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Quadrature Filter Approximation for Reconstructing
the Complex Envelope of a Bandpass Signal

Sampled Directly with a Two-Channel TIADC
Mansoor Wahab, Student Member, IEEE, and Bernard C. Levy, Life Fellow, IEEE

Abstract—A general and flexible technique is proposed for
sampling the complex envelope of a bandpass signal by using
a nonuniformly interleaved two-channel analog-to-digital con-
verter (TIADC). The signal is sampled directly without any
demodulation operation, but the two sampling channels are not
uniformly interleaved, since some TIADC timing offsets are
rendered forbidden. The proposed complex envelope sampling
scheme requires the implementation of two digital FIR filters
and a discrete-time modulator. Quadrature sampling, a special
case that assumes certain parameter relations, is investigated as
an approximation technique. Computer simulations are presented
and illustrate a -57dB mean-square error (MSE) can be achieved
via quadrature approximation for sufficiently large filter orders.

Index Terms—Bandpass sampling, direct sampling, quadrature
sampling, software defined radio, time interleaved A/D converter.

I. INTRODUCTION

Due to their lower hardware complexity, direct bandpass
sampling front ends have become attractive for software de-
fined radio and radar applications. However, the implemen-
tation of flexible high-resolution bandpass sampling systems
presents some challenges. Wide bandwidth sample and hold
(S/H) circuits [1] are required for sampling signals located in
high frequency bands. Moreover, if a single ADC is used, and
B represents the occupied bandwidth of the signal of interest
(which differs from its maximum frequency), alias-free recon-
struction of the bandpass signal is not guaranteed for all sam-
pling frequencies Ωs above the Nyquist frequency 2B [2], [3],
[4, Sec. 6.4]. In addition to being greater than 2B, Ωs needs to
satisfy certain conditions which depend on the location of the
frequency band occupied by the bandpass signal. This creates a
significant challenge for software defined radio receivers since
different sampling frequencies need to be selected for signals
in different bands, even if they have the same bandwidth.
To overcome this additional constraint, Kohlenberg proposed
second-order sampling, i.e. time-interleaved sampling, where
two separate ADCs operating with a time skew sample the
signal with frequency Ω′s = Ωs/2. In this case, except for
certain forbidden values of the timing offset between the two
ADCs, the bandpass signal can be reconstructed from the two
time-interleaved sample sequences for all Ωs above 2B. This
result was extended later by Coulson and others [5], [6] to the
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case where M time-interleaved ADCs operating at Ωs/M are
used to sample the bandpass signal.

A special case of Kohlenberg’s second-order bandpass sam-
pling called quadrature sampling was first proposed by Grace
and Pitt [7] and later investigated in detail by Brown [8], [9].
The sub-ADC sampling rate is chosen as an integer fraction
of the carrier frequency, while the timing offset is equal to a
quarter of the carrier period plus possibly an integer multiple
of the carrier period. Quadrature sampling is highly appealing
since the data sequences generated by the sub-ADCs are the
sampled in-phase and quadrature (I and Q) signal components,
i.e., the sampled complex envelope of the signal.

In this brief we consider the computation of the sampled
complex envelope of a bandpass signal from the sequences
produced by a two-channel time-interleaved ADC (TIADC)
with timing offset dT ′s, where 0 < d < 1 and T ′s = 2π/Ω′s de-
notes the sub-ADC sampling period. Unlike the sub-sampling
ADC architecture [10], RF Bandpass ∆Σ ADC [11], and
spectral alias spreading [12] technique that all tie the sampling
rate to the carrier frequency, our method only requires the
sampling frequency Ωs to be above 2B. Furthermore, no
assumption is made about the carrier frequency Ωc, signal
bandwidth B, sampling frequency Ωs and timing skew d,
except that Ωc > B/2, which ensures that the signal con-
sidered is a bandpass signal. It is shown that the evaluation of
the sampled complex envelope requires the implementation
of two FIR filters and a digital modulator. Certain timing
skews are forbidden, and a precise characterization of these
forbidden skews is provided. Reconstruction filters in the case
of quadrature sampling are shown to have easy forms and
are used in the estimation of the complex envelope when the
carrier frequency is not exactly an integer multiple of the sub-
ADC sampling rate as required for quadrature sampling.

The brief is organized as follows. The sampling model is
described in Section II. This model is used in Section III to
compute the sampled complex envelope. Section IV presents
sampling and reconstruction for quadrature sampling. Simula-
tions assessing the performance of envelope reconstruction via
quadrature approximation are illustrated in Section V. Finally,
Section VI provides concluding remarks.

II. COMPLEX ENVELOPE SAMPLING MODEL

Consider the bandpass signal

xc(t) = ac(t) cos(Ωct)− bc(t) sin(Ωct)

= <[cc(t)e
jΩct] = |cc(t)| cos(Ωct+ ∠cc(t)) , (1)
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where
cc(t) = ac(t) + jbc(t) (2)

denotes the complex envelope of xc(t) and the in-phase and
quadrature components ac(t) and bc(t) are baseband signals
with bandwidth B/2. If the carrier frequency Ωc > B/2 (it is
in general much larger), the Fourier spectrum Xc(jΩ) of xc(t)
is contained in two disjoint positive and negative frequency
bands [ΩL,ΩH ] and [−ΩH ,−ΩL] with ΩL = Ωc − B/2 and
ΩH = Ωc + B/2, so that the occupied bandwidth of xc(t)
is ΩH − ΩL = B. Unlike conventional heterodyne radar or
communications receivers [13] which convert xc(t) to a lower
IF frequency, and correlate it with two quadrature IF oscillators
to obtain the sampled in-phase and quadrature components, we
consider here a direct bandpass sampling receiver where two
time-interleaved ADCs sample xc(t) as shown in Fig. 1.

Fig. 1. Time-interleaved sampling of bandpass signal xc(t).

T ′s denotes the sampling period of the sub-ADCs, which
have therefore sampling frequency Ω′s = 2π/T ′s = Ωs/2,
where Ωs denotes the sampling frequency of the overall ADC.
It is assumed that Ωs > 2B, or equivalently Ω′s > B. The
timing offset between the two ADCs is D = dT ′s with timing
skew 0 < d < 1. For d = 1/2, the combination of the two sub-
ADCs forms a uniform ADC with sampling period Ts = T ′s/2,
but for d 6= 1/2, the overall ADC has a nonuniform but
periodic sampling pattern. Note also that the use of a timing
skew d 6= 1/2 implies that that the sub-ADCs cannot share
the same S/H. Finally, it is assumed that both channels are
matched in terms of gain and bandwidth and that there is no
timing skew mismatch.

Let

` = round
(Ωc

Ω′s

)
, (3)

so that Ωc belongs to the frequency band [(` − 1/2)Ω′s, (` +
1/2)Ω′s]. Since this frequency band corresponds to the location
of the `-th image copy of a sampled baseband signal, it is
referred to here as the `-th image band. In the following it
is assumed that ` ≥ 1, so that the signal xc(t) is a bandpass
signal. If we consider the discrete modulation frequency

ωb = ΩcT
′
s mod 2π =

(Ωc
Ω′s
− `
)

2π , (4)

so that −π < ωb ≤ π, the sampled sequence x1(n) can be
expressed as

x1(n) = xc(nT
′
s) = <{c(n)ejωbn} (5)

where c(n) = cc(nT
′
s) denotes the sampled complex envelope.

Similarly by observing that

ej(n−d)ΩcT
′
s = ej(n−d)(ωb+2π`) = ejωb(n−d)e−j2π`d

we can express the sampled sequence x2(n) as

x2(n) = xc((n−d)T ′s) = <{c(n−d)ejωb(n−d)e−j2π`d}. (6)

In this expression c(n− d) is a shorthand notation for

c(n− d) = f(n) ∗ c(n) (7)

where ∗ represents the discrete convolution operation and

f(n) =
sin(π(n− d))

π(n− d)
(8)

is the impulse response of the periodic fractional delay filter
which can generally be expressed as

F (ejω) = e−j(ω−q(ω))d (9)

for all ω, where

q(ω) = k2π for (2k − 1)π ≤ ω < (2k + 1)π

represents the quantized value of ω produced by an infinite
quantizer with step size 2π.

The Fourier transform of sequence

s(n) = c(n− d)ejωb(n−d)e−j2π`d (10)

appearing in (6) is given by

S(ejω) = F (ej(ω−ωb))C(ej(ω−ωb))e−j(ωb+2π`)d

= F (ejω)G(ejω)C(ej(ω−ωb)) , (11)

where

C(ejω) =

∞∑
n=−∞

c(n)e−jωn (12)

denotes the discrete-time Fourier transform (DTFT) of c(n)
and the filter

G(ejω)
4
=

F (ej(ω−ωb))

F (ejω)
e−j(ωb+2π`)d

= e−j(q(ω)−q(ω−ωb))de−j2π`d (13)

is a piecewise constant frequency dependent phase shift. For
ωb > 0, it can be expressed as

G(ejω) =

{
e−j2π(`+1)d −π ≤ ω < −π + ωb
e−j2π`d −π + ωb ≤ ω < π ,

(14)

and for ωb < 0, we have

G(ejω) =

{
e−j2π`d −π ≤ ω ≤ π + ωb

e−j2π(`−1)d π + ωb < ω < π .
(15)

Since the impulse response f(n) of fractional delay filter
F (ejω) is real, the discrete-time model (5)–(6) can be repre-
sented in block diagram form as shown in Fig. 2. In this model,
F (ejω) describes the relative timing skew between the two
sub-ADCs, whereas the filter G(ejω) depends on the image
band index ` of Ωc and its relative location ωb within this
band. Thus, from a software defined radio perspective, G(ejω)
changes if the frequency band of the signal of interest varies,
but F (ejω) stays the same.
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Fig. 2. Discrete-time bandpass sampling model

III. COMPLEX ENVELOPE COMPUTATION

We consider the problem of recovering c(n) from x1(n)
and x2(n). Note first that since c(n) is complex, C(ejω) is
devoid of symmetries, so knowledge of C(ejω) over the entire
frequency band [−π, π] is needed to recover c(n). The DTFTs
of x1(n) and x2(n) are given by

X1(ejω) =
1

2
[C(ej(ω−ωb)) + C∗(e−j(ω+ωb))] (16)

and

X2(ejω) =
F (ejω)

2
[G(ejω)C(ej(ω−ωb))

+G∗(e−jω)C∗(e−j(ω+ωb))] . (17)

In each of these expressions, the superposition of C(ej(ω−ωb))
and C∗(e−j(ω+ωb)) makes it impossible to recover each of
these functions separately from either X1(ejω) or X2(ejω)
alone. But (16) and (17) can be written together in matrix
form as[

X1(ejω)
F−1(ejω)X2(ejω)

]
= M(ejω)

[
C(ej(ω−ωb))
C∗(e−j(ω+ωb))

]
,

(18)
where the matrix

M(ejω) =
1

2

[
1 1

G(ejω) G∗(e−jω)

]
(19)

is invertible as long as its determinant is nonzero. We find

D(ejω) =
j

2
sin(2π`d)

for 0 ≤ |ω| ≤ π − |ωb|, and

D(ejω) =
j

2
ejπsgn(ω)d sin(π(2`+ sgn(ωb))d)

for π − |ωb| < |ω| < π, where sgn(ω) denotes the sign of
ω. Accordingly, the determinant D(ejω) will be nonzero as
long as the timing skew d is such that both sin(2π`d) and
sin(π(2`+ sgn(ωb))d) are nonzero. The values

dim =
m

2`
(20)

with m integer such that 1 ≤ m ≤ 2`− 1, and

deq =
q

2`+ sgn(ωb)
(21)

with q integer such that 1 ≤ q ≤ 2`+ sgn(ωb)− 1, form the
forbidden timing skews. When M(ejω) is invertible for all ω,
we obtain

C(ej(ω−ωb)) = H1(ejω)X1(ejω) +H2(ejω)X2(ejω) (22)

where the filters[
H1(ejω) H2(ejω)

]
=

[
1 0

]
M−1(ejω)

[
1 0
0 F−1(ejω)

]
=

1

2D(ejω)

[
G∗(e−jω) −F−1(ejω)

]
. (23)

Since C(ej(ω−ωb)) is the Fourier transform of the modulated
signal r(n) = ejωbnc(n), c(n) can be recovered by demodu-
lating r(n), as shown in Fig. 3.

Fig. 3. Recovery of c(n) from x1(n) and x2(n)

Substituting the expressions for D(ejω) and G(ejω) inside
(23) gives

H1(ejω) =
ej2π`d

j sin(2π`d)
= 1− j cot(2π`d) (24)

for |ω| ≤ π − |ωb| and

H1(ejω) =
ejπ(2`+sgn(ωb))d

j sin(π(2`+ sgn(ωb))d)

= 1− j cot(π(2`+ sgn(ωb))d) (25)

for π − |ωb| < |ω| ≤ π. Similarly, we find

H2(ejω) = j
ejωd

sin(2π`d)
(26)

for |ω| ≤ π − |ωb| and

H2(ejω) = j
ej(ω−πsgn(ω))d

sin(π(2`+ sgn(ωb))d)
(27)

for π − |ωb| < |ω| < π. The impulse responses of filters H1

and H2 can be approximated by causal FIR filters of order
M = 2L by shifting the impulse responses by L and applying
a Kaiser window of length M+1. In this case, the output ĉ(n−
L) of the reconstruction block diagram is only an estimate of
the complex envelope at time n − L. With respect to filter
complexity, using Fourier Transform symmetry properties it
can be observed that each of the complex filters H1 and H2

requires only the implementation of a single real FIR filter.

IV. SPECIAL CASE: QUADRATURE SAMPLING

Unlike previously published results on TIADC sampling
of the envelope of bandpass signals, our analysis behind the
sampling and reconstruction models placed no restrictions on
Ωc, Ωs, B and d beyond Ωc > Ω′s/2 > B/2 (Ωc cannot be
in the baseband and Ωs is above the Nyquist rate). Earlier
results [7]–[9], [14], [15] typically assume relations between
Ωs and Ωc and between d and Ωc. For example, for quadrature
sampling as originally defined by Grace and Pitt [7] and further
investigated by several authors [8], [9], [16], Ω′s = Ωc/`
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with ` integer, so that Ωc is exactly at the center of the `-
th image band resulting in ωb = 0. Furthermore, the timing
offset between the two ADCs is chosen as D = Tc/4 + pTc
with p integer and Tc = 2π/Ωc. This gives

d =
D

T ′s
=

1

4`
+
p

`
(28)

so 2π`d = π/2+2πp. In this case equations (5) and (6) reduce
to

x1(n) = a(n) = ac(nT
′
s)

x2(n) = b(n− d) = bc((n− d)T ′s) ,

so that the two sub-ADCs sample independently the in-phase
and quadrature components of the bandpass signal. The phase-
shifting filter in (14–15) reduces to G(ejω) = −j, and the
determinant of matrix M(ejω) becomes D(ejω) = j/2 which
is nonzero for all ω ∈ [−π, π] indicating the timing skew (28)
is not forbidden. Reconstruction filters simplify to

H1(ejω) = 1, H2(ejω) = jejωd, (29)

with respective impulse responses

h1(n) = δ(n), h2(n) = j
sin[π(n+ d)]

π(n+ d)
. (30)

From a practical standpoint, reconstruction is greatly sim-
plified since only a non-integer advance filter is required
which can be implemented causally with insertion of a delay.
In spite of its elegance, quadrature sampling does present
challenges. The timing skew d in (28) becomes quite small
for signals located in higher image bands imposing strict
jitter requirements for the sampling clocks and necessitating
TIADC calibration. Moreover, the carrier frequency of the
received signal may not be exactly an integer multiple of
the sub-ADC sampling rate. This motivates assessing envelope
reconstruction in the presence of carrier frequency deviations
away from its ideal value. Let Ω0

c = `Ω′s be the theoretical
carrier frequency desired and

Ωc = Ω0
c + ε (31)

the actual signal carrier frequency at the receiver. The fre-
quency offset technically satisfies |ε| < Ω′s/2, but in prac-
tice will be much smaller. Evaluating (4) using (31) gives
ωb = εT ′s, so different sequences x1(n), x2(n) are generated
based on expressions (5–6) as ε varies. Although ωb is nonzero
for all ε 6= 0, the complex envelope can be reconstructed
approximately using the quadrature case filters (29) which
were computed under the assumption that ωb = 0. The
performance of this method will be analyzed in section V.

V. SIMULATIONS

To illustrate the proposed direct complex envelope sampling
method, consider a bandpass signal with theoretical carrier
frequency F 0

c = Ω0
c/(2π) = 5GHz, and continuous-time

envelope

cc(t) =
3

2
ej400×106×2πt +

1

2
e−j400×106×2πt

+
j

2
[ej175×106×2πt + e−j175×106×2πt] (32)

with bandwidth (B/2)/(2π) = 400MHz. The choice of sub-
ADC sampling frequency F ′s = Ω′s/(2π) = 1GHz is above
B/(2π) = 800MHz, as required by the Nyquist sampling
criterion. Since

Fc = F 0
c +

ε

2π
= 5F ′s +

ε

2π
,

and |ε|/(2π) < F ′s/2, we have ` = 5, i.e., Fc is located in the
5-th image band. The value of ωb will vary with different ε, but
will be close to zero for ε sufficiently small. The discrete-time
envelope obtained by sampling cc(t) with sampling period
T ′s = 1/F ′s is

c(n) = cc(nT
′
s) =

3

2
ej0.8πn +

1

2
e−j0.8πn

+
j

2
[ej0.35πn + e−j0.35πn] (33)

This signal has four tones located at ±0.8π and ±0.35π, but
the tone at 0.8π has an amplitude three times larger than the
tones at −0.8π and ±0.35π.

To sample xc(t), we select a TIADC with nominal timing
skew d0 = 1/(4`) = 0.05 which is the simplest case
of quadrature timing skew from (28). The ADC and FIR
filters are simulated in Matlab using floating-point arithmetic.
In the simulations two independent white noise sequences
modelling the effect of thermal and quantization noises are
added to the sub-ADC outputs x1(n), x2(n). The sub-ADC
SNR is 61.8dB. In the reconstruction block diagram shown
in Fig. 3, quadrature reconstruction filters (29) are used as an
approximation to the actual filters given in (24–27). The FIR
filters H1(z) and H2(z) have order M = 16 and are obtained
by applying a Kaiser window with parameter β = 6 to the
impulse responses h1(n) and h2(n) in (30).
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Fig. 4. PSD of the estimated envelope ĉ(n) for ε = ωb = 0 computed
with FIR filters of order M = 16 for a TIADC with quadrature timing skew
d0 = 0.05.

The PSD of the estimated envelope ĉ(n) is plotted in Fig.
4 on domain −1/2 ≤ f ≤ 1/2, where f = ω/(2π), for
ε = 0, i.e. Fc = F 0

c and ωb = 0. It is computed by using the
periodogram method with a Kaiser window for a data segment
with N = 104 samples. The periodogram is scaled so that a
complex tone with unit amplitude corresponds to 0dB. The
estimated envelope has correct positioning and scaling of the
four desired tones indicating successful reconstruction. Since
the exact envelope c(n) is known, the error c̃(n) = c(n)−ĉ(n)
can be evaluated, and the MSE is −50.56dB.
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Fig. 5. MSE for the entire range of ε values computed with FIR filters of
order M = 10, 20, 30 in the case of quadrature timing skew d0 = 0.05.

The MSE is plotted in Fig. 5 for |ε|/(2π) < F ′s/2 =
500MHz when different filter orders are used to estimate the
envelope. Higher filter orders M = 20, 30 offer significant
performance gain around ε = 0 in comparison to M = 10,
but present no advantage beyond |ε|/(2π) > 100MHz. In the
case of M = 30, frequency offsets up to ±40MHz can be
tolerated without any performance loss. In this range ωb ≈ 0,
so the filters (24–27) strongly resemble quadrature filters (29)
used in envelope estimation. However, implementing filters
with length M + 1 = 31 can be challenging in practice. It
is worth observing the MSE is not symmetric with respect to
ε = 0. This asymmetry is due to the fact that for ωb > 0
the approximation of the dominant tone of c(n) at +0.8π is
slightly worse than in the case of ωb < 0. Finally, a plot
similar to Fig. 5 can be obtained for the case when the TIADC
suffers from mismatches. For example, it can be shown that
in the case of 1% gain mismatch and 0.10% timing skew
mismatch, the MSE drops by 30dB in the vicinity of ε = 0 for
M = 20, 30, but only by 7dB when M = 10. This indicates
TIADC calibration is especially necessary when higher order
filters are used in envelope reconstruction.

VI. CONCLUSIONS

In this paper we have described a method for computing the
sampled complex envelope of a bandpass signal by sampling
the signal directly with a two-channel TIADC and using two
digital filters. A special case known as quadrature sampling
requires the implementation of only one reconstruction filter
and can be used to estimate the envelope even when the
carrier frequency is not exactly an integer multiple of the
sub-ADC sampling frequency. Simulations demonstrated this
technique to be a robust and efficient approximation dependent
on the order of reconstruction filters. The analysis presented
here ignored the effect of TIADC mismatches. Some recent
semi-blind [18]–[20] and fully blind [21]–[23] TIADC calibra-
tion techniques have been developed for the bandpass signal
case, but they would need to be extended to nonuniformly
interleaved ADCs before they can be applied here to correct
mismatches. The proposed TIADC and reconstruction filter
architecture could be implemented as a software radio front
end capable of digitizing signals in different bands.
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