
1

Multiplierless Design of Very Large Constant
Multiplications in Cryptography

Levent Aksoy, Member, IEEE, Debapriya Basu Roy, Member, IEEE, Malik Imran, Student Member, IEEE, Patrick
Karl, and Samuel Pagliarini, Member, IEEE

Abstract—This brief addresses the problem of implement-
ing very large constant multiplications by a single variable
under the shift-adds architecture using a minimum number
of adders/subtractors. Due to the intrinsic complexity of the
problem, we introduce an approximate algorithm, called TÕLL,
which partitions the very large constants into smaller ones. To
reduce the number of operations, TÕLL incorporates graph-based
and common subexpression elimination methods proposed for the
shift-adds design of constant multiplications. It can also consider
the delay of a multiplierless design defined in terms of the
maximum number of operations in series, i.e., the number of
adder-steps, while reducing the number of operations. High-level
experimental results show that the adder-steps of a shift-adds
design can be reduced significantly with a little overhead in the
number of operations. Gate-level experimental results indicate
that while the shift-adds design can lead to a 36.6% reduction
in gate-level area with respect to a design using a multiplier, the
delay-aware optimization can yield a 48.3% reduction in mini-
mum achievable delay of the shift-adds design when compared
to the area-aware optimization.

Index Terms—very large constant multiplication, shift-adds
design, graph-based algorithms, common subexpression elimina-
tion, delay-aware optimization, cryptography.

I. INTRODUCTION

Multiplication of constant(s) by a variable is a ubiqui-
tous operation in many applications, such as digital signal
processing and cryptography. Since constants are determined
beforehand in these applications and the implementation of
a multiplier in hardware is expensive in terms of area and
power consumption, the constant multiplication can be real-
ized under the shift-adds architecture using only shifts and
adders/subtractors [1]. Note that shifts by a constant value
can be realized using only wires which represent no hard-
ware cost. In cryptographic algorithms, such as elliptic curve
cryptography (ECC) [2], [3] and supersingular isogeny key
encapsulation (SIKE) [4], [5], prime numbers to be multiplied
by a variable can respectively be 204-521 bits and 448-768 bits
long due to security requirements. The parallel realization of

This work has been partially conducted in the project “ICT programme”
which was supported by the European Union through the European Social
Fund. It was also partially supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 952252
(SAFEST), and by the Estonian Research Council grant MOBERC35.

L. Aksoy, M. Imran, and S. Pagliarini are with the Department
of Computer Systems, Centre for Hardware Security, Tallinn University
of Technology, Tallinn, Estonia (e-mail: {levent.aksoy, malik.imran, and
samuel.pagliarini}@taltech.ee.)

D. B. Roy and P. Karl are with the Technical University of Munich,
Department of Electrical and Computer Engineering, Chair for Security in
Information Technology, Munich, Germany (e-mail: {debapriya.basu-roy and
patrick.karl}@tum.de.)

such constant multiplications is required for high-performance
cryptographic designs [2]. Thus, the very large constant mul-
tiplication (VLCM) problem is defined as finding a minimum
number of adders/subtractors which realize the multiplication
of given very large constants by a variable. Similar to [6], this
problem is NP-complete.

Techniques under the residue residue number system [7]–
[9], that enable large constant multiplications to be realized
using a set of small constant multiplications, have been
introduced, but they require the logic for conversions be-
tween binary and residue number system. Many large in-
teger multiplication architectures [10]–[12] have also been
proposed, but both operands in these architectures are assumed
to be variable. Moreover, prominent algorithms [13]–[16]
have been developed for the shift-adds design of constant
multiplications, but they are limited with the bit-width of
constants. Furthermore, the VLCM problem has not been
studied thoroughly. Hence, we introduce the first approxi-
mate algorithm TÕLL proposed for the VLCM problem,
which is the main contribution of this brief. TÕLL divides the
very large constants into small coefficients with a reasonable
bit-width and re-defines these very large constants as linear
equations in the form of summation of shifted versions of
these small coefficients. It finds common partial products in
a shift-adds design of these small coefficient multiplications
using a prominent graph-based (GB) algorithm [14], [15]. It
extracts common subexpressions among the linear equations
using an efficient common subexpression elimination (CSE)
algorithm [17], [18]. The performance of a design can be
more critical than other characteristics and thus, an increase
in area and power consumption can be compromised to meet
the performance criterion. Hence, TÕLL can also consider the
maximum number of operations in series, called the number
of adder-steps, while reducing the number of operations.
Experimental results show that shift-adds designs obtained by
TÕLL have significantly less hardware complexity than those
including generic multipliers and compressor trees, and delay-
aware optimization leads to a significant reduction in minimum
delay of a design with respect to area-aware optimization.

The remainder of this brief is organized as follows: Sec-
tion II introduces background concepts. TÕLL is described
in detail in Section III. Experimental results are given in
Section IV. Finally, Section V concludes the brief.

II. BACKGROUND

This section presents background concepts on the shift-adds
design of constant multiplications. Since constants are mul-

ar
X

iv
:2

20
5.

10
59

1v
1 

 [
cs

.C
R

] 
 2

1 
M

ay
 2

02
2



2

tiplied by a common variable, the realization of constant
multiplications corresponds to the realization of constants. For
example, 3x = x� 1+x = (1� 1+1)x can be rewritten as
3 = 1� 1+ 1 by eliminating the variable x from both sides.
These notations will be used interchangeably in this brief.

The straightforward digit-based recoding (DBR) tech-
nique [19] realizes the shift-adds design of constant multipli-
cations in two steps: (i) define the constants under a particular
number representation, e.g., binary or canonical signed digit
(CSD)1 [17]; (ii) for the nonzero digits in the representation of
constants, shift the input variable according to digit positions
and add/subtract the shifted variables with respect to digit
values. Consider the multiple constant multiplication (MCM)
block realizing 43x and 59x as an example. The decomposi-
tions of its constants under binary are given as follows:

43x = (101011)binx = x�5 + x�3 + x�1 + x

59x = (111011)binx = x�5 + x�4 + x�3 + x�1 + x

which lead to a design with 7 operations in 4 adder-steps, as
shown in Fig. 1(a).

Algorithms, that aim to maximize the sharing of partial
products in the shift-adds design of constant multiplications,
can be grouped in two categories based on the search space
they explore: (i) The CSE methods [17], [18], [20]–[24]
initially define the constants under a number representation.
Then, in an iterative fashion, after all possible subexpressions
that can be extracted from the nonzero digits in representations
of constants, are identified, the “best" subexpression, generally,
the most common one, is chosen to be shared among the con-
stant multiplications. The exact CSE algorithm [20] uses a 0-1
integer linear programming (ILP)-based approach to maximize
the sharing of subexpressions. (ii) The GB methods [13]–[16],
[25]–[27], which are not restricted to any particular number
representation, aim to find the “best" intermediate constants,
generally, the ones that enable to realize the constant multi-
plications with a small number of operations. They consider
a large number of possible realizations of a constant and
obtain better solutions than CSE methods [15]. While the
exact GB algorithm of [15] can explore the search space using
breadth-first and depth-first search techniques, the exact GB
algorithm of [16] uses a 0-1 ILP-based approach.

Returning to our simple MCM example, the exact CSE al-
gorithm [20] finds a solution with 4 operations in 4 adder-steps
when constants are defined under binary, sharing the common
subexpressions 9x = (1001)binx and 41x = (101001)binx
among the constant multiplications as shown in Fig. 1(b). On
the other hand, the exact GB algorithm [15] obtains a solution
with a minimum number of 3 operations in 3 adder-steps,
finding the intermediate constant multiplication 5x to realize
the constant multiplications as shown in Fig. 1(c).

In a shift-adds design of constant multiplications, the delay
is generally defined as the number of adder-steps [28]. Note
that the minimum adder-steps of a single constant c is com-
puted as masc = dlog2NZ(c)e, where NZ(c) denotes the

1An integer can be written in CSD using k digits as
∑k−1

i=0 di2
i, where

di ∈ {1, 0,−1} with 0 ≤ i ≤ n − 1. Under CSD, nonzero digits are not
adjacent and a minimum number of nonzero digits is used.

Fig. 1. Shift-adds designs of 43x and 59x: (a) DBR technique [19]; (b) exact
CSE method [20]; (c) exact GB method [15]; (d) approximate GB method
under a delay constraint [30].

number of nonzero digits in the CSD representation of the
constant. Thus, given a set of constants C = {c1, c2, . . . , cn},
the minimum adder-steps of multiple constants in the set C
is computed as masC = max1≤i≤n{masci} [28]. There exist
efficient CSE and GB algorithms introduced to optimize the
number of operations in the multiplierless design where the
delay constraint given in terms of the number of adder-steps
is never violated [20], [28]–[30]. Returning to our example,
Fig. 1(d) shows the realization of constant multiplications with
a minimum number of adder-steps, i.e., 2, whose solution is
obtained by the GB algorithm of [30] using 4 operations.

The proposed algorithms, except the DBR technique, are
limited with the size of constants. This is simply because the
number of possible partial products of a constant increases
dramatically as its bit-width increases [15]. For example, the
exact GB algorithm [13] developed for the shift-adds design of
a single constant multiplication can handle a constant up to 32
bits. The approximate [14] and exact [15] GB algorithms can
handle multiple constants up to 31 and 16 bits, respectively.

III. TÕLL - THE PROPOSED METHOD

TÕLL takes n large constants, i.e., lc1, lc2, . . . , lcn, in
hexadecimal format and the number of bits in partition, i.e.,
p, as inputs and returns the multiplication of these large
constants by an input variable under the shift-adds architecture
described in Verilog as an output. Due to the limitations of
algorithms proposed for the multiplierless design on the size
of constants, the value of p is determined to be a multiple
of 4 with a minimum and maximum value of 4 and 28,
respectively. It initially partitions the large constants into p-bit
coefficients2 and defines each large constant as the summation
of shifted p-bit coefficients, called a linear equation. Then,
it applies a GB algorithm [14], [15] to these coefficients to
find their multiplierless realization. Finally, it uses a CSE
heuristic [17], [18] to extract common subexpressions in the
linear equations and realizes the final linear equations using
two-term subexpressions. It includes three stages: (i) partition-
ing; (ii) realization of coefficients; and (iii) realization of linear
equations. It can also consider the delay of the multiplierless
design while reducing the number of operations. In following,
its stages are described under the area-aware optimization.
Finally, details in the delay-aware optimization are given.

2Partitioning of a k-bit large constant lc into p-bit coefficients can be written
as

∑dk/pe
i=1 lc[ip− 1 : (i− 1)p]2(i−1)p =

∑dk/pe
i=1 ci2

(i−1)p.



3

Fig. 2. Stages of TÕLL on a small example with two large constants: (a) par-
titioning; (b) realization of coefficients; (c) realization of linear equations.

Fig. 3. Multiplierless realization of large constant multiplications in Fig. 2.

Partitioning: In TÕLL, two partitioning strategies are im-
plemented. In the first one, called the strict partitioning,
starting from the least significant bit, p-bit coefficients are
generated from the hexadecimal digits of each large constant
and stored as integers in set C without repetition. Shift values
of these coefficients are computed based on the locations of
hexadecimal digits and stored in set S. While partitioning
large constants into p-bit coefficients, sequences of r 0s, where
r ≥ p and r mod p = 0, are found and ignored, since such
a sequence requires no operations. Also, sequences of r 1s,
where r ≥ p and r mod p = 0, are identified and replaced by
a subexpression, denoted as seqfr, which needs only a single
subtractor, i.e., 2r − 1. These sequence subexpressions are
stored in set Seqf without repetition. Finally, the realization
of each large constant is written as a linear equation in the
form of summation of coefficients in set C based on their
shift values in set S and sequence expressions in set Seqf
based on their shift values in large constants. Fig. 2(a) shows
the steps of the strict partitioning strategy when p is 8.

In the second one, called common digit partitioning, ini-
tially, all possible p-bit coefficients are identified and the ones,
which occur more than once, are extracted from the large
constant in an order of their number of occurrences iteratively,
starting from the greatest one. Then, the remaining digits are
divided based on the strict partitioning. The common digit par-
titioning aims to increase the sharing of common expressions
while realizing the linear equations. For our example, common
coefficients 0×A6, 0×17, and 0×4C are initially extracted.

Realization of Coefficients: Coefficients in the linear equa-
tions of each large constant determined at the partitioning stage
and stored in set C are realized under the shift-adds architec-
ture. TÕLL incorporates two prominent GB algorithms [14],
[15]. For our example, Fig. 2(b) presents the solution of the
exact algorithm [15] on coefficients in set C with 4 operations
in 3 adder-steps.

Realization of Linear Equations: In TÕLL, common
subexpressions in the linear equations obtained at the par-
titioning stage are identified and eliminated using a CSE
heuristic. The developed CSE method is based on the CSE
heuristics of [17], [18]. In this method, all subexpressions
with two terms are found considering their shift values, their

TABLE I
HIGH-LEVEL RESULTS OF SHIFT-ADDS DESIGNS REALIZING SINGLE PRIME

NUMBER MULTIPLICATIONS.
Instance Prime p = 8 p = 16 p = 24

Width oper step time oper step time oper step time

anomalous [3] 220 19 13 4.5 15 12 4.5 15 10 4.8
anssifrp [3] 272 60 33 5.7 43 24 5.6 43 15 6.8
bn(2,254) [3] 268 39 22 5.5 32 16 5.4 29 18 5.7
brainpool256 [3] 268 58 35 5.6 44 27 5.5 41 20 7.3
brainpool348 [3] 400 80 51 8.1 61 33 7.9 54 27 10.4
sike610 [5] 640 69 39 12.4 51 28 12.5 47 24 14.3
sike751 [5] 768 87 50 14.7 62 36 14.7 55 27 17.3

number of occurrences is computed, and the one with the
maximum number of occurrences greater than 1 is chosen
to be eliminated. This process is iterated until there is no
subexpression with a maximum number of occurrences greater
than 1. For our example, Fig. 2(c) shows the realization of
the common subexpression and the final version of linear
equations after this subexpresion is eliminated. Then, till the
number of coefficients and subexpressions in each final linear
equation is less than or equal to 2, in an iterative fashion,
two terms having the smallest bit-width value are determined,
defined as a subexpression indicating the summation of these
terms, and eliminated from the linear equations. The insight
behind the selection of coefficients and subexpressions based
on their bit-widths is to reduce design area. For our example,
Fig. 2(c) also shows the realization of final linear equations
which needs 6 operations in 3 adder-steps.

Observe from Fig. 2 that the multiplierless design requires a
total number of 13 adders/subtractors, i.e., 2 for the sequence
subexpressions, 4 for the shift-adds realization of coefficients,
1 for the common subexpression, and 6 for the realization
of final linear equations, in 7 adder-steps. Fig. 3 presents
this multiplierless design, where the top, middle, and bottom
terms inside operations stand respectively for the operation
type, operation output, and bit-width of the operation output,
assuming that the input variable x is 16 bits long.

Delay-Aware Optimization: During the delay-aware real-
ization of large constants under the shift-adds architecture, the
coefficients of linear equations determined at the partitioning
stage are realized using the algorithms of [14], [30] when
the delay constraint is set to the masC value of multiple
coefficients in set C. For our example, the coefficients are
implemented using 5 operations in 2 adder-steps using the
algorithm of [30]. Moreover, while choosing common subex-
pressions among the ones with the maximum number of
occurrences to be eliminated in the linear equations, the one,
that leads to the smallest increase in the number of adder-steps,
is preferred. For our example, the subexpression exp0 of Fig. 2
is also selected during the delay-aware optimization. Lastly, in
the realization of final linear equations, the subexpressions are
generated with a minimum number of adder-steps considering
the bit-width of coefficients and subexpressions. For our exam-
ple, the final linear equations are realized using 6 operations in
2 adder-steps. As an example, the final linear equation lc1 is
realized as lc1 = exp2+exp1, where exp1 = exp0 << 8+c76
and exp2 = seqf8 << 32+ c19 << 24. We note that for our
example, the delay-aware optimization leads to a design with
a total number of 14 operations in 5 adder-steps.

In TÕLL, the design and verification process of the mul-
tiplierless realization of large constant multiplications is au-



4

TABLE II
GATE-LEVEL RESULTS OF DESIGNS REALIZING SINGLE PRIME NUMBER MULTIPLICATIONS.

Instance
Generic Compressor Shift-Adds

Multiplier Trees p = 8 p = 16 p = 24
area delay power area delay power area delay power area delay power area delay power

anomalous [3] 3477 9846 849 4367 4742 161 2516 4234 677 2202 4480 606 2530 5922 823
anssifrp [3] 9525 23215 2630 12339 27401 526 8082 31183 2441 7988 25890 2524 9506 24351 2998
bn(2,254) [3] 6297 22150 1537 8585 11266 322 4929 9460 1335 4968 10646 1505 4957 10381 1474
brainpool256 [3] 10292 22956 2815 12356 27615 540 8268 32319 2583 8273 27506 2738 8779 23264 2906
brainpool348 [3] 14539 33738 4010 17184 37916 759 10942 43181 3367 11095 36695 3608 11280 31180 3777
sike610 [5] 11597 32475 3117 14217 32933 609 10476 33891 3163 10751 29473 3652 11562 31862 4100
sike751 [5] 14670 40180 4037 17636 38633 786 12757 40163 3974 12649 35587 4137 14453 39910 5255

TABLE III
GATE-LEVEL RESULTS OF DESIGNS WITH MINIMUM ACHIEVABLE DELAY.
Instance Area-Aware Optimization Delay-Aware Optimization

area delay power oper step area delay power

anomalous [3] 6296 1135 1304 17 6 5952 1116 1317
anssifrp [3] 22488 1982 5786 52 8 22696 1403 5152
bn(2,254) [3] 15069 1582 3868 34 7 12597 1258 2885
brainpool256 [3] 22937 2396 6487 49 8 21385 1404 5312
brainpool348 [3] 29394 2729 7889 69 8 30440 1410 6714
sike610 [5] 27444 2534 8324 64 8 29243 1528 7601
sike751 [5] 29736 3643 8355 71 8 33159 2167 8899

tomated. TÕLL can generate the behavioral description of
the design in Verilog and the associated testbench for ver-
ification. It can also describe the large constant multipli-
cations using multipliers in Verilog. TÕLL is available at
https://github.com/leventaksoy/vlcm.

IV. EXPERIMENTAL RESULTS

As the first experiment set, the well-known cryptographic
prime numbers are taken from [3], [5] and the related constants
to be multiplied by a variable are computed. Table I presents
these instances, each of which includes a single prime number,
i.e., n is 1, and their bit-width values. Note that these elliptic
curves are chosen because the underlying primes do not have
any special form. Other elliptic curves, such as Curve25519
and NIST Curves, are based on either pseudo-Mersenne or
Solinas primes where modular reductions are performed using
a small number of adders/subtractors [3]. Hence, modular
reduction in elliptic curves given in Table I are performed
using Montgomery reduction that involves constant multipli-
cation. The results shown in this work focus only on the
constant multiplication of Montgomery reduction, not the en-
tire Montgomery reduction. Table I also shows the high-level
results of shift-adds designs, where oper, step, and time denote
the number of operations, the number of adder-steps, and
the run-time of TÕLL in seconds, respectively. These results
were obtained when the strict partitioning strategy is chosen,
the area-aware optimization is used, the approximate GB

algorithm [14] is selected for the shift-adds realization of
coefficients, and the bit-width of the input variable is 16. Note
that TÕLL was run on a PC including an Intel Core i5-10600K
processing unit at 4.1 GHz with 16 GB memory.

Observe from Table I that the use of a high p value leads to
a shift-adds design with a small number of operations and the
multiplierless realizations are obtained in a reasonable time.

Table II presents the gate-level results of designs realiz-
ing prime number multiplications using a generic multiplier,
compressor trees, and adders/subtractors under the shift-adds
architecture. In this table, area, delay, and power stand for
the total area in µm2, delay in the critical path in ps, and
total power dissipation in µW , respectively. Logic synthesis
was performed by Cadence Genus using a commercial 65 nm
cell library without a strict delay constraint aiming for area
optimization. Designs are validated using 10,000 randomly
generated inputs in simulation.

Observe from Table II that the shift-adds designs occupy
less area when compared to those using a generic multiplier
and compressor trees. The gain in area on the shift-adds design
with respect to the one using a generic multiplier (compressor
trees) reaches up to 36.6% (49.5%) on the anomalous instance
when p is 16. Note also that as p increases, the hardware
complexity of the shift-adds design tends to increase, although
there are designs obtained when p is 16 (or 24) with less area
when compared to those obtained when p is 8 (or 16). This
is because as p increases, the sizes of operations, which have
an impact on the hardware complexity, are increased.

In order to show the impact of the optimization techniques
on the minimum achievable delay, the shift-adds designs
obtained under the area- and delay-aware optimization when
p is 16 are synthesized with timing constraints changed in a
binary search manner till the minimum delay in the critical
path is found without a negative slack. The initial lower and
upper bounds of the timing constraint are taken as 0 and 80 ns,
respectively. Table III shows the gate-level results of designs

 0

 100

 200

 300

 400

 500

 600

 700

 800

400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r 

of
 o

pe
ra

tio
ns

Bit-width of large constants

p=4
p=8

p=12
p=16
p=20
p=24
p=28

 0

 100

 200

 300

 400

 500

 600

 700

400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r 

of
 o

pe
ra

tio
ns

Bit-width of large constants

Area-Aware
Delay-Aware

 0

 10

 20

 30

 40

 50

 60

 70

400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r 

of
 a

dd
er

-s
te

ps

Bit-width of large constants

Area-Aware
Delay-Aware

(a) (b) (c)
Fig. 4. Results on randomly generated instances when n is 5: (a) impact of p on the number of operations; (b)-(c) impact of the optimization technique on
the number of operations and adder-steps when p is 16.



5

with the minimum achievable delay and also, the high-level
results of designs when the delay-aware optimization is used.

Observe from Tables I and III that the delay-aware optimiza-
tion yields significant reduction in the number of adder-steps
with an increase in the number of operations. Thus, the designs
obtained using the delay-aware optimization have significantly
improved delay over those obtained using the area-aware
optimization, reaching up to a 48.3% reduction on the brain-
pool348 instance. However, those designs have larger area than
the ones obtained under the area-aware optimization, e.g., the
anssifrp and brainpool348 instances. It is also observed from
the results obtained during the binary search of minimum delay
that the delay-aware optimization can generate designs with
less area and delay when compared to the design obtained
under the area-aware optimization with the minimum delay,
e.g., the bn(2,254), and brainpool256 instances.

As the second experiment set, we used randomly generated
multiple constants whose bit-width ranges from 400 to 1000
in a step of 100, i.e., a total of 7 categories. We generated 30
instances for the same bit-width of constants when the number
of constants, i.e., n, is 5, a total of 7 × 30 = 210 instances.
In this experiment, the algorithm of [14] is used to realize the
multiplierless design of coefficients and the strict partitioning
strategy is chosen.

Fig. 4(a) presents the average number of operations obtained
by TÕLL when the area-aware optimization is considered.
Observe that the use of a high p value for partitioning the
hexadecimal digits decreases the required number of opera-
tions, simply because it reduces the number of terms in linear
equations. Interestingly, less number of operations can be
obtained when p is decreased, because the number of common
subexpressions in the linear equations is increased in this case.
Although it is clear that an increase in p decreases the required
number of operations, the prominent GB algorithms [14], [15]
are limited with the size of coefficients and the reduction of
the number of operations does not always lead to a design
with a small area as shown in Tables I and II.

Figs. 4(b)-(c) show the average number of operations and
adder-steps obtained by TÕLL when the area- and delay-aware
optimizations are used and p is 16. Note that the delay-aware
optimization can reduce the number of adder-steps of a
shift-adds design significantly, but with an increase in the
number of operations. Note that while the maximum increase
in the number of operations is 1.17×, the maximum decrease
in the number of adder-steps is 7.14× in the delay-aware
optimization with respect to the area-aware optimization.

V. CONCLUSIONS

This brief introduced TÕLL, the first approximate algorithm
proposed for the VLCM problem. Our method is equipped
with both area and delay optimization techniques, including
previously proposed algorithms used to reduce the number of
operations and adder-steps of a shift-adds design. Experimen-
tal results clearly indicated that TÕLL can lead to a significant
reduction on the circuit area when compared to that of a design
with a multiplier or compressor trees. It can also generate
alternative designs which may help a designer to choose the
best fit for the design requirements in a given application.

REFERENCES

[1] H. Nguyen and A. Chatterjee, “Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis,” IEEE TVLSI, vol. 8, no. 4, pp. 419–424, 2000.

[2] D. B. Roy and D. Mukhopadhyay, “High-Speed Implementation of ECC
Scalar Multiplication in GF(p) for Generic Montgomery Curves,” IEEE
TVLSI, vol. 27, no. 7, pp. 1587–1600, 2019.

[3] D. J. Bernstein and T. Lange. SafeCurves: Choosing Safe Curves for
ECC. [Online]. Available: https://safecurves.cr.yp.to

[4] D. B. Roy, T. Fritzmann, and G. Sigl, “Efficient Hardware/Software Co-
Design for Post-Quantum Crypto Algorithm SIKE on ARM and RISC-V
based Microcontrollers,” in ICCAD, 2020, pp. 1–9.

[5] D. Jao. Supersingular Isogeny Key Encapsulation. [Online]. Available:
https://sike.org/files/SIDH-spec.pdf

[6] P. Cappello and K. Steiglitz, “Some Complexity Issues in Digital Signal
Processing,” IEEE Tran. on Acoustics, Speech, and Signal Processing,
vol. 32, no. 5, pp. 1037–1041, 1984.

[7] R. Chaves and L. Sousa, “Improving Residue Number System Mul-
tiplication with More Balanced Moduli Sets and Enhanced Modular
Arithmetic Structures,” IET, vol. 1, no. 5, pp. 472–480, 2007.

[8] J. Y. S. Low and C.-H. Chang, “A New Approach to the Design of
Efficient Residue Generators for Arbitrary Moduli,” IEEE TCAS, vol. 60,
no. 9, pp. 2366–2374, 2013.

[9] P. Patronik and S. J. Piestrak, “Design of Residue Generators with
CLA/Compressor Trees and Multi-Bit EAC,” in LASCAS, 2017, pp. 1–4.

[10] A. A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers
on Automata,” Soviet Physics Doklady, vol. 7, pp. 595–596, 1963.

[11] P. L. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[12] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of Large Inte-
ger Multiplication Methods on Hardware,” IEEE Tran. on Computers,
vol. 66, no. 8, pp. 1369–1382, 2017.

[13] J. Thong and N. Nicolici, “A Novel Optimal Single Constant Multipli-
cation Algorithm,” in DAC, 2010, pp. 613–616.

[14] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Tran. on Algorithms, vol. 3, no. 2, 2007.

[15] L. Aksoy, E. Gunes, and P. Flores, “Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate,” Elsevier
MICPRO, vol. 34, no. 5, pp. 151–162, 2010.

[16] M. Kumm, “Optimal Constant Multiplication Using Integer Linear
Programming,” IEEE TCAS II, vol. 65, no. 5, pp. 567–571, 2018.

[17] R. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE TCAS II, vol. 43, no. 10, pp. 677–688, 1996.

[18] A. Hosangadi, F. Fallah, and R. Kastner, “Reducing Hardware Com-
plexity of Linear DSP Systems by Iteratively Eliminating Two-Term
Common Subexpressions,” in ASP-DAC, 2005, pp. 523–528.

[19] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[20] L. Aksoy et al., “Exact and Approximate Algorithms for the Optimiza-
tion of Area and Delay in Multiple Constant Multiplications,” IEEE
TCAD, vol. 27, no. 6, pp. 1013–1026, 2008.

[21] Y.-H. Ho et al., “Global Optimization of Common Subexpressions for
Multiplierless Synthesis of Multiple Constant Multiplications,” in ASP-
DAC, 2008, pp. 119–124.

[22] V. Lefevre, “Multiplication by an Integer Constant,” Institut National de
Recherche en Informatique et en Automatique, Tech. Rep., 2001.

[23] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis Based on Minimal
Signed Digit Representation,” in DAC, 2001, pp. 468–473.

[24] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple Constant
Multiplications: Efficient and Versatile Framework and Algorithms for
Exploring Common Subexpression Elimination,” IEEE TCAD, vol. 15,
no. 2, pp. 151–165, 1996.

[25] A. Dempster and M. Macleod, “Constant Integer Multiplication Using
Minimum Adders,” IEE Proc. - Circuits, Devices and Systems, vol. 141,
no. 5, pp. 407–413, 1994.

[26] ——, “Use of Minimum-Adder Multiplier Blocks in FIR Digital Filters,”
IEEE TCAS II, vol. 42, no. 9, pp. 569–577, 1995.

[27] O. Gustafsson, “A Difference Based Adder Graph Heuristic for Multiple
Constant Multiplication Problems,” in ISCAS, 2007, pp. 1097–1100.

[28] H.-J. Kang, H. Kim, and I.-C. Park, “FIR Filter Synthesis Algorithms
for Minimizing the Delay and the Number of Adders,” in ICCAD, 2000,
pp. 51–54.

[29] A. Dempster, S. Demirsoy, and I. Kale, “Designing Multiplier Blocks
With Low Logic Depth,” in ISCAS, 2002, pp. 773–776.

[30] L. Aksoy et al., “Optimization of Area and Delay at Gate-Level in
Multiple Constant Multiplications,” in DSD, 2010, pp. 3–10.

https://safecurves.cr.yp.to
https://sike.org/files/SIDH-spec.pdf

	I Introduction
	II Background
	III tõll - The Proposed Method
	IV Experimental Results
	V Conclusions
	References

