0(s)KT(s) — U(s )K—T( ) Fig. 1: Stater(s) and the estimate
— K(s)0"(s) + ( JP(s)A (3) In the simulation, the following sensor fault is considered
>, RT
_f—i(f)vgf o ()S)*) ”(‘()) Fl1) = Glln) £ (1)
- T with G(l,,) = 1.8sin(l,;,). With the given parameters, the
x (K(s) = ¥(s)07'(s)) estimator gainsK;(s) (¢ = 1,2,3) and the EECP(s) are
— WU(s)0 1 (s)TT (5) + A(s)P(s) AT (s) derived according to the proposed estimation algorithne Th
+ B(s)W(s)BT (s) + IA(s)I7. simulation results are shown in Figs. 1-3. Fig. 1 shaw)

(¢ = 1,2,3) and the corresponding estimates whe#és)
It is easily known that the EEQ(s 4+ 1) is minimized denotes theith element of the state(s). Fig. 2(a) depicts
by choosingK (s) as ¥(s)©~!(s). Noting the definition of the sensor faultf(l,,) and its estimate. It is known from
K(s), the estimator gains that minimize(s + 1) are derived Fig. 1 and Fig. 2(a) that the proposed estimation scheme
by (13)-(15). The proof is complete. B can estimate the system state and the sensor fault with a



FINAL VERSION

(a) The sensor fault and its estimate

(1]

(2]

(3]

(4

100
Time step (1)

Fig. 2: The fault estimation performance
(5]

(6]

(7]

(8]

e — ) 9]

[20]

Fig. 3: The mean-square error of the estimation a1

satisfactory accuracy. L&YISE;(s) (i = 1,2,3) denote the [12]
mean-square error of the estimationagfs), i.e., MSE;(s) =
LN (wi(s) — @:(s))”. The MSEq(s) (i = 1,2,3) are
plotted in Fig. 3 which further verify the estimation acotya [13!
of the developed fault estimation algorithm. The simulatio
results verify that the proposed estimation scheme is thdde4]
effective.

To further verify the fault estimation performance, let us

consider the abrupt fault described by (4) with [15]
1, I < 20;
G(lm) =< 15, 20<l, <26
1, 27 <. [16]

The fault and its estimate are shown in Fig. 2(b), from which
we can verify the effectiveness of the sensor fault estionati [17]

V. CONCLUSION (18]

In this paper, the fault estimation problem has been inves-
tigated for a class of MRSs with dynamical bias. To avoidg
the computational complexity from the lifting technique, a
novel method has been developed to transform the MRSs
into SRSs. Based on the transformed SRSs, the estimatot
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