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An Ultra-low Power TinyML System for Real-time
Visual Processing at Edge
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Abstract—Tiny machine learning (TinyML), executing AI
workloads on resource and power strictly restricted systems, is
an important and challenging topic. This brief firstly presents
an extremely tiny backbone to construct high efficiency CNN
models for various visual tasks. Then, a specially designed neural
co-processor (NCP) is interconnected with MCU to build an
ultra-low power TinyML system, which stores all features and
weights on chip and completely removes both of latency and
power consumption in off-chip memory access. Moreover, an ap-
plication specific instruction-set is further presented for realizing
agile development and rapid deployment. Extensive experiments
demonstrate that the proposed TinyML system based on our tiny
model, NCP and instruction set yields considerable accuracy and
achieves a record ultra-low power of 160mW while implementing
object detection and recognition at 30FPS. The demo video is
available on https://www.youtube.com/watch?v=mIZPxtJ-9EY.

Index Terms—Convolutional neural network, tiny machine
learning, internet of things, application specific instruction-set

I. INTRODUCTION

RUnning machine learning inference on the resource and
power limited environments, also known as Tiny Ma-

chine Learning (TinyML), has grown rapidly in recent years.
It is promising to drastically expand the application domain
of healthcare, surveillance, and IoT, etc [1], [2]. However,
TinyML presents severe challenges due to large computational
load and memory demand of AI models, especially in vision
applications. Popular solutions using CPU+GPU architecture
has shown high flexibility in MobileML applications [3], but
it is no longer feasible in TinyML for the much stricter
constraints on hardware resources and power consumption.
A typical TinyML system based on microcontroller unit
(MCU) usually has only < 512KB on-chip SRAM, <2MB
Flash, <1GOP/s computing capability, and <1W power limi-
tation [2], [4]. Meanwhile, it is difficult to use off-chip memory
(e.g., DRAM) in TinyML system for the very limited energy
budget, showing a huge gap between the desired and available
storage capacity for running visual AI models.
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Fig. 1. The overview of the proposed TinyML system for visual processing.

Recently, the continuously emerging studies on TinyML
achieve to deploy CNNs on MCUs by introducing memory-
efficient inference engines [1], [4] and more compact CNN
models [5], [6]. However, the existing TinyML systems still
struggle to implement high-accuracy and real-time inference
with ultra-low power consumption. Such as the state-of-the-art
MCUNet [1] obtains 5FPS on STM32F746 but only achieves
49.9% top-1 accuracy on ImageNet. When the frame rate is
increased to 10FPS, the accuracy of MCUNet further drops to
40.5%. What’s more, running CNNs on MCUs is still not a
extremely power-efficient solution due to the low efficiency of
general purpose CPU in intensive convolution computing and
massive weight data transmission. Considering this, we pro-
pose to greatly pormote TinyML system by jointly designing
more efficient CNN models and specific CNN co-processor.
Specifically, we firstly design an extemelly tiny CNN back-
bone EtinyNet aiming at TinyML applications, which has only
477KB model weights and maximum feature map size of
128KB and still yields remarkable 66.5% ImageNet Top-1
accuracy. Then, an ASIC-based neural co-processor (NCP)
is specially designed for accelerating the inference. Since
implementing CNN inference in a fully on-chip memory
access manner, the proposed NCP achieves up to 180FPS
throughput with 73.6mW ultra-low power consumption. On
this basis, we propose a state-of-the-art TinyML system shown
in Fig.2 for visual processing, which yields a record low power
of 160mW in object detecting and recognizing at 30FPS.

In summary, we make the following contributions:

1) An extremely tiny CNN backbone named EtinyNet is
specially designed for TinyML. It is far more efficient
than existing lightweight CNN models.

2) An efficient neural co-processor (NCP) with specific de-
signs for tiny CNNs is proposed. While running EtinyNet,
NCP provides remarkable processing efficiency and con-
venient interface with extensive MCUs via SDIO/SPI.

3) Building upon the proposed EtinyNet and NCP, we pro-
mote the visual processing TinyML system to achieve
a record ultra-low power and real-time processing effi-
ciency, greatly advancing the TinyML community.

ar
X

iv
:2

20
7.

04
66

3v
2 

 [
ee

ss
.I

V
] 

 1
 J

un
 2

02
3

https://www.youtube.com/watch?v=mIZPxtJ-9EY


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 2. The TinyML system for verification.

II. SOLUTION OF OUR TINYML SYSTEM

Fig.1 shows the overview of the proposed TinyML system.
It integrates MCU with the specially designed energy-efficient
NCP on a compact board to achieve superior efficiency in a
collaborative work manner. To the best of our knowledge, we
are the first to propose such a collaborative architecture in
TinyML field, which successfully balances the efficiency and
flexibility in the inference.

Initially, MCU sends the model weights and instructions
to NCP who has sufficient on-chip SRAM to cache all these
data. During inference, NCP computes the intensive CNN
backbone efficiently while MCU only performs the light-
load pre-processing (color normalization) and post-processing
(fully-connected layer, non-maximum suppression, etc), which
improves the overall energy efficiency to the greatest extent.
Besides, the inference process of NCP only involves two kinds
of data transfer, which are the input image and the output
results. This working mode greatly reduces the off-chip data
transfer power consumption and overall processing latency,
and helps the system to achieve high energy efficiency in
computing, which will be demonstrated in Section VI.

Considering real-time application, we interconnects NCP
and MCU with SDIO/SPI interface. SDIO could provide up
to 500Mbps bandwidth, which can transmit about 300FPS for
256×256 RGB image and 1200FPS for 128×128 one. As for
SPI, it still reaches 100Mbps, or an equivalent throughput of
60FPS for 256×256 RGB image. These two buses are widely
supported by MCUs available in the market, which makes NCP
can be applied in a wide range of TinyML systems.

Fig.2 shows the prototype verification system only consist-
ing of STM32L4R9 MCU and our proposed NCP. Thanks
to the innovative model (EtinyNet), co-processor (NCP) and
application specific instruction-set, the entire system yields
both of efficiency and flexibilty.

III. PARAMETER-EFFICIENT ETINYNET MODEL

Since NCP handles CNN workloads entirely on-chip for
pursuing extreme efficiency, we focus on reducing the model
size for satisfying the memory constrains of IoT devices in
TinyML, which is totally different from MobileML targeting
at the reduction of MAdds. By presenting Linear Depthwise
Block (LB) and Dense Linear Depthwise Block (DLB), we
derive an extremely tiny CNN backbone EtinyNet, shown in
Fig.3.

Fig. 3. The proposed building blocks that make up the EtinyNet. (a) is
the Linear Depthwise Block (LB), (b) is the Dense Linear Depthwise Block
(DLB), and (c) is the configuration of the backbone.

A. Design of Proposed Blocks

We present the linear depthwise convolution by removing
the ReLU behind DWConv of ϕd1 under the observation that
this non-linearity harms accuracy in the design of extremely
parameter-efficient architectures, forming a specific case of
sparse coding. Then, we introduce additional DWConv of ϕd2

behind PWConv of ϕp to build a novel linear depthwise block
(LB) by utilizing DWConv’s parameter efficiency [7]. The LB
is defined as

O = σ(ϕd2(σ(ϕp(ϕd1(I))))) (1)

As shown in Fig 3(a), the structure of proposed LB can
be represented as DWConv-PWConv-DWConv, which is ap-
parently different from the commonly used bottleneck block
of PWConv-DWConv-PWConv in mobile models, explained by
the fact that increasing the proportion of DWConv is beneficial
to the accuracy of tiny models.

Additionally, we introduce the dense connection into LB
for increasing its equivalent width, which is important and
necessary for a higher accuracy [8], as well as the very limited
size of features and weights. We refer the resulting block to
Dense Linear Depthwise Block (DLB) depicted in Fig 3(b).
Note that we take the ϕd1 and ϕp as a whole due to the removal
of ReLU, and add the shortcut connection at the ends of these
two layers.

B. Architecture of EtinyNet Backbone

By stacking LBs and DLBs, we configure the EtinyNet
backbone as indicated in Fig 3(c), where n, c and s represent
block repeated times, the number of output channels, and the
first layer’s stride in each block (other layers’ stride equaling
one) respectively. Since dense connection consumes more
memory space, we only utilize DLB at high level stages with
much smaller feature maps. It’s encouraging that EtinyNet
backbone has only 477KB parameters and still achieves
66.5% ImageNet Top-1 accuracy. The extreme compactness
of EtinyNet makes it possible to design small footprint NCP
that could run without off-chip DRAM.

IV. APPLICATION SPECIFIC INSTRUCTION-SET FOR NCP

For easily deploying tiny CNN models on NCP, we define
an application specific instruction-set. As shown in Table I,
the set contains 13 instructions, belonging to neural operation
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type and control type respectively. It includes basic operations
for tiny CNN models, and each instruction consists of 128
bits: 5 bits for operation code, and the rest for attributes of
operations and operands. With each neural type instruction
encoding an entire layer, the proposed instruction-set has a rel-
atively coarser granularity, which simplifies the control com-
plexity of hardware. Moreover, the basic operations included
in the instruction-set provide sufficient ability to execute
commonly-used CNN architectures (e.g., MobileNetV2 [9],
MobileNeXt [10], etc).

TABLE I
INSTRUCTION SET FOR PROPOSED NCP

Instruction format Description Type
bn batch normalization N
relu non-linear activation operation N
conv 1x1 and 3x3 convolution & bn, relu N
dwconv 3x3 depthwise conv & bn, relu N
add elementwise addition N
move move tenor to target address N
dsam down-sampleing by factor of 2 N
usam up-sampleing by factor of 2 N
maxp max pooling by factor of 2 N
gap global average pooling N
jump set program counter (PC) to target C
sup suspend processer C
end suspend processer and reset PC C

V. DESIGN OF NEURAL CO-PROCESSOR

As shown in Fig.4, the proposed NCP consists of five main
components: Neural Operation Unit (NOU), Tensor Memory
(TM), Instruction Memory (IM), I/O and System Controller
(SC). When NCP works, SC decodes one instruction fetched
from IM and informs the NOU to start computing with
decoded signals. The computing process takes multiple cycles,
during which NOU reads operands from TM and writes results
back automatically. Once completing the writing back process,
SC continues to process the next instruction until an end
or suspend instruction is encountered. When NOU is idle,
TM is accessed through I/O. We will fully describe each
component in the following parts.

Fig. 4. The overall block diagram of the proposed NCP.

A. Neural Operation Unit

CNN workloads mainly come from operations of int8 conv,
dwconv and float32 bn. To achieve a high energy efficiency,
we respectively design special hardware units, termed NOU-
conv, NOU-dw and NOU-post, focusing on optimizing the

implementation of each operation. Furthermore, we deal with
the design details in the following three aspects.

1) Different from other designs [11], [12] with fine grained
instructions, we implement NOU-conv with a hardwired ma-
trix multiply-accumulate (MAC) [13] array, which helps to
improve efficiency with a simpler control logic. The MAC
array is designed to perform matrix outer product with par-
allelism in spatial and output channel dimension for handling
the most computational costly 3×3 Conv and PWConv with
im2col operation. In this way, the number of effective mul-
tiplications in each cycle is fixed to Toc × Thw. Note that
the number of channels varies across different convolution
layers, which may lead to inefficient computation for other
ways of implementation (e.g., dot product). Conversely, our
implementation manner can avoid the above-mentioned prob-
lem and improve the overall efficiency in running PWConv of
entire network. Moreover, the addition is realized by simple
accumulation process instead of commonly-used adder tree
with extra hardware overhead.

2) As for the implementation of DWConv, the above de-
signed MAC array proves its efficiency only in diagonal units.
Given this, we turn to the classical convolution processing
pipeline [14], where nine multipliers and eight adders are
arranged to compute DWConv in each channel. The indepen-
dence between channels allows us to extend pipelines easily,
implementing a parallelism of Toc to build NOU-dw. Since
the feature length in spatial dimension is usually much larger
than the pipeline depth, the DWConv can be performed in a
fully pipelined manner, which yields NOU-dw an ultra high
efficiency up to nearly 100% .

3) In NOU-post unit, modules of int2float, float32 multiply-
add, float2int and ReLU are designed and interconnected to
perform post-operations of float32 BN, ReLU and element-
wise addition. To reduce memory access as much as possible,
multiplexers are further utilized to select data from the output
of NOU-conv, NOU-dw or TM, and connect modules as
needed, allowing flexible fusion of post-operations with the
previous convolution layer. By implementing Toc pipelines to
match the throughput of convolution, we effectively maximize
the efficiency of fusion operations.

B. Tensor Memory and Tensor Layout

1) TM is a single-port SRAM consisting of 6 banks, whose
width is Ttm × 8 bits, as shown in Fig 4. Thanks to the
compactness of EtinyNet, NCP only requires totally 992KB
on-chip SRAM. The BankI (192KB) is responsible for caching
256 × 256 input RGB images. The 128KB sized Bank0 and
Bank1 are arranged for caching feature maps, while Bank2
and Bank3 with a larger size of 256KB are used for storing
weights. The BankO (32KB) is used to store final results, such
as feature vectors and bonding boxes, etc. TM’s small capacity
and simple structure yield our NCP a small footprint.

2) The highly efficient NOU brings 2 types of tensor layouts,
named pixel-major layout and interleaved layout respectively
shown in Fig.5. For the former, all pixels of the first channel
are sequentially mapped to TM in a row-major order. Then,
the next channel’s counterpart is arranged in the same pattern
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until the last channel’s pixels of a tensor are stored. For the
latter, the whole tensor is divided into Nc//Ttm tiles and are
placed in TM sequentially, while each tile is arranged in a
channel-major order. Different layouts are required for NOUs
to achieve the maximum efficiency. For example, the input
of NOU-conv prefers pixel-major layout because spatially
continuous Thw pixels of a channel need to be multiplied and
added at a time by MAC array, while the reverse is the case
for NOU-dw.

Fig. 5. Illustration of different tensor layouts. (a) Pixel-major layout. (b)
Interleaved layout.

3) Running the proposed LB, DLB, and other blocks with
NOU, the layout between adjacent DWConv and PWConv is
constantly varying, which seriously decreases the computing
efficiency because of the discontinuous memory access. It
takes NOU-conv Toc times to read the output of NOU-dw
stored in an interleaved layout for performing a single matrix
outer product operation. Hence, an efficient layout conversion
circuit is designed to tackle this problem. As shown in Fig.6,
the circuit is composed of two Toc×Thw register arrays A and
B, working in a ping-pong mechanism. At the beginning, array
A receives Toc inputs at a time, after Thw cycles, A will be
filled and start to output Thw results at a time in the transposed
dimension. Since reading A empty requires Toc cycles, the new
coming data to be converted will be sent to array B in order
to maintain the pipeline. When B is full and A completes
the readout, the role of them are exchanged. This strategy
obviously boosts the efficiency of valid memory access for
computing.

Fig. 6. The proposed efficient layout conversion circuit.

C. Characteristics

We implement our NCP using TSMC 65nm low-power
technology. While Ttm = 32, Toc = 16 and Thw = 32,
NCP contains 512 of 8-bit MACs in NOU-conv, 144 of 8-
bit multipliers and 16 of adder trees in NOU-dw, and 16 of
float32 MACs in NOU-post. When running at the maximum
frequency of 250MHz, NOU-conv and NOU-post are active
every cycle, achieving a peak performance of 264 GOP/s.

VI. EXPERIMENTAL RESULTS

A. EtinyNet Evaluation

Table II lists the ImageNet-1000 classification results of
well-known lightweight CNNs, including MobileNetV2 [9],
MobileNeXt [10], ShuffleNetV2 [15], and MCUNet se-
ries [16]. We pay more attention to the backbone because the
fully-connected layer is generally not involved in most of vi-
sual models. Among these competitive models, MCUNet gets
the highest accuracy at the cost of model size up to 2048K.
Compared with tiny models in similar size, our EtinyNet
reaches 66.5% top-1 and 86.8% top-5 accuracy, outperforming
the most competitive MCUNetV2-M4 by significant 1.6%
top-1 accuracy. Moreover, EtinyNet-0.75, the width of each
layer is shrunk by 0.75, outperforms MCUNet-320kB by
significant 2.6% top-1 accuracy with 60K fewer parameters.
Obviously, EtinyNet yields much higher accuracy at the same
level of storage consumption, and is more suitable for TinyML
systems.

TABLE II
COMPARISON OF STATE-OF-THE-ART TINY MODELS OVER ACCURACY ON

IMAGENET. ”B” DENOTES BACKBONE. ”-” DENOTES NOT REPORTED.

Model #Params. (K) Top-1 Acc. Top-5 Acc.

MobileNeXt-0.35 812(B) / 1836 64.7 85.7
MobileNetV2-0.35 740(B) / 1764 60.3 82.9
ShuffleNetV2-0.5 566(B) / 1590 61.1 82.6
MCUNet -(B) / 2048 70.7 -
MCUNet-320kB -(B) / 740 61.8 84.2
MCUNetV2-M4 -(B) / 1034 64.9 86.2
EtinyNet 477(B) / 989 66.5 86.8
EtinyNet-0.75 296(B) / 680 64.4 85.2
EtinyNet-0.5 126(B) / 446 59.3 81.2

B. NCP Evaluation

As shown in Table III, running general CNN models usually
needs DRAMs to store their enormous weights and fea-
tures [11], [18], resulting in considerable power consumption
and processing latency. As for no DRAM access methods,
YodaNN [17] yields the highest peak performance and energy
efficiency, but it is a dedicated accelerator only for binarized
networks with very limited accuracy. Except that, Vega [12]
gets the lowest power and the maximum latency, which leads
to the lowest peak performance. To comprehensively assess
the throughput, energy consumption and speed of various
neural processors in TinyML application, we prefer to use the
metric of processing efficiency, which is the number of frames
processed per unit time and per unit power consumption.
Our proposed NCP reaches an extremely high processing
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TABLE III
COMPARISON WITH STATE-OF-THE-ART NEURAL PROCESSORS. ”-”

DENOTES NOT REPORTED.

Component NullHop ConvAix YodaNN Vega NCP
Technology 28nm 28nm 65nm 22nm 65nm
Area (mm2) 6.3 3.53 1.9 12 10.88
DRAM Used yes yes none none none
FC Support none yes none yes none
CNN model VGG16 MbV1 VGG19 RVGGA0 EtinyNet
ImageNet Acc. 68.3% 70.6% - 72.4% 66.5%
Latency 72.9ms 14.2ms 75.2ms 118ms 5.5ms
Typ. Power 155.0 313.1 153 37.3 73.6(mW)
Peak Perf. 128 262.6 1500 32.2 264(GOP/s)
Energy Eff. 2714.8 256.3 8500 631.4 751.0(GOP/s/W)
Processing Eff. 1.21 15.18 2.95 1.93 449.1(Frames/s/mJ)

efficiency up to 449.1 Frames/s/mJ, at least 29× higher than
other solutions, suggesting the unique superiority of NCP in
this particular field. As for the reason, the specially designed
NOU, tenser layout and coarse-grained instruction-set jointly
decrease the delay and the power of inference.

C. TinyML System Verification

We compare our proposed system with existing prominent
MCU-based TinyML systems. As shown in Table IV, CMSIS-
NN obtains 59.5% ImageNet accuracy at 2FPS, promoted
by MCUNet to 5FPS at the expense of accuracy dropping
to 49.9%. In comparison, our solution reaches up to 66.5%
accuracy and 30FPS, achieving the goal of real-time visual
processing in TinyML. Furthermore, since existing methods
burden MCUs with entire CNN models, high-performance
MCUs (STM32H743/STM32F746) running at the upper-limit
frequency (480MHz/216MHz) are necessary. Although flexi-
ble, general-purpose MCU is of low energy efficiency in com-
puting massive tensors, which results in considerable power
consumption up to about 600mW. In contrast, the proposed
solution allows us to perform the same flexible task only with
a low-end MCU (STM32L4R9,120MHz) and proposed NCP,
which boosts the energy efficiency of the entire system and
achieves an ultra-low power of 160mW.

TABLE IV
COMPARISON WITH MCU-BASED DESIGNS ON IMAGE CLASSIFICATION

(CLS) AND OBJECT DETECTION (DET). ∗ DENOTES REPRODUCED RESULTS.

Method Hardware Acc/mAP FPS Power

Cls
CMSIS-NN H743 59.5% 2 ∗675 mW
MCUNet F746 49.9% 5 ∗525 mW
Ours L4R9+NCP 66.5% 30 160 mW

Det
CMSIS-NN H743 31.6% 10 ∗640 mW
MCUNet H743 51.4% 3 ∗650 mW
Ours L4R9+NCP 56.4% 30 160 mW

In addition, we benchmark the object detection performance
on Pascal VOC dataset. The results indicate that our system
also greatly improves its performance, which makes AIoT
more promising in extensive applications.

VII. CONCLUSION

In this brief, we propose an ultra-low power TinyML system
for real-time visual processing by designing 1) an extremely
tiny CNN backbone EtinyNet, 2) an ASIC-based neural co-
processor and 3) an application specific instruction-set. Our
study greatly advances the TinyML community and promises
to drastically expand the application scope of AIoT.
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