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Digital Signal Recovery with Transmitter Nonlinear
State Tracking for Satellite Communications

Qingyue Chen, Yunfeng Li, Feridoon Jalili, Zhugang Wang, Ole Kiel Jensen, Gert Frølund Pedersen, Senior
Member, IEEE, Ming Shen, Senior Member, IEEE

Abstract—This brief proposes a digital signal recovery (DSR)
method to compensate the nonlinear distortion introduced by
power amplifiers (PAs) under dynamic nonlinear operating states.
Unlike conventional PA linearization methods that extract the
nonlinearity based on the baseband I/Q PA input and output
signal samples, the proposed method attempts to derive the mem-
ory polynomial (MP) model parameters based on PA operating
states using a deep neural network (DNN). This method allows
the receiver to achieve DSR by tracking the operating states of the
PA effectively with a few telemetry data. Validation results from
simulations and experiments based on a GaN PA operating at 3.5
GHz reveal that the proposed method can maintain satisfactory
DSR performance in terms of adjacent channel power ratio
(ACPR) and error vector magnitude (EVM) while the transmitter
PA is operating with fluctuating average input/output power,
supply voltage, and bias voltage. The training data size and time
are further reduced by using a transfer learning (TL) approach.

Index Terms—Operating states tracking, deep neural network,
digital signal recovery, power amplifier, satellite communications.

I. INTRODUCTION

IN order to enhance the efficiency of space-borne power
amplifiers (PAs) while maintaining good linearity of the

transmitted signal, PA linearization techniques such as digital
pre-distortion (DPD) [1]–[6] methods based on the memory
polynomial (MP) model have been widely used. Owing to the
fact that it neither increases complexity nor power consump-
tion of the satellite system, digital post-distortion (DPoD) [7]–
[9] methods which correct the nonlinear distortion of the signal
received at the receiver side is more appealing for satellite to
ground communications. The premise of the DPoD methods
is that the PA working conditions need to be maintained to
obtain a stable operating state. Although satellite transmission
systems are usually designed with high robustness, there could
be small-scale fluctuations in signal levels and power supplies
due to the harshness of the irradiation environment [10]. These
small fluctuations could cause significant variations in the
nonlinearity of the PA and hence adaptive model updating is
required, which is challenging for MP based DPoD methods.
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Fig. 1: System architecture of the proposed method.

Given an envelope detection method to switch to three
different Sub-DPD modules, the authors of [11] achieved
adaptive tracking of different input power levels. As mentioned
in [12], the power adaptive decomposed vector rotation method
is proposed to adjust the DPD coefficients, so that the PA
dynamic behavior caused by power variation can be effectively
compensated. These methods, however, are for DPD rather
than DPoD, and only power variations were taken into account,
while the bias and supply voltage variations are not considered.

Nowadays, deep learning (DL) has demonstrated its pow-
erful ability to deal with linearization challenges in PAs. The
methods based on deep neural networks (DNN) [13], [14] and
convolutional neural networks (CNN) [15] simulate the mem-
ory effects of PAs by adding delayed items in the input layer.
The long short-term memory (LSTM) assisted methods [16],
[17] obtain memory effect compensation by extracting the
sequential characteristics of adjacent I/Q samples. DNN-based
digital signal recovery (DNN-DSR) [13] is a novel method for
efficient operation of space-borne PAs by correcting nonlinear
distortion signals received by ground stations. To deal with
the situation of updating the beamforming direction at any
time, [18] has adopted a unified DNN-DPD method trained
with combined datasets of different beamforming directions.
[19] proposed polynomial-assisted DNN that embeds con-
ventional polynomial basis functions into DNN structure to
enhance the behavior modeling capability of PAs, yielding
better performance with only a small number of network
parameters. Whereas, these I/Q based methods can barely cope
with dynamic operating states and obtain consistent linearity.

In this brief, we propose a DNN-aided MP digital signal
recovery (MP-DSR) method as illustrated in Fig. 1. Different
from conventional linearization methods based on I/Q samples,
the proposed method can track PA operating states and extract
the corresponding MP correction parameters based on state
monitoring data (i.e., telemetry signals). Although the PA
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Fig. 2: Structure of the exploited DNN.

operates in different states due to fluctuating average input
power (Pin), supply voltage (VDD), and bias voltage (VGG),
these working conditions of the circuit system can be observed
from the ground stations, and usually, the parameters vary
within a certain range. Off-line training is performed with
the datasets comprised of these variables, based on which
the corresponding MP-DSR parameters can be generated as
the operating states of the circuit change. Thus, the proposed
method deployed at ground stations can enhance the power
efficiency of the circuit by compensating for its nonlinearity,
even under varying working conditions. The proposed method
combines the conventional mature MP linearization technique
to ensure the interpretability and reliability of the DL model.

II. PROPOSED DNN-AIDED MP-DSR METHOD

A. Nonlinear PA model
At the receiver, we mainly consider compensating the non-

linear distortion and memory effects caused by high-efficiency
PAs. The nonlinear PA can be accurately modeled using
the Volterra series. However, since its number of parameters
increases exponentially with memory depth and the order of
nonlinearity, a simplified form of MP is often applied in actual
projects, which can be expressed as

y(n) =

K∑
k=1

Q∑
q=0

ck,qx(n− q)|x(n− q)|k-1
, (1)

where K and Q + 1 represent the order of nonlinearity and
the depth of memory, respectively. ck,q denotes the complex
coefficient of the MP model. Generally, memory effects of
PAs based on GaN/GaAs are supposed to originate from self-
heating, dynamic trapping, and biasing circuits.

The linearization solutions based on the model as shown in
formula (1) achieve the overall linearization of the received
signal by assigning different amplitudes with different gains.
We define the new series as ukq = [ukq(0), ..., ukq(N − 1)]

T,
whose elements are ukq(n) = x(n − q)|x(n− q)|k−1. The
value of N is set to 100,000, representing the PA input
and output collected for each operating state, for the fol-
lowing simulations and experiments section. Therefore, for-
mula (1) can be abbreviated as y = Ucex, where U =
[u10, ...,uK0, ...,u1Q, ...,uKQ]. cex represents the expected
complex coefficients and can be estimated as ces using
the least square (LS) algorithm ces = (UHU)

−1
UHy,

where y = [y(0), y(1), ..., y(N − 2), y(N − 1)]
T and ces =

[c10, ..., cK0, ..., c1Q, ..., cKQ]
T. By swapping the input and

output signals, the parameters of the inverse function of the
PA can then be obtained for linearization.

B. Proposed DNN-aided MP-DSR method
The conventional MP-DSR method utilizes a set of fixed

parameters corresponding to a specific operating state to do
the overall linearization. As will be seen in the simulations and
experiments section, any possible fluctuations can deteriorate
the performance of signal recovery, since these MP-DSR
parameters are dependent on the working conditions of the
PA. Under different working conditions of fluctuating Pin,
VDD, and VGG, the operating state and the corresponding
nonlinearity of the PA will change. Nevertheless, due to
complex physical characteristics, it is not feasible to derive its
analytic expression based on the monitoring data. Hence, most
of the existing models fit the Volterra series or MP by input and
output I/Q samples of the PA. Whereas, DNN can theoretically
fit any arbitrary nonlinear functions according to the universal
approximation theorem [20]. Therefore, we attempt to apply a
DNN module to extract the nonlinear behavior of the PA based
on the monitoring data. Specifically, the MP-DSR parameters
of the PA are generated as the operating state changes. And
it is worth pointing out that these parameters can compensate
memory effects of PAs because the MP model has already
taken them into account.

In addition to the three input variables, we also consider
whether the PA is working correctly by including the average
output power (Pout) as an input element. These four working
conditions are the properties of the circuit system that we are
most concerned about. Taking into account the performance
and computational complexity, the network structure is de-
signed as shown in Fig. 2. The proposed method consists
of two processes, off-line training and on-line application. In
the off-line training process, the proposed method can assign
corresponding MP-DSR parameters to each operating state of
the PA. This allows the DNN to learn enough about the time-
varying PA states throughout the fluctuation range. The output
of the DNN can be written as

C = fDNN (Pin, Pout, VDD, VGG), (2)

where fDNN (·) denotes the DNN model including weights,
biases, and activation function. In the on-line appli-
cation phase, the new monitored telemetry signal are
(Pin

′, Pout
′, VDD

′, VGG
′), and the near-optimal MP-DSR pa-

rameters can be acquired, which can be expressed as

C ′ = fDNN (Pin
′, Pout

′, VDD
′, VGG

′). (3)

Since the network has been adequately trained off-line, the
new operating states can mostly be handled. By doing so, the
linearization correction can be implemented at the receiver
without occupying space-borne resources.

The input layer (pi) of the exploited DNN depicted in
Fig. 2 consists of inputs Pin, Pout, VDD, VGG, and they are
fed to the following hidden layers, each of which consists of
a fully connected (FC) layer and a batch normalization (BN)
layer. The output of the i-th FC layer can be expressed as
vi = wiui + bi, where wi and bi are the weights and biases,
respectively. ui is the input of the i-th FC layer. The i-th BN
layer is given as

v̂i = γ
vi − E[vi]√
V ar[vi] + ε

+ β, (4)
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where vi and v̂i represent the input and output of the i-th
BN layer, respectively. γ and β, which denote the new mean
and variance of the input data, are the scaling and shifting
parameters, respectively. Besides, ε is set to 0.001 to prevent
the denominator from being zero. The BN layer enables the
DNN to quickly and steadily respond to signals with dynamic
changes by recentering and rescaling the input data.

Convergence acceleration is achieved by using the Sig-
moid activation function which is defined as FSigmoid(v̂i) =
1/1 + e−v̂i , where v̂i is the input of the i-th Sigmoid function.
Finally, the outputs of hidden layers are fed to the output
layer. The output layer cpi

= [c10, ..., cK0, ..., c1Q, ..., cKQ]
consists of the parameters of the LS solution of the MP-
DSR method. ckq= [Re(ck,q), Im(ck,q)] indicates the real and
imaginary parts of the correction parameter. Therefore, the
data format of the training data and the labels are set to
P = [p1,p2, ...,pN ]

T and cP = [cp1 , cp2 , ..., cpN
]
T, respec-

tively. Besides, the mean squared error (MSE) is chosen as
the loss function of the back propagation (BP) algorithm:

MSE =
1

M

M∑
i=1

(O(m) − T (m))
2
, (5)

where O(m) and T (m) represent the observed value and the
true value, respectively. M denotes the batch size and the
superscript (m) is the index of the m-th training sample. Fur-
thermore, the adaptive moment estimation (Adam) algorithm
is selected as the optimizer. It is noteworthy that the scale
of the DNN is not small but would not be an issue since
the computational resources of the ground station are very
powerful and low cost.

III. SIMULATIONS AND EXPERIMENTS

A. Simulations validation and results

In order to obtain sufficient data quickly and accurately,
we utilize Advanced Design System (ADS) from Keysight
Technologies to build an equivalent circuit based on the layout
and schematic details given in the CGH40006P PA evaluation
board datasheet [21]. CGH40006P is an unmatched, gallium
nitride (GaN) high electron mobility transistor (HEMT). The
baseband LTE OFDM signal with a bandwidth of 10 MHz
operating at C-band, 3.5 GHz, is collected from a signal
generator (R&S SMBV100A) and then uploaded to the PA
input of ADS. As recommended by the datasheet, when the
Pin, VDD, and VGG are set to 30 dBm, 28 V, and -2.76 V,
respectively, the PA can operate in the primary state (S0) and
offer a high drain efficiency of 38%. Assume that these three
preset values may fluctuate within a small range, from 29.1 to
31.0 dBm, 27.6 to 28.5 V, and -2.80 to -2.72 V, respectively.
With granularities of 0.1 dBm, 0.1 V, and 0.01 V for Pin,
VDD, and VGG respectively, 2000 sets of PA input and output
I/Q data with different working conditions are collected. The
memory depth and nonlinearity order are both set to 5. Then
the MP-DSR parameters corresponding to each PA operating
state are obtained by using the LS algorithm and stored as
labels for the proposed network. In these operating states,
the PA operates in the vicinity of the saturation region and
maintains high drain efficiency, which can make full use of the

power resources of the satellite. After the network is trained,
testing is conducted on 20 new datasets randomly selected
within the fluctuation range of the three input conditions. Note
that, these data are not seen by the model during the training
phase. Hence, it can effectively handle the nonlinear distortion
under dynamic operating states.

For comparison, we also test two other methods, namely the
Fixed-MP-DSR method and the Unified-DNN-DSR method.
Under the S0 state, the experimental input and output I/Q
components of the PA are collected, and the parameters of the
Fixed-MP-DSR method are obtained by the LS algorithm. Un-
der fluctuating working conditions, this set of MP parameters
is used to correct the distorted signal in all states. In addition,
the experimental output I/Q samples of all operating states
are sequentially concatenated into a long signal and the same
input I/Q samples are adopted as the labels of the Unified-
DNN. After joint training, the parameters of the Unified-
DNN-DSR method can be acquired. Furthermore, under ideal
conditions (assuming timely tracking of state changes), the
optimal performance achieved by the MP-DSR is used as a
benchmark, which we call the perfect MP-DSR, adopting the
MP parameters derived from each operating state. Note that
the memory depth and nonlinear order of both Fixed-MP-
DSR method and perfect MP-DSR are set to 5, the same as
those in the proposed method, for a fair comparison. Both the
proposed method and the Unified-DNN-DSR method apply
10-fold cross-validation to improve the generalization ability
of the exploited DNN and avoid overfitting. The training,
validation, and testing of these two methods are implemented
using TensorFlow 1.14 via the Keras API in Python 3.7.6.

Then, these DSR methods are performed on the distorted
signals from different operating states. Under different oper-
ating states (S1-S20), the EVM performance is illustrated in
Fig. 3(a). As can be observed, the proposed method offers
superior linearization capabilities compared to the Fixed-MP-
DSR method and Unified-DNN-DSR method, and the EVM
performance is almost the same as that of the perfect MP-DSR.
The MP parameters obtained by the Fixed-MP-DSR method
can cover the low Pins, Pouts, VDDs, VGGs (S1-S10) but not
the high Pins, Pouts, VDDs, VGGs (S11-S20). The S11-S20
are the most valuable regions where the PA operates with high
efficiency. Therefore, the proposed method outperforms the
Fixed-MP-DSR method in EVM by approximately 0.6% in
the S11-S20 states. The Unified-DNN-DSR method achieves
its best EVM performance at the S10 state and is far worse
than the proposed method in the entire test interval.

Assuming that perfect channel equalization has been em-
ployed, the received signal will include distorted signals and
AWGN. We select a highly nonlinear state operating near
state S18 for noise robustness analysis. Fig. 3(b) demonstrates
that the proposed method appears more robust to AWGN
than others. When the EVM is required to be 5%, the SNR
performance can be improved by approximately 4.3 dB using
the proposed method, which demonstrates a saving of 4.3 dB
in transmitted power while maintaining a consistent EVM.
Thus, the power efficiency of the satellite can be greatly
increased. Particularly, when the SNR is 30 dB, the pro-
posed method can acquire approximately 0.84% and 2.39%
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TABLE I: Working conditions and drain efficiencies of the PA of 20 test datasets.
States S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Pin (dBm) 29.10 29.18 29.27 29.40 29.49 29.58 29.66 29.78 29.90 29.99 30.07 30.18 30.26 30.39 30.50 30.59 30.65 30.78 30.89 30.98
Pout (dBm) 36.25 36.29 36.34 36.43 36.49 36.53 36.57 36.64 36.73 36.77 36.82 36.89 36.94 37.02 37.10 37.15 37.17 37.26 37.33 37.38
VDD (V) 27.50 27.54 27.59 27.63 27.68 27.73 27.78 27.82 27.89 27.92 27.97 28.04 28.06 28.12 28.17 28.23 28.29 28.33 28.38 28.46
VGG (V) -2.800 -2.798 -2.792 -2.787 -2.783 -2.780 -2.777 -2.771 -2.768 -2.762 -2.760 -2.759 -2.752 -2.748 -2.743 -2.740 -2.736 -2.731 -2.727 -2.722

Efficiency (%) 35.11 35.32 35.60 35.88 36.22 36.53 36.79 37.07 37.38 37.64 37.99 38.32 38.65 38.94 39.20 39.51 39.83 40.11 40.42 40.78

(a) Relation between the EVM and operating states.

4.3 dB

5%

(b) EVM versus SNR under the AWGN channel @ S18.

Fig. 3: EVM performance versus operating states and SNR.

improvement of the EVM, compared with the Fixed-MP-DSR
method and the Unified-DNN-DSR method, respectively. This
can significantly improve the quality of the received signal.

B. Experimental validation and results

The proposed method is further validated by experiments
using the setup illustrated in Fig. 4. The baseband LTE OFDM
signal with a PAPR of 10.06 dB and a bandwidth of 10MHz
is generated by MATLAB and then uploaded to the signal
generator to transmit radio frequency signals operating at C-
band, 3.5 GHz. Then, we add a pre-amplifier (MILMEGA
AS0204-7R) to drive the main CGH40006P PA. The distorted
signal is captured by a signal analyzer (R&S FSQ26) and pro-
cessed with MATLAB. In the experiment, we still focus on the
dynamic variations of Pin, VGG, and VDD with granularities
of 0.1 dBm, 0.5 V, and 0.02 V, respectively. Then we can
collect 300 datasets for training and validation. In addition,
20 datasets are collected to test whether the well-trained DNN
performs effectively for actual situations with multi-condition
variations. These working conditions and the drain efficiency
of the PA are shown in Table I. As in the simulation validation,
the memory depth and nonlinearity order are set to 5 for MP-
DSR parameter calculation. The parameters of the four hidden
layers (pre-trained layers, as demonstrated in Fig. 2) obtained
from the simulations validation are transferred to the DNN
used in the experimental validation as initial values. Since the
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Fig. 4: Experimental setup and its schematic diagram.

TABLE II: Comparison with existing methods
States S3 S10 S18

Scheme ACPR EVM ACPR EVM ACPR EVM
Original signal -46.35 dBc - -46.35 dBc - -46.35 dBc -
Without DSR -30.13 dBc 9.37% -28.50 dBc 11.16% -26.80 dBc 13.45%

Perfect MP-DSR -44.59 dBc 1.43% -44.30 dBc 1.47% -43.44 dBc 1.56%
DNN-MP-DSR -44.51 dBc 1.45% -44.28 dBc 1.47% -43.47 dBc 1.55%
Fixed-MP-DSR -43.87 dBc 1.58% -44.30 dBc 1.48% -40.70 dBc 2.22%

Unified-DNN-DSR -41.55 dBc 2.16% -42.82 dBc 2.04% -37.71 dBc 3.75%

Fig. 5: Measured ACPR performance of different methods.

fabrication tolerance brought about differences between sim-
ulation and experiment, an additional hidden layer was added
to further update the DNN. Employing such a simulation-to-
experiment transfer learning (TL)-assisted approach saves the
amount of experimental data as well as 45% of the training
time, compared to training from scratch.

The nonlinearity of the 20 states under test is getting
stronger, among which S10 is close to the primary state
(30 dBm of Pin, 28 V of VDD, and -2.76 V of VGG).
For all testing operating states, due to the deviation of data
collection, the experimental results will fluctuate but trend to
satisfactorily match the simulations. The proposed DNN-MP-
DSR method can better correct nonlinear distortion than the
other two methods and the EVM results have been completely
analyzed in detail in the simulation validation and results
section. Here S3, S10, and S18 states are chosen as examples
to demonstrate the proposed method cases with low, medium,
and high nonlinearities. Comparison with other methods in
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Drain efficiency: 

35.60%

(a) PSDs, operating @ S3.

Drain efficiency: 

37.64%

(b) PSDs, operating @ S10.

Drain efficiency: 

40.11%

(c) PSDs, operating @ S18.

Fig. 6: Measured PSDs of different DSR methods.

terms of EVM and adjacent channel power ratio (ACPR) is
shown in Table II. The results of the proposed method is
almost the same as the perfect MP-DSR results. As for EVM
performance, especially for the S18 state, the proposed method
outperforms the Fixed-MP-DSR method and the Unified-
DNN-DSR method by 0.67% and 2.20%, respectively.

The ACPR performance under different methods are de-
picted in Fig. 5. The improvements in ACPR using the
proposed DNN-MP-DSR method are approximately 0.5-3.0
dB and 1.4-5.7 dB better than the Fixed-MP-DSR method
and the Unified-DNN-DSR method, respectively. When the PA
operates near the S3, S10, and S18 states, the power spectrum
densities (PSDs) under different methods are indicated in
Fig. 6, respectively. It can be seen that under these work-
ing conditions, the PA operates in different states with low,
medium, and high nonlinearities. The ACPR performance of
the perfect MP-DSR and the proposed DNN-MP-DSR method
are similar and gratifying, dramatically improving the expan-
sion phenomenon of out-of-band spectrum. Other methods can
only achieve good results under operating states with medium
efficiency (e.g., S10). As S3 and S18 are relatively marginal,
the performance gap among various methods is obvious.

IV. CONCLUSION

In this brief, we proposed a digital signal recovery (DSR)
method that incorporates the conventional memory polynomial
model (MP-DSR) with deep learning to tackle the nonlinear
distortion caused by PAs in satellite communications. By
making full use of the telemetry monitoring data of the space-
borne PA, a set of MP-DSR parameters can be generated by
the trained deep neural network for correction of nonlinear
distortion even when the PA is under dynamic operating states
with varying input power levels, bias voltages, and supply
voltages. Simulation and experimental results demonstrate
that the proposed method can improve the DSR performance
remarkably in terms of EVM and ACPR, even when the PA op-
erates in highly nonlinear states to ensure high drain efficiency.
More complicated conditions (e.g., varying pressure, volume,
temperature, and bandwidth) can be explored for future work.
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