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Abstract—While blockchain technology triggers new industrial
and technological revolutions, it also brings new challenges.
Recently, a large number of new scams with a ’blockchain”
sock-puppet continue to emerge, such as Ponzi schemes, money
laundering, etc., seriously threatening financial security. Existing
fraud detection methods in blockchain mainly concentrate on
manual feature and graph analytics, which first construct a
homogeneous transaction graph using partial blockchain data
and then use graph analytics to detect anomaly, resulting in
a loss of pattern information. In this paper, we mainly focus
on Ponzi scheme detection and propose HFAug, a generic
Heterogeneous Feature Augmentation module that can capture
the heterogeneous information associated with account behavior
patterns and can be combined with existing Ponzi detection
methods. HFAug learns the metapath-based behavior charac-
teristics in an auxiliary heterogeneous interaction graph, and
aggregates the heterogeneous features to corresponding account
nodes in the homogeneous one where the Ponzi detection methods
are performed. Comprehensive experimental results demonstrate
that our HFAug can help existing Ponzi detection methods achieve
significant performance improvement on Ethereum datasets,
suggesting the effectiveness of heterogeneous information on
detecting Ponzi schemes.

Index Terms—Ethereum, Ponzi Scheme Detection, Heteroge-
neous Graph, Metapath

I. INTRODUCTION

LOCKCHAIN is best known for its crucial applications

in financial cryptocurrency platforms such as Ethereum.
According to CoinMarketCap, as of January 2022, the total
value of all digital currencies hits a new high of 2.27 trillion
dollars. However, the huge economic value of digital currency
also makes it a target for cybercriminals, resulting in a large
number of illegal activities such as Ponzi schemes, money
laundering, phish scams, etc. The popularity of digital currency
allows criminals to find new ways to transfer funds, bringing
Ponzi schemes, an offline fraud that originated 150 years
ago, into the digital world. Ponzi scheme [1] is a type of
financial fraud disguised as “high-yield” investment programs,
which use the money of new investors to pay interest and
short-term returns to old investors for creating the illusion of
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profitability and then defraud more investments. One study [2]
estimates that Ponzi schemes operated through Bitcoin have
collected more than 7 million dollars from September 2013
to September 2014. Therefore, understanding the behavior
of Ponzi schemes and detecting them from cryptocurrency
platforms would be crucial to maintaining the stability of the
investment environment in the financial market.

There exists plenty of related work to model complex
transaction networks [3|], [4] for detecting Ponzi schemes.
Massimo et al. S]] collected rich real data through multi-input
heuristic address clustering and extracted the most discrimi-
nating features associated with Ponzi schemes. Chen et al. [6],
[7] proposed a machine learning-based Ponzi scheme identi-
fication method that focuses on analyzing the characteristics
of contract transactions and counting contract byte codes. Fan
et al. [§] improved a combination of feature engineering and
machine learning by training a Ponzi detection model using
the idea of ordered augmentation. Wang et al. [9] considered
contract account characteristics and contract code character-
istics, and used LSTM to recognize Ponzi. What’s more,
Chen et al. [10] generated word embedding based on smart
contract source code, and used multi-channel TextCNN and
Transformer to automatically learn code features. Yu et al. [[11]]
first constructed the initial features for Ethereum accounts
via manual feature engineering, and then updated account
features using GCN [12]], finally detected Ponzi schemes.
Zhang et al. [13] extracted the bytecode feature and mixed
it with transaction and opcode frequencies, and then used the
LightGBM to identify Ponzi schemes.

These above-mentioned Ponzi detection methods are
mainly combined with several graph-related algorithms. Deep-
Walk [[14] and Node2Vec [[15]] utilize random walks to obtain
sequences of nodes, and then use skip-gram models to learn
the representation of nodes to predict their structural infor-
mation in homogeneous networks. Among GNNs, apart from
the GCN method mentioned above, GIN [16] is proposed to
make GNNs applicable to different graph structures, which is
as powerful as the WL test in terms of prejudiced power and
expressiveness. GraphSAGE [17] samples neighboring nodes
based on GCN, and trains different aggregation functions to
obtain a more accurate representation of the new nodes.

However, existing methods suffer from several shortcom-
ings. Manual feature engineering usually designs statistical
features related to transaction amount and time, but has
difficulty defining more complex features that reflect trans-
action behavior. Graph analytics is usually performed on a
simple homogeneous transaction graph, failing in capturing the
structural features associated with specific behavior patterns.
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(a) Homogeneous Transaction Graph
Ghom

(b) Heterogeneous Interaction Graph
Ghet

Fig. 1. Homogeneous transaction graph and heterogeneous interaction graph.

In this paper, we mainly focus on detecting Ponzi schemes on
Ethereum, and consider improving the feature utilization of
blockchain data and propose HFAug, a generic Heterogeneous
Feature Augmentation module that can be adapted to various
existing Ponzi detection methods. HFAug first extracts the
metapath-based features on an auxiliary heterogeneous graph
where the coordinated transaction and contract call infor-
mation contained, and then aggregates these heterogeneous
features associated with behavior patterns to corresponding
account nodes in the homogeneous graph where the Ponzi
detection methods are performed. Our proposed module allows
for improving the performance of existing Ponzi detection
methods through feature augmentation without adjusting them.

The main contributions of this work are summarized as
follows:

e We collect the labeled data of Ethereum Ponzi schemes
for Ponzi detection research, and construct homogeneous
transaction graph and heterogeneous interaction graph.

e We propose a generic heterogeneous feature augmenta-
tion module, named HFAug, which allows for aggregating
heterogeneous features associated with behavior patterns
to homogeneous transaction graphs, further improving the
performance of existing Ponzi detection methods. To the
best of our knowledge, there are hardly any heterogeneous
algorithms applied to blockchain data mining, and our
work earlier explored the heterogeneous strategies for
Ethereum Ponzi detection.

e Extensive experiments on the Ethereum dataset show the
effectiveness of HFAug module on improving the per-
formance of three categories of existing Ponzi detection
methods. Moreover, the generic compatibility of HFAug
also suggests that heterogeneous behavior pattern infor-
mation can benefit Ponzi scheme detection in Ethereum.

II. ACCOUNT INTERACTION GRAPH MODELING
A. Ethereum Data

An account in Ethereum is an entity that owns Ether, and
can be divided into two categories: Externally Owned Account
(EOA) and Contract Account (CA). EOA is controlled by
a user with the private key and can initiate transactions
on Ethereum, and CA is controlled by smart contract code
and can only send transactions in response to receiving a
transaction. There are generally two categories of interactions

Fig. 2. An interaction graph of real Ponzi scheme.

between Ethereum accounts: transaction and contract call.
The transaction refers to an action initiated by an EOA, and
can be received by EOA or CA. The contract call refers to the
process of triggering smart contract codes which can execute
many different actions, such as transferring tokens or even
creating a new contract.

B. Graph Modeling on Ethereum

1) Homogeneous and Heterogeneous Graph: The existing
Ponzi detection methods usually model Ethereum data as
a homogeneous graph, where all accounts will be treated
as nodes of the same type, and interactions involving only
transaction amounts will be treated as edges. Different from
it, heterogeneous graph with different types of nodes and edges
will retain more information of Ethereum data. More formally,
we use Gpom = (VanY) and Gper = (Vena,VcaaEtrans;Ecath)
to represent the two types of graph respectively, where V
represents the set of arbitrary accounts in the Ethereum data,
E represents the set of directed edges constructed from trans-
action information, ¥ = {(+/,y;)} is the label information of
known Ponzi accounts. Notably, all the known Ponzi schemes
we have collected on Ethereum are based on contract accounts.

The nodes of Gy, and Gy, are aligned, as illustrated in
Fig. m Compared with Gy, Grer has additional account cat-
egory information (i.e., EOA and CA), and another interactive
edge information (i.e., contract call).

2) Node Feature Construction: We construct initial fea-
tures for account nodes in both Gy, and Gy, using 15 manual
features proposed in existing methods.

e The income and expenditure of the target account (in-

cluding total, average, maximum and variance).

e The expenditure-income ratio of the target account.

e The balance of the target account.

e The number of transactions sent and received by the target

account.

o The investment Gini and return Gini of the target account.

e The life cycle of the target account.

3) Metapath: Metapath [18] is a path in a heterogeneous
graph that contains a sequence of relations defined between
different types of objects. According to the interaction graph
of Ponzi schemes, as schematically depicted in Fig. 2] we
predefine the critical behavior patterns as follows:

call /trans

EOAIi’@CAZ(ﬂCAl)"ﬂEOAQ TS cay (1)

External investors EOA; will transfer Ether to the Ponzi
account CA;, which would perform subsequent actions. EOA>
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Fig. 3. Illustration of Heterogeneous Feature Augmentation (HFAug) module.

could be an external investor or the Ponzi contract creator.
The former indicates that trans is a payback, while the latter
indicates that trans is a funds transfer. Notably, very few
Ponzi accounts will trigger internal calls (i”> CAy) to perform
subsequent actions.

We then extract two metapaths from above behavior pat-
terns:

Pr:CA < cA ™™ Eoa <4 ca, 5
call trans trans ( )

P> : EOA — CA; — EOA — CA.

Our HFAug will caputre the behavior features from Gy, based
on these metapaths, as detailedly described below.

III. METHODOLOGY

A. HFAug for Manual Feature and Graph Random Walks

1) Original Ponzi Detection: For Ponzi detection methods
based on manual feature engineering, we use the 15 manual
features mentioned in Sec. [EB2] to characterize these CA,
yielding the feature matrix X € R"*!3, where n represents the
number of CA to be detected. As for methods based on graph
random walks, we generate structural embeddings as account
node features rather than the predefined manual featres. After
that, the initial feature of arbitrary account node v; is denoted
as follows:

[x!},x?,--- xI3]  for manual feature

X; = €)]
Walk (Gpom,vi) for graph random walks

Finally, we achieve Ponzi detection by feeding account fea-
tures into machine learning classifiers.

2) Detection with HFAug: Here, HFAug module is used
to update the initial node features, as illustrated in Fig. 3{a)
and (b). Specifically, for a target CA node v!,,, we first search
the target metapaths P; or P, where it is located in Gj;.
Notably, in P; and P,, the CA; is the target CA node. After
getting the metapath P, we update the features of the target
CA in Gy, by aggregating the features of other nodes in the
metapath to it. When the full metapath is not available, we

only aggregate node features in the available subset of it. The
process of feature update can be represented as follows:

2= 3 x, @)

where x is the account feature, and P’ is the target metapath
or its subset.

Finally, the updated features X contain heterogeneous struc-
tural information associated with behavior patterns, and will
be used for detecting Ponzi accounts.

B. HFAug for Graph Neural Network

1) Original Ponzi Detection: GNN-based methods usually
consider Ponzi detection as a node classification task. In this
paper, we consider three commonly used GNN models: GCN,
GraphSAGE and GIN. During Ponzi detection, the input is
the homogeneous transaction graph Gy,,,, and the output is a
prediction of whether the target account is a Ponzi account.
The initial node features are also constructed according to
Sec.

2) Detection with HFAug: Here, HFAug module is used
to update the initial node features, as illustrated in Fig. [3[c).
Specifically, these two metapaths are used to update the
features of their respective head nodes. In other words, for a
CA/EOA node V!, /V.,,, we search the target metapath P;/P,
where it serves as the head node in Gy, and update the
features of head node in Gy, by aggregating the features
of other nodes in the metapath to it. The process of feature

update can be represented as follows:

i’ > veprcp, Xvs P’ start from V!, 5)
% = c
> veprcp, Xvs P’ start from V..

Notably, we can update one type of nodes using one meta-
path individually, or update all nodes using both metapaths
simultaneously.
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TABLE 1
STATISTICS OF THE HOMOGENEOUS AND HETEROGENEOUS GRAPHS. |V|
AND |E| ARE THE TOTAL NUMBER OF NODES AND EDGES RESPECTIVELY.
[Vea| AND |Veoa| ARE THE NUMBER OF CA AND EOA RESPECTIVELY, |E g
AND |E;qns| ARE THE NUMBER OF CALL AND TRANS EDGES
RESPECTIVELY, AND |Y| IS THE NUMBER OF LABELED PONZI ACCOUNTS.

Dataset 14 |E] Veal — Veoal  |Ecan|  |Ewrans| Y|

Homogeneous G, 57,130 86,602 No label information - -- 191

Heterogeneous G, 57,130 156,255 4,616 52,514 69,653 86,602 191
TABLE II

PONZI DETECTION RESULTS OF RAW METHODS (MANUAL FEATURE
ENGINEERING AND RANDOM WALK-BASED GRAPH EMBEDDING) AND
THEIR ENHANCED VERSIONS (WITH HFAug). gain REPRESENTS THE
RELATIVE IMPROVEMENT RATE.

Py P
Methods LR SVM RF LR SVM RF
Mol T 6573 7279 7723 | 6573 7279 7123
Fealraw+ HFAug 7172 7618 7461 | 7502 7696 7565
gain +9.11% +4.66 % -3.39% +14.30% +5.73% -2.05%
raw 80.63 8298 8274 | 8063 8298  82.74
DeepWalk  raw + HFAug 8143 8458 8143 | 8064 8195 8326
gain 1099%  +019%  0.02% | +0.00%  -124%  +0.63%
raw 8222 8456  86.14 | 8222 8456  86.14
Node2Vec  raw + HFAug 8378 8693 8667 | 8169 8483 8614
gain +1.90% +2.80% +0.62% -0.64% +0.32% +0.00%
IV. EXPERIMENTS
A. Data

We collected 191 labeled Ponzi data from Xbloclﬂ
EtheriscarE] and other Blockchain platforms. For all detection
methods, we take all the labeled Ponzi accounts as positive
samples, as well as the same number of randomly sampled
CA as negative samples. We construct the homogeneous
transaction graph using the transaction data of these CA,
yielding a graph with 56,748 nodes and 86,602 edges. For the
heterogeneous interaction graph, we divide all the nodes into
two categories: 4,616 CA and 52,514 EOA, and add additional
69,653 call edges. The statistics of data are shown in Table m

B. Ponzi Detection Methods and Experimental Setup

To illustrate the effectiveness of our HFAug module, we
combine it with three categories of Ponzi detection methods:
manual feature engineering, random walk-based graph embed-
ding and GNN-based methods.

For manual feature engineering which is the most common
and simplest method for Ponzi detection, we use 15 manual
features listed in Sec yielding account feature vectors
with dimension equals to 15. For random walk-based graph
embedding, we consider DeepWalk and Node2Vec. For the
above two categories of methods, we achieve Ponzi detection
by feeding the generated account features into three machine
learning classifiers: Logistic Regression (LR), Support Vector
Machine (SVM) and Random Forest (RF). For GNN-based
methods, we compare with three commonly used GNNs: GCN,
GraphSAGE and GIN.

For walk-based methods, we set the dimension of embed-
ding, window size, walk length and the number of walks

Uhttp://xblock.pro/ethereum/
Zhttps://cn.etherscan.com/accounts/label/ponzi

TABLE III
PONZI DETECTION RESULTS OF RAW METHODS (GNN-BASED METHODS)
AND THEIR ENHANCED VERSIONS (WITH HFAug). + HFAug(P)
REPRESENTS THE RESULTS OF DETECTION METHODS ENHANCED BY
HFAug WITH METAPATH P.

+HFAu +HFAu, +HFAu
Methods raw (731)g (Pz)g Py, Pj
GON 8248 o g o
GphSACE 7854l soms o
an e Do Tn e

per node to 128, 10, 50 and 5 respectively. For Node2Vec,
we perform a grid search of return parameter p and in-out
parameter g in {0.5, 1, 2}. For GNN-based methods, we set
the hidden dimension of GCN, GrahphSAGE and GIN to 128,
512 and 128 respectively, and the learning rate to 0.005, 0.001
and 0.01 respectively. For all methods, we recept 5-fold cross
validation 10 times and report the average micro-F1 score.

C. Evaluation

We evaluate the benefit of our HFAug on enhancing Ponzi
detection, answering the following research questions:

e RQ1: Can HFAug improve the performance of Ponzi
detection when being combined with existing detection
methods?

e RQ2: Whether the enhancement effect of HFAug is
determined by the extracted heterogeneous information?

We combine the proposed heterogeneous feature augmentation
module with all Ponzi detection models to show a crosswise
comparison.

1) Enhancement for Ponzi Detection: Table [l and
report the results of performance comparison between the raw
methods and their enhanced version (with HFAug), from which
we observe that there is a significant boost in detection per-
formance across all methods. Overall, these detection methods
combined with HFAug module obtain higher average detection
performance in most cases, and the HFAug achieves a 70.37%
success ratedl] on the enhancement of Ponzi detection.

Specifically, for manual feature engineering, we observe
4.66% ~ 14.30% relative improvement on LR and SVM
classifiers, as well as a negative gain for RF classifier. It is ob-
vious that manual features have poor expressiveness compared
to other methods and heavily relies on the performance of
classifiers. We speculate that our HFAug has a better enhance-
ment for manual feature engineering with weak classifiers.
For the walk-based methods and GNN-based methods, the
learnt features are better at capturing the behavior patterns
of accounts than manual features, manifesting as higher raw
performance. For both types of methods, the module achieves
a relatively limited boost.

The success rate refers to the percentage of enhanced methods with F1
score higher than that of the corresponding raw methods in Table [T and [[T]}
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These phenomena provide a positive answer to RQ1, indi-
cating that the HFAug module can benefit the existing Ponzi
detection methods via feature augmentation and improve their
performance without adjusting them.

2) Impact of Metapaths: We further investigate the influ-
ence of metapaths in HFAug on the enhancement effect. As we
can see from Table [ and [IT, HFAug with P, outperforms that
with P; in most cases, which suggesting that the performance
of HFAug relies on the choice of metapaths.

Both P, and P, are extracted from the basic behavior
patterns of Ponzi scheme defined in Eq. and we have
reasonable explanations for their performance difference: 1)
Fewer metapath in heterogeneous interaction graph start with
CA than EOA; 2) Ponzi contracts usually have more frequent

interactions with EOA; 3) metapath P; contains the behavior

of internal calls (i.e., CA i”> CA), which is relatively rare.

For manual feature engineering and GNN-based methods,
we use the manual feature rather than embedding as initial
node feature, which does not contain additional structural
information. As a result, metapath P, which reflects more
frequent behavior patterns reasonably achieves superior per-
formance compared with P;. For walk-based methods, the
result with metapath P, is not better than P;, and we make
the following reasonable explanations. Combine the following
two prior knowledge: 1) metapath P; starts from the target
node while metapath P, not, and 2) the embedding of the
target node is generated from the walks starting from the target
node, we speculate that metapath P, updates the feature of
target node by aggregating the information along the metapath,
including the head node EOA that has a high probability of not
appearing in the walks, which may lead to a conflict between
the heterogeneous information defined by the metapath and the
structural information learned by the random walks, further
bringing poor performance.

Furthermore, we observe that a combination of multiple
metapaths can perform better than a single metapath, as
shown in Table suggesting that multiple heterogeneous
information can benefit Ponzi detection more. These phenom-
ena provide a positive answer to RQ2, indicating that the
design of the metapaths is critical and determines whether the
HFAug can effectively capture the heterogeneous information
associated with account behavior patterns.

V. CONCLUSION

Existing Ponzi detection methods usually ignore the struc-
tural behavior patterns of Ponzi accounts, resulting in a loss
of information. In this paper, we propose a generic Hetero-
geneous Feature Augmentation module which can capture the
heterogeneous information associated with account behavior
patterns and can be combined with existing Ponzi detection
methods. Comprehensive experiments show that our HFAug
can help existing Ponzi detection methods achieve significant
improvement on Ethereum datasets. Moreover, we also con-
clude that the enhancement effect of HFAug is determined by
the extracted heterogeneous information, which encourages us
to design more highly-expressive metapaths in future work.
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