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Abstract—This paper proposed a Multi-Channel Multi-Domain
(MCMD) based knowledge distillation algorithm for sleep stag-
ing using single-channel EEG. Both knowledge from different
domains and different channels are learnt in the proposed
algorithm, simultaneously. A multi-channel pre-training and
single-channel fine-tuning scheme is used in the proposed work.
The knowledge from different channels in the source domain is
transferred to the single-channel model in the target domain.
A pre-trained teacher-student model scheme is used to distill
knowledge from the multi-channel teacher model to the single-
channel student model combining with output transfer and
intermediate feature transfer in the target domain. The proposed
algorithm achieves a state-of-the-art single-channel sleep staging
accuracy of 86.5%, with only 0.6% deterioration from the state-
of-the-art multi-channel model. There is an improvement of 2%
compared to the baseline model. The experimental results show
that knowledge from multiple domains (different datasets) and
multiple channels (e.g. EMG, EOG) could be transferred to
single-channel sleep staging.

Index Terms—Sleep staging, Transfer learning, Knowledge
distillation, Single-channel EEG, Brain-computer interface

I. INTRODUCTION

SLEEP staging is an essential technique for sleep-related
disease diagnosis and treatment. According to the sleep

staging definition by the American Academy of Sleep
Medicine (AASM), there are 5 sleep stages: Wake, Non-Rapid
Eye Movement 1 (N1), N2, N3, and Rapid Eye Movement
(REM). The golden standard for sleep staging is manual
labelling on Polysomnography (PSG) signals by doctors.
The PSG signals consist of Electroencephalography (EEG),
Electrooculography (EOG), Electromyography (EMG), and
Electrocardiogram (ECG). A considerable amount of literature
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[1–4] has been published on automatic sleep staging using
PSG signals with feasible accuracy. Seqsleepnet [1] achieved
a state-of-the-art accuracy based on multi-channel signals
for sleep staging using a sequence-to-sequence hierarchical
recurrent neural network (RNN). However, the acquisition
of PSG signals involves bulky equipment, which limits the
potential scenarios that can be applied.

In recent years, various wearable sleep monitoring devices
have been released using single-channel EEG signal for sleep
status analysis. Different single-channel EEG signal based
sleep staging algorithms have been reported in literature [5–
16]. DeepSleepNet [5] combines the time-invariant features
from Convolutional Neural Network (CNN) and temporal
features from Bidirectional Long Short-Term Memory (Bi-
LSTM) for single-channel sleep staging. However, the insuf-
ficiency of the single-channel data for training is a big issue
in improving the accuracy. The widely applied deep learning
models are easy to be over-fitting while the dataset is too
small. As the amount of dataset is fixed, the practical method
to increase the available training data is to either introduce
information from other domains into the training set or take
the typical ignored information into account.

In order to introduce information from other domains into
the training set, one choice is to get more knowledge from a
bigger dataset. [17] proposed a Conditional Wasserstein Gen-
erative Adversarial Network (GAN) framework to generate
EEG data for data augmentation, but the GAN failed to create
knowledge that does not exist in the dataset. Recently, pre-
trained representation model such as Bidirectional Encoder
Representations from Transformers (BERT) [18] achieved
state-of-the-art performance for natural language processing
tasks. Following this trend, [6] proposed a transfer learning
approach to transfer knowledge from a large dataset to a small
cohort. The model was pre-trained in the source domain, and
then was fine-tuned in the target domain. It achieved the state-
of-the-art accuracy in single-channel sleep staging. However,
the cross-channel knowledge transfer is ignored.

Another promising solution is to utilize knowledge from the
ignored channels. The concept of knowledge distillation [19]
was proposed for model compression. The teacher model, MT ,
usually features higher accuracy but with higher complexity,
while the student model, MS , features lower accuracy with a
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Fig. 1. The overall architecture of the proposed MCMD algorithm. It consists of two steps: 1) Source Domain Pre-training. 2) Target Domain Knowledge
Distillation. In the step 1, four-channel model M0 is trained using the three-channel MASS dataset. In the step 2, M0 is used to initialize the teacher model
MT and the student model MS . MT takes multi-channel signals xsleep−edf as its input, while MS only takes xEEGFpz Cz as its input. The teacher and
student models are trained simultaneously in the Sleep-EDF dataset while knowledge distillation is utilized between the filterbank, LSTM, and output of these
two models.

light-weight architecture. MS learns from MT with satisfac-
tory accuracy and appropriate complexity. Our previous work
[7] proposed a competition and cooperation based knowledge
distillation model, where MT is a multi-channel model, and
MS is a single-channel model. It enhances the performance of
single-channel EEG with knowledge transfer between chan-
nels. Yet, the knowledge in other domains is ignored.

This paper proposed a Multi-Channel Multi-Domain
(MCMD) based knowledge distillation algorithm for single-
channel EEG based sleep staging. The domains consist of
the MASS dataset [20] as source domain and the Sleep-EDF
dataset [21, 22] as target domain. The channels consist of
EEG, EMG and EOG channels. The proposed algorithm com-
bines knowledge transfer in four different scenarios: Same-
Domain Same-Channel (SDSC), Same-Domain Cross-Channel
(SDCC), Cross-Domain Same-Channel (CDSC) and Cross-
Domain Cross-Channel (CDCC). It consists of two steps:
1) Source domain pre-training. 2) Target domain knowledge
distillation. In the first step, the pre-trained model from the
source domain was used for initializing the teacher and the
student models. Both CDSC and CDCC transfer was employed
for those models. In the second step, knowledge distillation
was applied from the multi-channel teacher model to the
single-channel student model with the combination of output
transfer, feature transfer, and filterbank transfer. SDSC and
SDCC knowledge transfer was employed in this step. The
proposed algorithm achieves an accuracy of 86.5%, which is
higher than the previous single-channel sleep staging works
reported on literature. There is only a 0.4% deterioration from
our multi-channel teacher model, as well as a 2% improvement
compared with the baseline Seqsleepnet [1]. The experimental
results show the effectiveness of the four knowledge transfer

scenarios. Knowledge from different channels, or even differ-
ent domains could be used in single-channel sleep staging.

The rest of this paper is organized as follows: Section
II introduces the proposed MCMD knowledge distillation
algorithm with the experimental results shown in Section III,
while Section IV concludes our work.

II. MCMD BASED KNOWLEDGE DISTILLATION

Fig.1 illustrates the architecture of the proposed MCMD
knowledge distillation algorithm. The training of the proposed
algorithm consists of two steps: 1) Source domain pre-training.
2) Target domain knowledge distillation. The proposed al-
gorithm takes four-channel signals from the source domain
(MASS dataset) and the target domain (Sleep-EDF dataset)
for training. It employs a multi-channel teacher model and a
single-channel student model for sleep staging in the target
domain.

The Seqsleepnet model is chosen for MT and MS . The input
of the model is time-frequency representations of 30s PSG
epochs. A short-time Fourier transform is applied to transform
the 30s PSG raw data into power spectra with a number of
frequency bins, F , of 129, a number of time indices, T , of
29, and a number of channels, C, of 4. The structure of the
model consists of filterbank layers, epoch-wise Bi-LSTM with
a input length of the frame number in one epoch, attention
layers, sequence-wise Bi-LSTM with a input length of the
epoch number in one sequence, and Softmax layers.

A. Source Domain Pre-Training

The source domain is MASS dataset consisting of EEG
C4-A1, EMG, and EOG. The target domain is Sleep-EDF
consisting of EEG Fpz-Cz, EEG Pz-Oz, EMG, and EOG. The
EEG channel C4-A1 is duplicated for the corresponding of the



EEG Pz-Oz channel in the target domain, which eliminates the
channel number mismatch and increases the number of cross
domain knowledge transfer paths. The Seqsleepnet model M0

is trained with sequence Cross-Entropy loss function H(y, p),
which is defined as:

H(y, p) = − 1

Nb

1

L

Nb∑
k=1

L∑
j=1

5∑
i=1

ykji log(p
k
ji) (1)

where ykji denotes the ith sleep stage in the one-hot ground
truth label of the jth sample in the kth sequence of the
corresponding batch. L is the length of a sequence, which
is set as 30. Nb is the size of one batch. p is the prediction
outputs after Softmax activation which can be calculated as:

p = softmax(u(xC4−A1, xC4−A1, xEMG, xEOG)) (2)

where u(∗) denotes the last hidden layer output from M0.
The best Seqsleepnet model M0 for the four channels with
parameters W0 can be found as:

W0 = argmin
W0

(H(y, p(xC4−A1, xC4−A1, xEMG, xEOG)))

(3)
MT and MS will be both initialized from M0. Thus, multi-

channel knowledge is transferred from the source domain to
the target domain. MT would be used for all the signals from
Sleep-EDF dataset including EEG Fpz-Cz, EEG Pz-Oz, EMG
and EOG. However, MS is a single channel model only using
EEG Fpz-Cz. Although the number of the input channels
is different for MT and MS , they share the same network
structure and initialization model M0. MT and MS are then
fine-tuned in the target domain for knowledge transfer. As MS

requires input from four channels, the single-channel input
EEG Fpz-Cz is duplicated for three times.

There are two types of transfer in the first step: 1) Cross-
Domain Same-Channel (CDSC) and 2) Cross-Domain Cross-
Channel (CDCC). The knowledge from the EEG C4-A1 is
transferred to similar channels such as EEG Fpz-Cz and EEG
Pz-Oz from other domain by applying the CDSC transfer.
In particular, with the CDCC transfer, the EMG and EOG
channels from other domain would also be transferred to the
EEG channels.

B. Target Domain Knowledge Distillation

The multi-channel knowledge in the target domain is even
more crucial for the single-channel sleep staging as there is no
domain shift. There is a knowledge distillation between MT

and MS after the pre-training. The MT model can learn from
the multi-channel signals and teach the MS model. The loss
function for this knowledge distillation is defined as:

Losstarget = LCE teacher + LCE student + αLKD filter

+βLKD LSTM + γLKD output

(4)
where LCE teacher and LCE student are sequence cross-
entropy loss functions for MT and MS , respectively.
LKD filter, LKD LSTM and LKD output are knowledge dis-
tillation losses of the filterbank, the epoch-wise LSTM, and

the hidden layer output between the teacher and the student,
respectively. The hyper-parameters α, β and γ are all set as
1500. The loss of the knowledge distillation is defined as:

LKD filter = ∥û1 − v1∥22 (5)

LKD LSTM = ∥û2 − v2∥22 (6)

LKD output = ∥û3 − v3∥22 (7)

where û and v are output features after the filterbank, the
epoch-wise LSTM and the final hidden layer for MT and MS ,
respectively.

Simultaneous training is applied to the proposed teacher-
student system. A more robust model can be expected since
MS could learn from the dynamic paths for training instead of
a static pre-trained MT with fixed parameters. However, the
knowledge distillation loss increases the similarity between
MT and MS , which may result in a reduction in the accuracy
of MT and MS simultaneously. A gradient block is applied
to the knowledge distillation loss to stop MS decreasing the
performance of MT during the simultaneous training.
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Fig. 2. Knowledge Transfer Paths in the proposed work. There are four types
of knowledge transfer methods: CDSC, CDCC, SDCC, and SDSC.

Fig.2 illustrates the knowledge transfer paths in the pro-
posed work. There are four types of knowledge transfer meth-
ods: CDSC, CDCC, SDCC, and SDSC. The model is divided
into two parts: the low-level filterbank and the high-level
network. The filterbank consists of fully connected layers.
The network consists of a hierarchical Bi-LSTM, an attention
layer and a fully connected layer. In the low-level filterbank,
each weight is responsible for one channel independently.
The weights in the high-level network deal with all the four
channels simultaneously. In the first step, there are CDSC
and CDCC knowledge transfer between M0 and MT , MS

with the pre-training and fine-tuning scheme. The knowledge
could directly be transferred between the models through the
different weights. For CDSC, the knowledge is transferred
between similar channels from different domains. For instance,
the EEG C4-A1 of the MASS dataset is transferred to the
EEG Fpz-Cz of the Sleep-EDF dataset. Between these two



domains, there is a significant difference due to the usage of
different acquisition devices. In addition, the locations of the
EEG channels are also different. However, as they share a low
level representation of EEG, a simple duplication of the weight
in M0 still provides a proper initialization for the training,
which prevents the model from over-fitting with the increase of
the amount of training data. For CDCC, the knowledge origins
from different channels of different domains. For example,
the EMG and EOG of the source domain are transferred to
the EEG channels in the target domain. EMG and EOG are
meaningful for sleep staging since the EMG signal is usually
used in the classification among the REM and NREM stages,
and the EOG helps determine when sleep occurs as well as
whether the subject is in the REM sleep stage. The weights of
the two channels, W0EMG and W0EOG, contain information
that is useful in the determination of those sleep stages. Thus
the introduction of the EMG and EOG channels is helpful for
the training of MS and MT .

In the second step, there are SDCC and SDSC transfer
between MT and MS . The knowledge distillation loss forces
the intermediate layers of these two networks to output the
same results. The knowledge distillation loss also causes an
indirect knowledge transfer between the weights. There is
knowledge transfer from the EMG and EOG channels to the
EEG channel in SDCC transfer, as well as from the two
EEG channels to the single-channel EEG Fpz-Cz with SDSC
transfer. Since MT is trained based on multi-channel signals,
it converges to a smoother feature space. Even if the weights
responsible for the single-channel EEG processing are taken
out separately, it would be better than the models trained
using the single-channel EEG. Therefore, in SDSC, besides
EEG Pz-Oz, EEG Fpz-Cz in MT will also be transferred to
the same channel in MS . There are three different knowledge
distillation losses monitored in this step. Firstly, LKD output

pushes the output of the final hidden layer from the two
models be similar to each other. The output is a posterior
probability distribution for sleep staging. As not disturbed by
the number of channels, it is the most effective knowledge
distillation approach. Secondly, LKD filter compels these two
models to output equal time-invariant features extracted by the
filterbank, which is equivalent to the translation of different
channel features. Thirdly, LKD LSTM makes the epoch-wise
LSTM of the outputs from MT and MS share the same
temporary feature. It is a supplement for time-invariant feature
translation. In the combination of the filterbank transfer, the
LSTM feature transfer, and the output transfer, the knowledge
distillation loss enforces the two models similar not only in
output, but also in the features of the intermediate layers
with different inputs and weights. In this case, MS learns
the relationship between the different channels, although the
input signal is only EEG Fpz-Cz, the intermediate features are
similar to MT with a four-channel input.

III. EXPERIMENTAL RESULTS

The proposed work applies pre-training in the source do-
main using the MASS dataset. The pre-training was completed

under a 20-fold cross validation protocol for 100 epochs.
Then the model with the highest accuracy was retained. The
knowledge distillation is applied in the target domain using the
Sleep-EDF dataset. The Sleep-EDF dataset is used for test-
ing by a leave-one-subject-out 20-fold cross-validation. The
MASS dataset contains 200 participants with overnight EEG
records and corresponding sleep stages. The dataset contains
one scalp-EEG signals from C4-A1 channel, a submental chin
EMG, and a horizontal EOG. All the three channels were
used for the pre-training of the four-channel model M0. The
Sleep-EDF dataset contains 20 participants with two scalp-
EEG signals from Fpz-Cz and Pz-Oz channels, an EMG, and
an EOG. For the multi-channel teacher model, signals from
all four channels are employed, while only the EEG Fpz-Cz
channel is employed for the single-channel student models.
The sleep stages consist of Wake, N1, N2, N3 and REM.

TABLE I
COMPARISON BETWEEN TRANSFER METHODS

Transfer Methods ACCOutput Transfer Filterbank Transfer LSTM Transfer
✓ ✓ ✓ 86.52%
✓ × × 86.44%
× ✓ × 86.31%
× × ✓ 86.26%
× × × 85.77%

Table I compares the performance between different transfer
methods from the proposed work. It is noted that the proposed
output transfer features the best, since the posterior probability
distribution from the final hidden layer contains more infor-
mation concerning sleep staging without being contaminated
by other channels. In addition, with the combination of these
three transfer losses, a better result is achieved. The output of
the filterbank contains more useful knowledge than the LSTM,
and this might because that the filterbank transfer enables
one-to-one channel transfer by extracting features for different
channels independently using different weights. In contrast, the
LSTM transfer employs all the four channels simultaneously.
The results also indicate that any transfer method is better than
nothing.

Table II compares the proposed work with previous works.
The MCMD model achieves an accuracy (ACC) of 86.5% and
a Macro-F1 (MF1) of 80.9 in single-channel EEG sleep stag-
ing. With the combination of four types of transfer methods,
our model achieves a comparable result with multi-channel
model using only single-channel EEG. An improvement of
0.4% is achieved while comparing to the state-of-the-art single
channel sleep staging method in literature [14] based on
subject independent 20-fold cross validation. Compared with
our previous work [7], there is a 2.8% improvement of ACC
and a 5.4 improvement of MF1 from the introduction of multi-
domain knowledge, which also indicates that it solves the
problem of unbalanced sample distribution.

Table III demonstrates the Ablation experiment results of the
MCMD algorithm. Different knowledge transfer methods and
model capacities are applied. The baseline Seqsleepnet model
achieves an ACC of 84.57%. According to [6], there is a 1.04%



TABLE II
COMPARISON WITH THE STATE-OF-THE-ART

Methods Dataset Channels Transfer
Methods

Overall Metrics
ACC MF1 kappa

This work Sleep-EDF
(MASS) Single

CDSC
CDCC
SDSC
SDCC

86.5 80.9 0.82

TNSRE18 [2] Sleep-EDF Single None 81.4 72.2 -
TBE18 [3] Sleep-EDF Single None 81.9 73.8 0.74
TNSRE17 [5] Sleep-EDF Single None 82.0 76.9 0.76
EMBC18 [8] Sleep-EDF Single None 82.5 72.0 0.76
EMBC18 [10] Sleep-EDF Single None 82.6 74.2 0.76

ISCAS20 [7] Sleep-EDF Single SDSC
SDCC 83.7 75.7 0.78

TCASII21 [13] Sleep-EDF Single None 83.8 75.3 0.78

TBE20 [6] Sleep-EDF
(MASS) Single CDSC 85.2 79.6 0.79

TNSRE21 [14] Sleep-EDF Single None 86.1 79.2 0.81
TNSRE19 [1] MASS Three None 87.1 81.5 0.833

TABLE III
ABLATION EXPERIMENTS IN MCMD ALGORITHM

Student Model
Transfer Method Source Domain Target Domain Capacity ACC
Baseline-1C No Single-Channel 1C 84.57%
CDSC Single-Channel Single-Channel 1C 85.61%
CDSC+CDCC Multi-Channel Single-Channel 4C 85.77%
CDSC+CDCC
+SDSC+SDCC Multi-Channel Multi-Channel 4C 86.52%

Teacher Model
Transfer Method Source Domain Target Domain Capacity ACC
Baseline No Multi-Channel 4C 86.27%
CDSC+CDCC Multi-Channel Multi-Channel 4C 86.91%

improvement compared with the baseline by using single-
channel pre-training from the source domain. The proposed
multi-channel pre-training features better ACC by applying
a combination of CDSC and CDCC. As only a small part
of the knowledge transfer is taken across different channels
and domains, the improvement is not high. With a teacher-
student knowledge distillation scheme combined with all the
four transfer scenarios, MS achieves an ACC of 86.52±5.61%
for single-channel sleep staging.

IV. CONCLUSION

This paper proposed a Multi-Channel Multi-Domain knowl-
edge distillation algorithm for single-channel sleep staging.
The proposed algorithm combines knowledge transfer in four
different scenarios: Cross-Domain Same-Channel (CDSC),
Cross-Domain Cross-Channel (CDCC), Same-Domain Cross-
Channel (SDCC) and Same-Domain Same-Channel (SDSC),
achieving a state-of-the-art single-channel sleep staging ACC
of 86.5%, with only a 0.6% deterioration from the state-of-the-
art multi-channel model. Experimental results show that the
knowledge from multiple domains and multiple channels could
be transferred to single-channel EEG sleep staging, bringing
an accuracy improvement of 2%.
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