
2266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 69, NO. 4, APRIL 2022

Efficient Majority Voting in Digital Hardware
Stefan Baumgartner , Graduate Student Member, IEEE, Mario Huemer , Senior Member, IEEE,

and Michael Lunglmayr , Member, IEEE

Abstract—In recent years, machine learning methods became
increasingly important for a manifold number of applications.
However, they often suffer from high computational requirements
impairing their efficient use in real-time systems, even when
employing dedicated hardware accelerators. Ensemble learn-
ing methods are especially suitable for hardware acceleration
since they can be constructed from individual learners of low
complexity and thus offer large parallelization potential. For clas-
sification, the outputs of these learners are typically combined by
majority voting, which often represents the bottleneck of a hard-
ware accelerator for ensemble inference. In this brief, we present
a novel architecture that allows obtaining a majority decision in
a number of clock cycles that is logarithmic in the number of
inputs. We show, that for the example application of handwritten
digit recognition a random forest processing engine employing
this majority decision architecture implemented on an FPGA
allows the classification of more than seven million images per
second, resulting in a speed-up factor of more than 29 compared
to the fastest state-of-the-art implementation considered.

Index Terms—Random forests, majority decision, classification,
field programmable gate array (FPGA), hardware acceleration.

I. INTRODUCTION

HARDWARE accelerators for machine learning algo-
rithms have become an important research topic in recent

years. For example, a large amount of research has been spent
on accelerators for neural networks, e.g., [1]–[8]. Alternatives
to neural networks seem to have been investigated to a lesser
extent. However, as it has been thoroughly demonstrated, e.g.,
in [9], alternative methods such as ensemble learning meth-
ods (e.g., random forests) can have inference performance
comparable to neural networks.

Ensemble learning uses multiple base learners (the
ensemble) whose outputs are combined to make a final
decision [10]. For classification algorithms, the learners’ out-
puts are typically combined by a majority decision. Famous

Manuscript received October 29, 2021; revised December 2, 2021; accepted
January 10, 2022. Date of publication January 18, 2022; date of current ver-
sion March 28, 2022. This work was supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universi-
ties for applied fundamental research for electronic based systems. This brief
was recommended by Associate Editor H.-G. Yang. (Corresponding author:
Stefan Baumgartner.)

Stefan Baumgartner and Mario Huemer are with the JKU LIT SAL
eSPML Lab and the Institute of Signal Processing, Johannes Kepler
University Linz, 4040 Linz, Austria (e-mail: stefan.baumgartner@jku.at;
mario.huemer@jku.at).

Michael Lunglmayr is with the Institute of Signal Processing, Johannes
Kepler University Linz, 4040 Linz, Austria (e-mail: michael.lunglmayr@
jku.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2022.3144047.

Digital Object Identifier 10.1109/TCSII.2022.3144047

techniques for ensemble learning methods are bootstrap aggre-
gation (also called bagging), which is used for so-called
random forests [11], or boosting [10]. From a hardware imple-
mentation perspective, using ensemble learning methods has
a variety of advantages. Members of this group often rely on
fundamental operations other than the scalar product (as neural
networks do), that can be implemented with less complexity in
digital hardware. Since multiple learners, typically operating
independently of each other on the data, are employed, such
methods have a high parallelization potential. The computa-
tionally more expensive inference operations of the learners
can be calculated in parallel if the available hardware resources
allow. The final bottleneck of the whole inference task is
then only the combination of the learners’ outputs. In this
brief, we describe and analyze an efficient architecture com-
bining the learners’ outputs by a majority vote. Majority
voting is an approach used for many applications, from
safety-critical/fault-tolerant systems [12] over histogram anal-
ysis in image processing [13] to feature selection for music
information retrieval [14]. Therefore, the presented work can
also be utilized in hardware architectures for such use cases.

This brief is structured as follows. In Section II, we dis-
cuss ensemble learning and one of its subgroups, namely
random forests, that are used in this brief. We advocate a
simple architecture suitable for parallel processing of multiple
trees in digital hardware. We then present a novel architecture
for majority voting in Section III. Combining these build-
ing blocks enables an efficient random forest acceleration, by
exploiting parallelism within its structure. We derive equations
for the required number of clock cycles to make a major-
ity decision as well as to fully process a random forest. In
Section IV, we show FPGA synthesis results demonstrating the
low area requirements and high clock speeds that are achiev-
able with this architecture. Finally, we present synthesis and
accuracy results for a full random forest engine incorporating
the majority decision block for the example of handwritten
digit recognition on the MNIST database [15]. These results
demonstrate the high inference speed that is achievable with
this architecture as, for this example, we were able to obtain
a 96% recognition rate with a processing speed that allows
classifying over 7 million 28 × 28 pixel images per second.

II. DECISION TREES AND RANDOM FORESTS

Random forests are a special case of ensemble learning
methods, where decision trees are employed as base learners.
A decision tree consists of levels of comparison nodes and a
final (leaf) level where the inference result is output. We will
consider only axis parallel binary trees since they are mainly
utilized for random forests. For inference, a tree is applied to
an input vector x. Starting from its root node, a decision tree

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9902-1036
https://orcid.org/0000-0002-3164-7232
https://orcid.org/0000-0002-4014-9681

BAUMGARTNER et al.: EFFICIENT MAJORITY VOTING IN DIGITAL HARDWARE 2267

is processed level by level, moving along its edges depend-
ing on the results obtained from the decision nodes [16]. Each
comparison node compares one coordinate of a p×1 input vec-
tor x with the comparison value of the current node. As this
results in splitting an area of R

p into two parts, we will call
the coordinate of a node splitting coordinate and the compari-
son value splitting value. In this brief, the splitting coordinates
and the splitting values are learned from training data by the
CART [11] algorithm for random forests.

A. State-of-the-Art on Tree Inference Hardware Accelerators

In [17], [18], implementations of tree inference structures
on FPGAs have been discussed. In these works, the main focus
was on building pipelined versions of tree accelerators rely-
ing on parallelized node implementations in logic. There, the
described versions range from accelerators using single node
hardware up to implementing all nodes in parallel. In the latter,
the parallelizing node comparisons and combining compari-
son results require a large amount of distributed logic and
distributed memory resources.

For random forest implementations, one has to process
multiple trees to obtain a classification result. This opens
the possibility of processing multiple trees in parallel, which,
according to the authors’ opinion, is preferable to parallelizing
the processing of a single tree. For this, we advocate the use
of a lightweight tree inference architecture, as discussed in the
next section. Although the structure is similar to the “Universal
Node Architecture” of [17], it is even more simplified and it
utilizes the Block RAMs of an FPGA for implementation. To
enable the simple structure shown in Fig. 1, we learned ran-
dom forests only comprised of balanced trees. This allows
using a tree node numbering scheme (shown on the left in
Fig. 1) where a child node has an address of either two times
the address number of the parent node (left child) or two times
the address number of the parent node plus one (right child;
the root address is one). Therefore, a simple transition from
one level of the tree to the next can be used, as shown in
Fig. 1. In contrast, the “Universal Node Architecture” of [17]
uses a more complex addressing scheme (with the advantage
that it can implement unbalanced trees that we did not use in
this brief).

For random forests, the classifications of the individual trees
have to be combined, typically using a (unweighted) majority
decision. As this represents a bottleneck, efficient hardware
acceleration of this task is crucial. An interesting approach to
obtain a majority vote in hardware is described in [19], [20].
There, multiple sorting networks are utilized to accomplish
the majority decision. However, the number of clock cycles
needed for sorting with the proposed sorting networks scales
linearly with the number of trees T in a random forest as well
as with the number of classes K: the complexity in terms of
the number of clock cycles is of O(T + K). Even with more
time-optimized sorting networks (that have a more compli-
cated structure), the number of clock cycles would still be of
O((log(T))2) [21]. Another majority voting hardware architec-
ture has been discussed in [22], reporting a number of required
clock cycles that grows linearly with the number of inputs. Our
majority decision block, which is detailed in the following,
has a clock cycle complexity of O(log(T)), which is clearly
beneficial for a large number of decision trees.

Fig. 1. Example tree with node numbers and tree inference architecture.

B. Accelerating Inference for Random Forests

When using an appropriate numbering of the nodes (as
depicted on the left in Fig. 1), starting at the root node with
number 1, the transition from a node of one level of a tree to
a node of a lower level can be implemented very efficiently
by a left shift of the node number followed by an increment
of one if the node comparison was true, or by no increment
otherwise. This leads to the architecture for tree inference that
is schematically shown on the right in Fig. 1. It consists of
two memories representing the tree (implemented as Block
RAMs on the FPGA), the split coordinate memory, and the
split value memory. The latter also contains the values of the
leaf nodes that are output as classification result y if the leaf
level is reached. The addresses of the memory entries cor-
respond to the node numbers of the trees. The simple node
address calculation hardware is depicted on the right of the
memories in Fig. 1. Due to the constant left shift when moving
down the levels of the tree, the addition of one can be imple-
mented by simply setting the least significant bit of the node
address. This structure allows processing one level of a tree
within three clock cycles (one clock cycle to get the outputs
of the tree memories, one clock cycle to access the corre-
sponding coordinate of x, and one clock cycle to perform
the comparison and update the node address). Although the
architecture shown in Fig. 1 is not directly pipelineable, the
simplicity of this structure easily allows parallel processing of
multiple trees in hardware (the number of trees that can be
implemented in parallel is mainly defined by the number of
available memories), which is beneficial for a random forest
scenario. This is also supported by the fact that in a random
forest typically the trees are different from each other. Thus,
for a pipelined implementation one might have to exchange the
tree parameters (the comparison values and the coordinates)
during inference, complicating the overall structure and poten-
tially emptying the pipeline. The proposed structure, however,
easily allows implementing 40 trees of height 14 in paral-
lel plus the majority decision architecture on state-of-the-art
FPGAs, as we demonstrate in Section IV-B.

III. MAJORITY DECISION

The majority decision part of a random forest maps a vec-
tor of T integer numbers (the class outputs of the individual
trees) to the number occurring most frequently. In Fig. 2 we
schematically show the proposed architecture for performing a
majority vote in hardware. As described below, the complexity
scales only logarithmically with T . However, as the drawing in
Fig. 2 shows, the area requirements for the proposed architec-
ture scale linearly with K. We will first describe the iterative
version of the architecture (as it is drawn) and then detail how
the architecture can be pipelined.

2268 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 69, NO. 4, APRIL 2022

Fig. 2. Architecture of the majority decision block.

A. Architecture

1) Iterative Architecture: In a first step, the T integer input
class values yi ∈ 0, . . . , K − 1, i = 0, . . . , T − 1 are decoded
into their one-hot representation, i.e., into vectors of length K
containing all ‘0’s but a ‘1’ at the yi-th position. Then, the
count of the members of each class in the set of input val-
ues should be determined. Hence, all bits at the j-th position,
j = 0, . . . , K − 1, of the one-hot vectors have to be summed
up. For this purpose, K parallel adder trees are employed.
That is, the first stage of every adder tree consists of �T

2 �
one-bit adders with an output bit width of two, while at its
last stage one �log2(T)�-bit adder is used. To maintain a high
clock frequency, registers (drawn in violet in Fig. 2) are intro-
duced after every stage of an adder tree. Every output of the K
adder trees is the count of the corresponding class in the set of
input class values. For further processing, the class counts are
represented as signed numbers and are input to the subtractors
(the left inputs of the subtractors are the subtrahends).

These class counts serve as the initial values of the registers
feeding the K parallel subtractors, shown below the adder trees
in Fig. 2. The residual part of the circuit shown in Fig. 2 is
used to iteratively subtract the most significant ‘1’ bit of all
class counts (determined by the OR gates and the leading one
detector - LOD) from these counts individually. For this, only
those counts that are still positive will be considered (AND
gates with negated inputs from the sign bits). This will be done
until all class counts are negative. The index of the last non-
negative class count1 identifies the class that was output by
the learners with maximum frequency. This number is output
by the encoder at the bottom in Fig. 2. As one is interested
in the class number of the cycle before all class counts are
negative, the encoder’s output is delayed by a register stage.

2) Pipelined Architecture: The architecture described in the
last section works in an iterative manner, since the adder tree

1In case of a draw the class with the highest class number is the output
class.

output values are decreased iteratively until all values are neg-
ative, which might take up to �log2(T)� + 1 iterations. Thus,
a majority decision cannot be made at every clock cycle.
In many application scenarios, this is not a problem, since
not at every clock cycle classification results from e.g., deci-
sion tree classifiers of a random forest are available, which is
also the case for our random forest implementation. However,
in some scenarios, a pipelined majority decision architecture
might be needed and thus we make slight adaptions such that
the proposed architecture can provide a majority decision at
every clock cycle. That is, the iterative subtraction of the adder
tree output values by the LOD output values is “unfolded” to
�log2(T)� stages. In each stage, one LOD decision and K par-
allel subtractions take place. If all sign bits in a stage are ‘1’,
the outputs of the previous stage are passed to all following
stages, discarding their outputs.

B. Analysis

In the following, we consider the number of clock cycles
that are needed to make a majority decision with the archi-
tectures described in Section III-A. Since a decoder is a
low-complexity block, no registers between decoders and
adder trees are introduced. The K parallel adder trees consist
of �log2(T)� adder stages, and thus �log2(T)� clock cycles
(one might reduce this number by combining multiple stages
of low-complex adders in one clock cycle) after the input valid
strobe the class counts are available at the outputs of the adder
trees. For the iterative architecture described in Section III-A1,
the required number of clock cycles can be determined as
follows. The adder tree results are stored in registers before
the iterative subtraction of the class counts starts, which adds
another clock cycle. Given the stored class counts in the regis-
ters, the residual number of clock cycles is equal to the number
of ‘1’ bits in the bit pattern of the maximum class count’s value
plus one cycle to make all count values negative. The best case
is, when the maximum count is a power of two, giving a lower
limit of the overall required number of clock cycles for the
majority decision

Niter,min = �log2(T)� + 3. (1)

The worst case occurs, when the binary maximum class count
contains only ‘1’ bits at bit positions behind the most signifi-
cant ‘1’ bit (i.e., the maximum class count is a power of two
minus one). As the maximum number of ‘1’ bits is �log2(T)�,
the upper bound of the overall required number of clock cycles
for the majority decision is

Niter,max = �log2(T)� + �log2(T)� + 2. (2)

Since only a part of the whole architecture works itera-
tively, there is no need to wait until the majority decision has
finished feeding the next input values into the architecture.
This means, every �log2(T)� + 1 clock cycles a new majority
decision can be started, which guarantees that the proposed
iterative architecture works properly for all constellations of
input values.

For the pipelined version of the majority decision architec-
ture detailed in Section III-A2, the number of needed clock
cycles is constant:

Npipe = �log2(T)� + �log2(T)� + 1. (3)

BAUMGARTNER et al.: EFFICIENT MAJORITY VOTING IN DIGITAL HARDWARE 2269

Fig. 3. Synthesis results for the iterative architecture.

Here, the worst case for the maximum class count has to be
assumed, but the iterative subtraction of the class counts can
in this case already be abandoned when all values but one are
negative. However, this is only an initial delay and afterward
a new majority decision is available at every clock cycle.

IV. RESULTS

A. Synthesis Results for the Majority Decision Block

In the following, we present the synthesis results
of the proposed majority decision block for an Altera
Stratix V 5SGXEA7 FPGA. To gain insight into how the
number of inputs T and classes K influence the restricted maxi-
mum clock frequency fmax and the number of required adaptive
logic modules (ALMs) required, syntheses are conducted for
different T and K, varying from 4 to 512 and 2 to 500, respec-
tively. The obtained results for the iterative architecture are
shown in Fig. 3. Especially for more than two classes, it can
be observed that fmax is only slightly affected by the number
of inputs T above around 60 inputs. Obviously, the number
of classes K has the larger influence on fmax. The number of
ALMs needed scales linearly with T and K and even a major-
ity decision block for 500 classes and 512 inputs fits into the
specified FPGA (199795 ALMs are required for this setup,
which corresponds to a logic utilization of 85 %).

The synthesis results for the pipelined architecture are plot-
ted in Fig. 4. It can be observed that the behavior of the
obtained curves is similar to that of the iterative architec-
ture. However, the maximum clock frequency of the pipelined
architecture for a specific setup (fixed T and K) is significantly
lower than the corresponding one of the iterative architecture.
Furthermore, the number of ALMs required for the pipelined
architecture is higher and for T = 512 inputs and K = 500
classes, the design no longer fits into the FPGA.

B. Application Example: Handwritten Digit Recognition

In this section, we describe results for a random forest pro-
cessing engine comprised of multiple instances of the tree
processing units as shown in Fig. 1 and an instance of the
majority decision unit. Processing of a tree with l levels
of decision nodes followed by one level of terminal nodes
requires 3l + 1 clock cycles (three clock cycles per level for

Fig. 4. Synthesis results for the pipelined architecture.

the processing of a decision node and one clock cycle to output
the value of the terminal node as y). Assuming that T trees
can be processed in parallel in digital hardware, and combined
with the iterative majority decision architecture, this leads to
a worst-case number of clock cycles of

3l + �log2(T)� + �log2(T)� + 3 (4)

to finish the classification of an input vector x using a random
forest of T trees.

We synthesized the described architecture for a random for-
est trained on the MNIST handwritten digit database [15]. For
this, we used 40 trees and 14 levels of decision nodes per
tree. Each tree of the random forest has been learned with a
random selection of 75% of the 60000 training images. To
obtain the splitting coordinates, only

√
784 = 28 of the 784

coordinates (again selected randomly) of each image (28 × 28
pixels) have been allowed to be selected to learn the best split-
ting coordinates, as it is typical for random forests [16]. This
allowed obtaining a classification performance on the MNIST
test set (10000 images) of 96% correctly classified digits. For
reproducibility, we uploaded the contents of the tree mem-
ories to [23]. Although this performance is below the best
classification performances described in the literature [15], it
is comparable to the state-of-the-art of hardware architectures
for this problem in terms of inference accuracy. When calcu-
lating the required number of clock cycles using (4) for this
use case one obtains 3 ·14+�log2(40)�+�log2(40)�+3 = 56
clock cycles for the classification of a single image. However,
assuming that processing a tree requires more clock cycles
than the majority decision, one can input new data vectors
x already after tree processing is finished. That is, after the
56 clock cycles for the first classification one can obtain new
classifications every 3 · 14 + 1 = 43 clock cycles.2 Tab. I
shows results after placement and routing. As one can see
from Tab. I, besides the number of block RAM bits, the hard-
ware requirements of the random forest architecture using the
proposed majority decision block are very low. The block
RAM bits are used to store the vectors x as well as the split
coordinates and the split values for each tree. The memory
is typically also the limiting factor for this architecture for

2The specified timing is valid only for the described architecture not
including the time required for the data handling.

2270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 69, NO. 4, APRIL 2022

TABLE I
LITERATURE REPORTS ON MACHINE LEARNING HARDWARE FOR MNIST

larger problem sizes. The authors would like to point out
that the main aim was not to achieve the best classification
performance, but to demonstrate the inference speed that is
achievable with this architecture. For the described problem,
the architecture is able to classify more than seven million
images per second while still maintaining a, as we think,
decent classification performance. Furthermore, we want to
point out that the used random forest was applied directly
on the image vectors without using any pre-processing at all.
This demonstrates the potential of the proposed random forest
architecture. A comparison with state-of-the-art implementa-
tions of hardware accelerators for the MNIST application is
shown in Tab. I. Although some of the compared methods
show a better classification performance for the problem at
hand, the presented architecture is about 30 times faster than
the fastest state-of-the-art implementation used for compari-
son. Among the compared works, only [3] reported on power
consumption. Based on the reported figures, one can calculate
an average power consumption of approximately 1.6 W for the
implementation described in [3]. We used Altera/IntelFPGA’s
“PowerPlay Early Power Estimator” to estimate a power
consumption of 1.5 W for our implementation.

V. CONCLUSION

We presented a novel hardware implementation for finding a
majority decision in digital hardware. For this architecture, the
number of required clock cycles for a majority vote depends
logarithmically on the number of its inputs. We analyzed the
number of clock cycles for iterative and pipelined variants
of the architecture. Furthermore, we showed synthesis results
demonstrating the resource requirements as well as the obtain-
able clock frequencies for different problem sizes. Finally, we
demonstrated the capabilities of our approach for majority vot-
ing in hardware in combination with a low complexity tree
inference architecture. We applied the resulting random forest
hardware implementation to the MNIST dataset and demon-
strated that more than seven million classifications per second
are possible on the utilized FPGA.

3Not reported.

REFERENCES

[1] M. Papadonikolakis and C.-S. Bouganis, “A novel FPGA-based SVM
classifier,” in Proc. Int. Conf. Field-Program. Technol., Beijing, China,
2010, pp. 283–286.

[2] S. Mujawar, D. Kiran, and H. Ramasangu, “An efficient CNN archi-
tecture for image classification on FPGA accelerator,” in Proc. 2nd Int.
Conf. Adv. Electron. Comput. Commun. (ICAECC), Bangalore, India,
2018, pp. 1–4.

[3] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast and
energy-efficient SNN processor with adaptive clock/event-driven com-
putation scheme and online learning,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 4, pp. 1543–1552, Apr. 2021.

[4] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-
Mompeán, and A. Rosado-Muñoz, “A novel systolic parallel hardware
architecture for the FPGA acceleration of feedforward neural networks,”
IEEE Access, vol. 7, pp. 76084–76103, 2019.

[5] X. Chang, H. Pan, W. Lin, and H. Gao, “A mixed-pruning based frame-
work for embedded convolutional neural network acceleration,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4, pp. 1706–1715,
Apr. 2021.

[6] T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance CNN
accelerators based on hardware and algorithm co-optimization,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 1, pp. 250–263,
Jan. 2021.

[7] J. Wang, J. Lin, and Z. Wang, “Efficient hardware architectures for deep
convolutional neural network,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 6, pp. 1941–1953, Jun. 2018.

[8] A. A. Gilan, M. Emad, and B. Alizadeh, “FPGA-based implementa-
tion of a real-time object recognition system using convolutional neural
network,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 4,
pp. 755–759, Apr. 2020.

[9] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we need hundreds of classifiers to solve real world classification
problems?” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133–3181,
Jan. 2014.

[10] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms.
Cambridge, MA, USA: MIT Press, 2012.

[11] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[12] B. Parhami, “Voting algorithms,” IEEE Trans. Rel., vol. 43, no. 4,
pp. 617–629, Dec. 1994.

[13] K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on his-
togram analysis utilizing the cloud model,” Comput. Math. Appl., vol. 62,
no. 7, pp. 2824–2833, 2011.

[14] G. Tzanetakis and P. Cook, “Musical genre classification of audio sig-
nals,” IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302,
Jul. 2002.

[15] Y. LeCun, C. Cortes, and C. Burges. “MNIST Handwritten Digit
Database.” 2010. [Online]. Available: http://yann.lecun.com/exdb/mnist

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning (Springer Series in Statistics), 2nd ed. New York, NY, USA:
Springer, 2009.

[17] J. R. Struharik, “Implementing decision trees in hardware,” in Proc.
IEEE 9th Int. Symp. Intell. Syst. Informat., Subotica, Serbia, 2011,
pp. 41–46.

[18] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis,
“Pipelined decision tree classification accelerator implementation in
FPGA (DT-CAIF),” IEEE Trans. Comput., vol. 64, no. 1, pp. 280–285,
Jan. 2015.

[19] M. Barbareschi, S. Del Mario Prete, F. Gargiulo, A. Mazzeo, and
C. Sansone, “Decision tree-based multiple classifier systems: An FPGA
perspective,” in Proc. 12th Int. Workshop Multiple Classifier Syst.
(MCS), 2015, pp. 194–205.

[20] M. Barbareschi, S. Barone, and N. Mazzocca, “Advancing synthesis of
decision tree-based multiple classifier systems: An approximate com-
puting case study,” Knowl. Inf. Syst., vol. 63, no. 6, pp. 1577–1596,
2021.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

[22] G. B. Hacene, V. Gripon, N. Farrugia, M. Arzel, and M. Jezequel,
“Efficient hardware implementation of incremental learning and infer-
ence on chip,” in Proc. 17th IEEE Int. New Circuits Syst. Conf.
(NEWCAS), Munich, Germany, 2019, pp. 1–4.

[23] M. Lunglmayr, “MNISTRF.” Accessed: Oct. 28, 2021. [Online].
Available: https://github.com/mlunglma/MNISTRF

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

