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Variability-aware Memristive Crossbars - A Tutorial
A.P. James, Fellow, IET, and L.O. Chua, Fellow, IEEE

Abstract—Memristor crossbar architecture is one of the most
popular circuit configurations due to its wide range of practical
applications. The crossbar architecture can emulate the weighted
summation operation, called multiply and accumulate operation
(MAC). The errors to MAC computing get introduced due to a
range of crossbar variability. We broadly group the variability
in three categories: (1) device-to-device variations, (2) program-
ming nonlinearity, and (3) those from peripheral circuits. This
tutorial provides insights into the variability and compensation
approaches that can be adopted to reduce its impact when
designing for practical applications with crossbars. .

Index Terms—Memristor crossbar, variability, memristor ap-
plications, compensation

I. INTRODUCTION

MEMRISTIVE systems are abundant in nature, with
many biological and natural systems exhibiting mem-

ristive properties. The idealistic models in Fig. 1, can be
used for understanding and laying the foundation dynamic
behavior of memristor using dynamic route maps (DRM)
and i − v plots [1]–[3]. The DRM in the phase plane can
determine the optimal programming pulse height and width
along the identified equilibrium points. While these equations
can describe the devices in idealistic situations, experimentally,
it is harder to validate under noisy conditions. In contrast,
Coincident Zero-Crossing Signatures can be experimentally
observed in many devices. The ideal models do not consider
the impact of noises or the variability that practical devices
show, and the development of generic imperfect memristor
models [1], [4] remains an open problem.

Fig. 1. Universe of memristor models, excluding the parasitic and other device
variability.

Several devices show the resistive switching behavior hav-
ing nonvolatile properties, grouped under the board class of
memristive devices. This classification assumes that not all of
these devices show idealistic properties of the memristor but
have many properties of ideal memristor that can be used for
building practical memristive systems [5], [6]. For example,
nonvolatility, switching between conductance values, small
form factors, integration with CMOS, and synaptic behavior,
are all attractive properties useful for building emerging on-
chip applications. Emulating neural networks, analog comput-

Fig. 2. Example of memristor crossbar of array size 3 × 4. Each crossbar
node has a memristor and selector device.

ing, and in-memory computing are growing applications of
memristive systems.

Crossbar arrangement of memristor [7]–[9] is a popular
approach to build memristive computing applications. Any
errors in the crossbar will impact the overall accuracy of
computations [10]. Such errors develop due to the variability of
devices, circuit parasitic, and device aging [11]. For ensuring
reliable use of memristive crossbars, it is important to design
the overall system so that variability is compensated or reduced
to practical limits allowable for a given application. The
attempts to include variability in simulations [12]–[14] are
important for accurate analysis of circuit performance.

This tutorial draws motivation from the above mentioned
emerging design and performance challenges of building mem-
ristor crossbar based systems. So far, the previous works [5],
[8], [9], [15] in the domain largely focuses on the applications
and less on the issues of variability. This tutorial contributes
to give a concise account of the types of variability, its impli-
cations, and possible directions to create a variability-aware
crossbar in the practical design of memristive applications.
Section II gives an overview of the crossbar, while Section III
provides insights on variability and compensation approaches,
and Section IV provides the summary.

II. CROSSBAR OVERVIEW

The crossbar consists of memristors connected in a matrix
arrangement, as shown in Fig. 2, with multiple inputs and
outputs. The inputs are applied along the rows, and outputs
are read along the columns.

A. Crossbar structure

The most popular memristor structure is the crossbar with
inputs as voltages vm and outputs as currents in. The nodes
of the crossbar consist of a memristor and selector device
(e.g., transistor or diode), having a conductance of Gmn. The
selector devices are required to avoid the sneak path currents
from the neighborhood columns. The overall column current
in =

∑M
m=1 Gmnvm, is equivalent to the weighted summation
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operation, called multiply and accumulate (MAC) operation in
analog computations.

Fig. 3. Examples of major applications using crossbar arrays.

B. Crossbar applications

The analog MAC operation is the hallmark of the crossbar,
useful for a range of applications. For example, in neural
computations, for M inputs ym with weights wm, the output of
neuron is expressed as

∑M
m=1 wmym, which maps with each

column current outputs of the crossbar. Thus, each crossbar
column can be considered as partial neuron computations, and
the crossbar as a single neuron layer. The variability in the
crossbar can be problematic for some applications while useful
for others. Figure 3 shows the broad classification of major
crossbar applications. Neural networks [15] such as Spiking
neural networks [16], Hierarchical Memory Networks [17], or
Deep Learning Networks [16] can be implemented in both ana-
log/digital crossbar circuits, with a range of variability using
the neural training schemes. Application of logic computing
is also robust to variability due to the binary logic, while bit
errors are possible when there are thresholds to compare or
are stuck at fault errors. The use of crossbar for binary or
analog/discrete memory with high density 2D and 3D crossbar
arrays could be limited in readout speeds with increased
variability. The crossbar variability can be used to build unique
physically unclonable functions (PUFs) useful for a variety
of cryptographic algorithms [18]. The crossbar analog MAC
computations can be used for building solvers such as for PDE
[19], discrete Markov chains [20], or linear program solvers
[21], where the accuracy of analog MAC becomes crucial in
controlling with increasing variability. Image processing [22]
is another popular application, with crossbar useful for edge
detection [23], face detection [24], and object detection, where
the accuracy and speed of detection is sensitive to aging and
variability.

III. CROSSBAR VARIABILITY AND COMPENSATION

The definition of the variability in memristive crossbar sys-
tems varies from the device level to the hardware system level.

Fig. 4. The broad classification of the types of the variability faced in
memristor crossbars.

The inaccuracy of the MAC computation can significantly
impact the reliability of using crossbar in various applications.
Figure 4 shows a broad classification of variability in a
memristive crossbar.

A. Device-to-device variability

Most of the memristive devices used for building crossbars
are in their experimental stage. For commercial use, a new
device is expected to have a low device-to-device variability
[15], [25]–[27] and less unpredictable output current errors.
The main design considerations include the following:

1) Material stack and switching physics. The material stack
has a direct role in the thermal effects, chemical reac-
tions, ionic transfers, spin polarization, and phase tran-
sition of resistive switching. The variations in material
stacks due to defects and unstable manufacturing process
leads to non-uniform resistive switching between the
devices.

2) CMOS technology node. CMOS transistors used in
crossbar nodes and at the inputs or outputs of cross-
bar usually have varying levels of technology-specific
leakage currents and parasitic effects that impact the
dynamic response times of the crossbar column com-
putations.

3) Ron/Roff ratio. Changes in ratio (low-resistance state
(LRS) Ron and high-resistance state (HRS) Roff ) can
complicate the programing of memristors and increase
the relative current errors. This can introduce changes
to dynamic switching behavior expected for a certain
frequency of programming pulses, which require read-
justing the pulse frequency and amplitude from one
device to another to achieve the same state outcomes.

4) Range of operating currents from devices. The write,
read and erase currents in a memristor need to be much
higher than sneak path currents, while a larger current
would increase the power dissipation in the crossbar.
Optimizing the operating range of current memristors
for power, density, and accuracy is essential to ensure
the practical usefulness of the crossbar.

5) Read and write voltage ranges. Lower voltages would
imply the need for longer pulses to program the mem-
ristors, while higher voltages would increase the power
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dissipation in the crossbar. The variation in voltages that
the memristor supports, if varied between the devices,
introduces uneven distribution of power within the cross-
bar leading to different stress levels on the devices.

6) Endurance and retention. The four major memristor
mechanisms are based on a redox reaction, phase
change, magnetic polarization, and ferroelectric polar-
ization. In each of these device types, endurance varies
from 109 to 1014, and retention is more than ten years.
Any reduction in endurance implies a reduced lifespan
in applications involving frequent updates of conduc-
tance. Reduction in retention times makes the crossbar
unreliable as a memory or for in-memory computing
applications, such as neural networks.

7) Temperature dependence. The temperature can influence
the flow of current in the semiconductor material. The
memristor current increases with an increase in temper-
ature while switching delays decrease. The temperature
change from 200k to 400k increases the currents by
an order of two, implying higher power dissipation
during crossbar computations. The changes in switching
delays with varying temperatures can make memristor
programming unreliable.

8) Random telegraph noise (RTN). RTN with current sig-
nals is observed in memristors made of metal-insulator-
metal. The nature of the RTN signals is influenced by
materials used for electrodes and insulators, type of
deposition method, and insulator thickness.

The variations in these parameters result in MAC computa-
tion errors. It has been shown that device-to-device variation in
phase-change random access memory arrays is more difficult
to train than devices exhibiting consistent cycle-to-cycle varia-
tion. This indicates that any reduction in the device-to-device
variability in practical applications can improve the overall
application reliability.

B. Programming nonlinearity

In many memristors such as HfO2 or PCM, the memristance
can be represented as a nonlinear function of time [28], [29].
Both linear and nonlinear drift models [30] can be used
for modeling the memristance. In contrast, if memristance
variation is linear in time, their programming is easier as
memristance is proportional to the width of a programming
voltage pulse.

In practical realization of memristive devices, such as analog
RRAMs, linear adjustment (tuning) of conductance is not
possible with a sequence of identical pulses [29]. Both the SET
and RESET cycles observe nonlinearity and require device
level modifications or circuit level node design to ensure
linearity.

A device level solution has been demonstrated in the past by
linearly setting SET and RESET using HfOx type memristors
by adding electro-thermal modulation layer to the switching
layer to control the dynamics of the conductance changes.
The circuit level solution includes an anti-serial architecture
by connecting two memristors of opposite polarities. The
complementary action of the serially connected memristors in

such configuration shows linear behavior in time, useful for
linearly programming the crossbar node.

C. Peripheral circuits

1) Crossbar circuits: Several interface circuits are required
to make crossbars useful for practical applications. The cross-
bar array is directly influenced by variations in yield, redun-
dancy, circuit parasitics, current-resistance (IR) drop, and array
size.

a) Yield and redundancy: High yield and redundancy are
required for the use of crossbars as memories. Redundancy
is essential in applications where data recovery becomes
important [31], [32], and in-memory computing should be
highly accurate.

b) Circuit parasitics: The circuit parasitics [33], [34]
include the effects of wire resistance [35] from metal lines
connecting the memristors, stray capacitors, and resistors in
the CMOS switches, creating RC delays along the crossbar
lines. The impact is more pronounced as the size of the cross-
bar array increases, reducing the read speeds of the system.
The parasitic coupled with large device-to-device variations in
the crossbar can eventually lead to high relative current errors
making real-time applications unreliable.

c) IR drops: Both static and dynamic IR drops happen
in a memristor crossbar. The voltage IR-drop [36] results from
the resistance of the crossbar arrays and metal wires. The
node resistance G becomes a function of parasitic resistance
of switches, memristance, and wire resistance. The variability
in memristor devices, wires, or switches will impact the
1T1M crossbar read and write accuracy. The IR drops, if not
compensated in write stages by readjusting the conductance
values, will also impact the readout values.

Compensation by readjusting the programming pulse am-
plitude and width can effectively reduce the IR drop impact.
Suppose T is the programming pulse widths, and V is the
pulse amplitude for programming the crossbar without con-
sidering IR drops. When IR drops are considered, the voltage
distribution V gets distorted to V ′. For compensating for the
drop in amplitude, the pulse width for V ′ is reworked to get a
new time period T ′ that gives the desired state under IR drops.

2) Crossbar I/O: The I/O blocks to the crossbar often
involve a variety of analog or digital circuits. The most com-
mon circuits are OpAmps and sense amplifiers, line selector
switches, programming circuits, data converters (ADCs and
DACs), buffers, and multiplexing circuits. The variability and
reliability of these circuit elements determine the practical
feasibility of using crossbars in a range of applications.

a) Sense amplifiers: Sense amplifiers are required to
readout the column currents. In analog neural networks de-
signed with crossbars, the difference between two column
currents is used to account for the negative weights of the net-
works. In most other applications, one column current output
is readout using an opamp or set of amplifiers. The opamps are
expected to have low input offsets (current and voltage), low
delays, and work in high frequencies. The parasitic capacitors
and resistances from the sense amplifiers can uneven delays
in parallel column reads of the crossbar, requiring timing and
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memory controls before passing the signals to the subsequent
crossbars or circuits.

b) Control circuits: Different sets of control circuits
are required to control various switches within and on the
peripherals of the crossbar. For example, the most commonly
used 1T1M crossbar configuration will require control signals
applied to the gate of the transistor and input/output lines
for the read, write, and erase operations. In noise-free con-
trol signals, accurate timing is essential for programing the
memristors in the crossbar. Further, in neural networks with
multiple crossbars, control circuits are required to access the
intermediate storage and multiplex the signals across multiple
crossbars, such as in tiled crossbar configuration.

c) ADC/DAC: ADC is required to convert the analog
column outputs from the crossbar to digital for further pro-
cessing and storage. DAC is required for converting the digital
input signal to analog for use in binary crossbar arrays. The
precision of ADC/DAC and the ADC multiplexing would
form the primary design considerations. The common errors
in ADC include quantization error, offset error, gain error, and
nonlinearity, all of which impact the overall use of crossbar
for applications. The absolute errors from the ADC can lead
to increased output current errors, which, when implemented
in applications such as neural networks, leads to reduced
inference accuracy.

d) Binary crossbar and quantization: If the crossbar is
used for storing binary weights as in binary neural networks,
errors from partial sum quantization are also possible. Any
inaccuracy in DAC and ADC further degrades the errors due
to partial sum quantization.

e) Process, voltage and temperature (PVT), and noise:
The peripheral circuits can be PVT sensitive and induce noise
in the crossbar circuits. The PVT sensitivity of the peripheral
circuits can limit the practical operating range in applications.
Further, the noise induced by the peripheral circuits can pass
from one crossbar stage to another, causing errors in crossbar
computations.

D. Compensation techniques

a) Devices: There are no universal techniques that com-
pensate device-to-device variability. Each memristive device
type is developed differently with various chemical and
physical processes, which requires different approaches. For
example, (1) in HfOx RRAM, the device variability was
compensated by introducing an ultra-thin ALD-TiN buffer
layer [37], (2) in Al2O3/TiO2 (VMCO) RRAM, the use of
non-filamentary RRAM reduces the impact [38], and (3) in
SiOx RRAM, increasing the roughness of bottom electrodes
reduces the device-to-device variability [39].

b) Peripheral circuits and programming: The compen-
sating schemes in literature are limited and largely an open
problem. However, they are indirectly addressed via architec-
tural modifications and system training, examples of which are
listed below.

b.1) Architecture variants: Modular crossbar array [40]
or tiled crossbar [41] is a method to split larger crossbars into
smaller ones. Usually, large crossbars will have higher leakage

and sneak path currents in their columns. The current errors
can be reduced by performing MAC computations across
multiple smaller crossbars. Simultaneously, it allows for a
scalable configuration for large array processing applications.

The choice of the selector device [42] is critical for the
reliable operation of the crossbar. The common selectors
used are transistors, diodes, nonlinear devices, and volatile
switches. Both planar and vertical transistors could be used as
a selector device depending on the 2D or 3D crossbar structure.
Among diodes, Si p-n junctions, oxide/oxide heterojunction,
and metal-oxide Schottky junctions are the most popular. The
nonlinear devices include tunneling-based selections, comple-
mentary circuits, and mixed ionic electronic conduction, while
volatile switches include phase transition, threshold, and short-
retention switches.

Introducing redundancy in the crossbar node by parallelly
combining memristors can help increase the stability and
robustness of crossbar computation. Such nodes, known as
superresolution nodes [43], can create a larger number of
stable conductance levels per crossbar node for accurate analog
computing.

b.2) Training variants: Training that involves updating
the node conductance against a performance metric is useful in
reducing errors resulting from crossbar variability. A variation-
aware training often involves the addition of a “penalty for
variation” to conventional training for solving the conductance
optimization process. This is practically useful for designing
crossbar neural networks where the obtained weights deviate to
new values due to crossbar variability and requires readjusting
weights for optimal inference accuracy [44].

Rather than an on-chip inference checking and training
for the error, another approach is to perform offline training
accounting for various crossbar variabilities [45]. This is useful
for applications such as neural networks, where they need to
be trained for variability and for reducing sensitivity to signal
noise.

IV. CONCLUSION

In conclusion, we note that the reliability of the memristor
device and its ease of integration with matured technolo-
gies such as CMOS is crucial for realizing the majority of
the practical applications with crossbars. Memristive devices
need to have long retention and endurance, irrespective of
the variability subjected in the crossbar for commercial use.
Innovations in device material stack, crossbar architectures,
and adaptive conductance adjustments through training effec-
tively reduce the negative impacts of variability. In contrast,
variability can also be useful for building systems requiring
stochastic computing, including cryptography and stochastic
neural networks.
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