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Theoretical Analysis of the Performance of the
Data-Reuse RLS Algorithm
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Wentao Shi, Member, IEEE, and Qunfei Zhang, Member, IEEE

Abstract—Data-reuse RLS (DR-RLS) algorithm is a computa-
tionally efficient technique that has been recently introduced to
improve the tracking capabilities of the RLS. Nevertheless, no
analysis of its convergence has been proposed so far. The aim of
that work is to fill this gap with theoretical analyzes in the mean
and mean-square error sense. Transient and steady-state models
are provided. They are validated through numerical simulations.

Index Terms—Adaptive filtering, data-reuse, RLS algorithm,
transient convergence analysis, steady-state analysis.

I. INTRODUCTION

IN terms of both convergence rate and steady-state misad-
justment error, the RLS algorithm significantly outperforms

the LMS algorithm even with colored input signals [1]–[3].
Nevertheless, the intrinsic shortcomings of the RLS include its
high computational complexity and poor tracking capability.
This may constraint its practical applicability in a variety of
applications. Several variants of the RLS have been developed
to further improve its performance. Specifically, the fast RLS
(FRLS) algorithm was devised to reduce computational cost,
which then becomes proportional to the order of the filter [4]–
[7]. The variable forgetting factor RLS (VFF-RLS) algorithm
was devised to reach a trade-off between small misadjustment
error and fast convergence rate [8]–[12]. An efficient version
of the RLS algorithm utilizing dichotomous coordinate descent
iterations was also proposed to reduce its computational cost
while preserving the estimation performance [13]–[16].

Inspired by data-reuse LMS-type algorithms [17]–[19], the
data-reuse RLS (DR-RLS) algorithm was recently introduced
in order to improve its misadjustment and tracking capability
by reusing the same input data several times in a computa-
tionally efficient manner [20]. The rational behind DR-RLS is
similar to that of the VFF-RLS. The fast DR-RLS algorithm
was proposed to tackle the numerical instability of the FRLS,
for instance when dealing with nonstationary inputs in acoustic
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echo cancellation problems [21]. Based on data-reused princi-
ple, the low-complexity DR-RLS algorithm with dichotomous
coordinate descent iterations was introduced [22].

No theoretical analysis of the performance of the DR-RLS
algorithm has been proposed so far in the literature, essentially
because of the difficulty in evaluating statistically the effects of
the data-reused term. Here we address this issue by carrying
out a detailed analysis of the performance of the DR-RLS
in the mean and mean-square error sense. Simulation results
are provided to validate the resulting theoretical transient and
steady-state models. This work therefore contributes to the
general comprehension of the stochastic convergence charac-
teristics of the DR-RLS algorithm.

Notation: The transpose of a vector or matrix is represented
by (·)⊤. E{·} is the expected value of its argument. Superscript
(·)−1 refers to the inverse of a square matrix, and tr{·} denotes
its trace. The vectorization operator that stacks the columns of
a matrix is refered to as vec{·}. Kronecker product is denoted
by ⊗. Matrix IN is the N ×N identity matrix. Notation

(
n
k

)
refers to the number of subsets of size k of a n-element
set. The squared norm of column vector x weighted by any
positive definite matrix Σ is given by ∥x∥2Σ = x⊤Σx.

II. PRELIMINARIES AND DR-RLS ALGORITHM

Consider an unknown system defined by:

yn = x⊤
nw

⋆ + zn (1)

where xn = [x(n), . . . , x(n − L + 1)]⊤ is the real-valued
regression vector at instant n, and w⋆ ∈ RL is an unknown pa-
rameter vector to be estimated. We assume that the correlation
matrix Rx = E

{
xnx

⊤
n

}
is positive definite. The observation

noise zn is modeled as a white Gaussian noise with zero-mean
and variance σ2

z . We assume that zn is statistically independent
of all other signals.

DR-RLS algorithm allows to achieve both a reasonably low
misadjustment error and good tracking ability [20], [21]:

Pn = λ−1

(
Pn−1 −

λ−1Pn−1xnx
⊤
nPn−1

1 + λ−1x⊤
nPn−1xn

)
, (2)

αn = 1− x⊤
nPnxn, (3)

en = yn − x⊤
nwn−1, (4)

wn = wn−1 + en
1− αM

n

1− αn
Pnxn, (5)

with 0 ≪ λ < 1 the forgetting factor, and M the data-reuse
parameter. Here matrix Pn is an estimate of the inverse of the



2

time-averaged correlation matrix Φn of input data [1], [2],
defined as:

Φn =

n∑
i=0

λn−ixix
⊤
i + δλn+1IL = λΦn−1 + xnx

⊤
n . (6)

Setting M = 1, the DR-RLS algorithm reduces to the RLS.
Replacing (3) into (5), the recursion of the DR-RLS can be
reformulated as:

wn = wn−1 +

M∑
i=1

(
M

i

)
(−1)i+1

(
x⊤
nPnxn

)i−1
enPnxn.

(7)

III. TRANSIENT PERFORMANCE

We now analyze the convergence behavior of the DR-RLS
in the mean and mean-square error sense. Defining the weight
error vector w̃n at time instant n between wn and w⋆ as:

w̃n = wn −w⋆, (8)

we aim to study the recursion of E{w̃n} and its correlation
matrix Kn = E

{
w̃nw̃

⊤
n

}
over time.

Before proceeding, for mathematical tractability, we need
to introduce the following simplifying assumption.

Assumption A1: The weight error vector w̃n−1 is statisti-
cally independent of the regression input vector xn.

The above independence assumption A1 is commonly used
for analyzing the transient behavior of adaptive filters [1], [2].

A. Mean error transient behavior model

We start with the error analysis of the DR-RLS in the mean
error sense. By taking the expected value of (6), we obtain:

E{Φn} = λE{Φn−1}+Rx (9)

with the initial condition Φ0 = δIL and δ > 0 a parameter.
Note that (9) will be utilized to derive the analytical models
below. Substituting (1) into (4), then using definition (8), the
instantaneous estimation error (4) becomes:

en = zn − x⊤
n w̃n−1. (10)

Subtracting the optimal weight vector w⋆ from both sides
of (7), with (8) and (10) it follows that:

w̃n = w̃n−1 +

M∑
i=1

(
M

i

)
(−1)i+1

(
x⊤
nPnxn

)i−1
znPnxn

−
M∑
i=1

(
M

i

)
(−1)i+1

(
x⊤
nPnxn

)i−1
Pnxnx

⊤
n w̃n−1. (11)

Pre-multiplying both sides of the above equation by P−1
n , and

using the definition of Φn = P−1
n , we have:

Φnw̃n = Φnw̃n−1 +

M∑
i=1

(
M

i

)
(−1)i+1

(
x⊤
nPnxn

)i−1
znxn

−
M∑
i=1

(
M

i

)
(−1)i+1

(
x⊤
nPnxn

)i−1
xnx

⊤
n w̃n−1. (12)

Taking the expected value of (12), then considering the sta-
tistical independence of noise zn with any other signal, and
E{zn} = 0, yields:

E
{
Φnw̃n

}
= E

{
Φnw̃n−1

}
(13)

−
M∑
i=1

(
M

i

)
(−1)i+1E

{(
x⊤
nPnxn

)i−1
xnx

⊤
n w̃n−1

}
.

The second term on the r.h.s. of (13) can be approximated as
follows:
M∑
i=1

(
M

i

)
(−1)i+1E

{(
x⊤
nPnxn

)i−1
xnx

⊤
n w̃n−1

}
(14)

(a)
≈

M∑
i=1

(
M

i

)
(−1)i+1E

{(
∥xn∥2Pn

)i−1
xnx

⊤
n

}
E{w̃n−1}

(b)
≈

M∑
i=1

(
M

i

)
(−1)i+1E

{(
∥xn∥2Pn

)i−1
}
RxE{w̃n−1}

(c)
≈

M∑
i=1

(
M

i

)
(−1)i+1tr

{
RxE{Φn}−1

}i−1
RxE{w̃n−1}.

Approximation (a) results from assumption A1. The rational
behind approximation (b) is as follows. First, we observe that
the entries of matrix xnx

⊤
n are defined by x(n− i)x(n−j). A

common approximation that works well for reasonably large
regression vector xn is to ignore the correlation between its
square norm ∥xn∥2Pn

and x(n−i)x(n−j) and ∥xn∥2Pn
, since

the former tends to vary much slowly around its mean value
(1− λ)L [23]–[25]. Approximation (c) results from a similar
argument as above. The rational of the above approximations
is experimentally confirmed in the simulations section. Finally,
with approximation E{Φnw̃n} ≈ E{Φn}E{w̃n} successfully
utilized in [26]–[28], and E{Φnw̃n−1} ≈ E{Φn}E{w̃n−1}
studied in Appendix A, and then using (14), (13) becomes:

E{Φn}E{w̃n} = E{Φn}E{w̃n−1} (15)

−
M∑
i=1

(
M

i

)
(−1)i+1tr

{
RxE{Φn}−1

}i−1
RxE{w̃n−1}.

Pre-multiplying equation (15) by E{Φn}−1, the mean weight
error behavior for the DR-RLS algorithm is given by:

E{w̃n} =
[
IL −

M∑
i=1

(
M

i

)
(−1)i+1tr

{
RxE{Φn}−1

}i−1

× E{Φn}−1Rx

]
E{w̃n−1} (16)

where (9) needs to be utilized to implement recursion (16).

B. Mean-square error transient behavior model
We now focus on the mean-square error of the DR-RLS.

By squaring the estimation error (10), taking its expectation,
and then utilizing A1 and the statistics of zn, the mean-square
error (MSE) at time instant n can be approximated as:

MSEn = E{e2n} ≈ σ2
z + tr

{
RxKn−1

}
. (17)

Note that the last term on the r.h.s. of equation (17) denotes
the instantaneous excess MSE (EMSE) [1], [2]. The mean-
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square-deviation (MSD) at time instant n is defined by [2]:

MSDn = E
{
∥w̃n∥2

}
= tr{Kn}. (18)

To evaluate (17) and (18), we have to devise a recursion for
calculating Kn in the following. Post-multiplying recursive
relation (12) by its transpose, taking the expected value, then
considering the statistics of zn, yields:

E
{
Φnw̃nw̃

⊤
nΦn

}
= E

{
Φnw̃n−1w̃

⊤
n−1Φn

}
+T1 +T2 − (T3 +T⊤

3 )
(19)

where

T1 =

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2E

{(
x⊤
nPnxn

)i+j−2

× z2nxnx
⊤
n

}
, (20)

T2 =

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2E

{(
x⊤
nPnxn

)i+j−2

× xnx
⊤
n w̃n−1w̃

⊤
n−1xnx

⊤
n

}
, (21)

T3 =

M∑
i=1

(
M

i

)
(−1)i+1E

{(
x⊤
nPnxn

)i−1

× xnx
⊤
n w̃n−1w̃

⊤
n−1Φn

}
. (22)

We shall now focus on calculating matrices T1 to T3. Apply-
ing similar approximations as in (14), and using the statistical
property of zn, matrix T1 can be approximated by:

T1 ≈
M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2tr

{
RxE{Φn}−1

}i+j−2

× σ2
zRx. (23)

Using A1 and Isserlis’ theorem, matrix T2 can be determined
as follows [1], [29]:

T2 ≈
M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2tr

{
RxE{Φn}−1

}i+j−2

× E
{
xnx

⊤
n w̃n−1w̃

⊤
n−1xnx

⊤
n

}
=

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2tr

{
RxE{Φn}−1

}i+j−2

×
(
Rxtr

{
RxKn−1

}
+ 2RxKn−1Rx

)
. (24)

To evaluate matrix T3, we introduce the following approxi-
mation studied in Appendix A:

E
{(

x⊤
nPnxn

)i−1
xnx

⊤
n w̃n−1w̃

⊤
n−1Φn

}
≈ E

{(
x⊤
nPnxn

)i−1
xnx

⊤
n w̃n−1w̃

⊤
n−1

}
E{Φn}.

(25)

Using (25) and considering A1, matrix T3 is given by:

T3 ≈
M∑
i=1

(
M

i

)
(−1)i+1tr

{
RxE{Φn}−1

}i−1
RxKn−1E{Φn}.

(26)
Replacing (23), (24), and (26) into (19), using two necessary
approximations E

{
Φnw̃nw̃

⊤
nΦn

}
≈ E{Φn}KnE{Φn} and

E
{
Φnw̃n−1w̃

⊤
n−1Φn

}
≈ E{Φn}Kn−1E{Φn}, then pre-

multiplying and post-multiplying it by E{Φn}−1 simultane-
ously, we arrive at the mean-square error behavior for DR-RLS
algorithm given by (27), shown at the top of next page.

IV. STEADY-STATE PERFORMANCE

We shall now investigate the error of the DR-RLS at steady-
state from the transient models devised in the last section.
Because 0 ≪ λ < 1 and using (6), the steady-state expectation
of matrix Pn can be approximately computed as follows [2],
[30], [31]:

lim
n→∞

E
{
Pn

}
≈ lim

n→∞
E
{
P−1

n

}−1

= lim
n→∞

E
{
Φn

}−1
= (1− λ)R−1

x .
(28)

Theorem 1 (Mean stability): Assume that model (1) and A1
hold. The weight error vector of DR-RLS algorithm converges
to zeros vector as n → ∞, if the forgetting factor λ satisfies:

1− 2

(M − 1)L
< λ < 1. (29)

Proof: Assume (28) is approximately held when n is suffi-
ciently large. Replacing (28) into (16) as n → ∞, it results in
the mean weight error of the DR-RLS at steady-state:

E{w̃n} =
[
1−

M∑
i=1

(
M

i

)
(−1)i+1(1− λ)iLi−1

]
E{w̃n−1},

(30)
as n → ∞. To guarantee the convergence in the mean, (30)
implies that:

0 <

M∑
i=1

(
M

i

)
(−1)i+1(1− λ)iLi−1 < 1. (31)

Since 0 ≪ λ < 1, the r.h.s. of (31) holds on. Hence, we only
need to prove the l.h.s. of (31). When M is odd, we find that
the last term is positive. Consider now the case when M is
even. Then, we split all the terms defined by (31) into M/2
sub-terms, namely,

M !

(M − 1)!
(1− λ)− M !

2!(M − 2)!
(1− λ)2L > 0, . . . ,

M !

(M − 1)!
(1− λ)M−1LM−2 − (1− λ)MLM−1 > 0,

which are positive provided that (29) is satisfied. Therefore,
we conclude that DR-RLS solution is asymptotically unbiased
if condition is satisfied (29). ■

Let us define the steady-state correlation matrix of w̃n by
K∞ = limn→∞ Kn. Substituting (28) into (27), and assuming
that the DR-RLS converges as n → ∞, yields:

2(ρ1 − ρ2)K∞ = ρ2σ
2
zR

−1
x + ρ2tr

{
RxK∞

}
R−1

x (32)

with

ρ1 =

M∑
i=1

(
M

i

)
(−1)i+1

[
L(1− λ)

]i−1
(1− λ), (33)
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Kn = Kn−1 +

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2tr

{
RxE{Φn}−1

}i+j−2
σ2
zE{Φn}−1RxE{Φn}−1

+

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2tr

{
RxE{Φn}−1

}i+j−2E{Φn}−1
(
Rxtr{RxKn−1}+ 2RxKn−1Rx

)
E{Φn}−1

−
M∑
i=1

(
M

i

)
(−1)i+1tr

{
RxE{Φn}−1

}i−1 (E{Φn}−1RxKn−1 +Kn−1RxE{Φn}−1
)

(27)

ρ2 =

M∑
i=1

M∑
j=1

(
M

i

)(
M

j

)
(−1)i+j+2

[
L(1−λ)

]i+j−2
(1− λ)2.

(34)
Consider the following properties:

tr
{
ΣB

}
=

[
vec(B⊤)

]⊤
σ, (35)

vec
(
AΣB

)
=

(
B⊤ ⊗A

)
σ, (36)

with σ = vec(Σ). Post-multiplying both sides of (32) by Rx,
and applying property (35), we have:

2(ρ1 − ρ2)K∞Rx = ρ2σ
2
zIL + ρ2

([
vec(Rx)

]⊤
k∞

)
IL (37)

with k∞ = vec(K∞). By vectorizing both sides of (37), and
using property (36), it results that:

2(ρ1 − ρ2)
(
Rx ⊗ IL

)
k∞ = ρ2σ

2
zvec(IL) (38)

+ ρ2vec(IL)
[
vec(Rx)

]⊤
k∞.

Then, we obtain:

k∞ = ρ2σ
2
z

[
2(ρ1 − ρ2)

(
Rx ⊗ IL

)
− ρ2vec(IL)

[
vec(Rx)

]⊤]−1
vec(IL)

(39)

which allows to recover the steady-state matrix K∞. Finally,
we can compute the steady-state EMSE or MSE, and MSD of
the DR-RLS according to (17) and (18) as n → ∞.

V. SIMULATION RESULTS

The overall performance of the DR-RLS has already been
validated thoroughly in [20], [21]. We now verify the cor-
rectness and precision of the presented theoretical models
with simulations. All empirical curves were averaged over 200
Monte Carlo runs. The input signal was obtained by filtering
a zero-mean white Gaussian noise s(n) through an AR(1)
model, namely, x(n) = 0.6x(n − 1) + s(n), where variances
σ2
s and σ2

x were set to 0.64 and 1, respectively. The noise
variance σ2

z was set to 0.02. Figure 1(a) depicts w⋆ ∈ R64

generated from a standard normal distribution and scaled by
an exponential decay factor 0.5. The data-reuse parameter M
was set to 4. The forgetting factor λ and the parameter δ were
set to 0.9995 and 1 × 103, respectively. Weight vector w0

was initialized to zero. Figure 1(b) illustrates the mean weight
behavior of the DR-RLS. We can find that all the theoretical
curves (dotted red) of weight coefficients wn(ℓ) predicted
by (16) are consistent with the empirical curves (solid blue),
which validates the asymptotic unbiasedness of the algorithm.
Figure 1(c) illustrates the good consistency between the empir-
ical learning curves of the EMSE and its theoretical prediction
obtained from (17), (27), and (39) in transient and steady-state

phases. Figure 1(d) shows that the empirical learning curves of
the MSD generally match well with their transient and steady-
state theoretical predictions based on (18), (27), and (39). To
conclude, Fig. 1 illustrates the accuracy of our models and the
rationality of all approximations used in the analysis.
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(a) Optimal weight vector w⋆. (b) Evolution curves for wn.
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Fig. 1. Comparisons of empirical results and theoretical predictions.

APPENDIX A
PROOFS OF APPROXIMATIONS

To justify the consistency of some approximations intro-
duced in this paper, we decompose Φn = E{Φn}+∆n with
∆n some random fluctuations. We have:

E{Φnw̃n−1} = E{Φn}E{w̃n−1}+ E{∆nw̃n−1}, (40)

E
{
(x⊤

nPnxn)
i−1xnx

⊤
n w̃n−1w̃

⊤
n−1Φn

}
= E

{
(x⊤

nPnxn)
i−1xnx

⊤
n w̃n−1w̃

⊤
n−1

}
E{Φn}

+ E
{
(x⊤

nPnxn)
i−1xnx

⊤
n w̃n−1w̃

⊤
n−1∆n

}
,

(41)

E
{
Φnw̃n−1w̃

⊤
n−1Φn

}
= E{Φn}Kn−1E{Φn}

+ E
{
Φn

}
E
{
w̃n−1w̃

⊤
n−1∆n

}
+ E

{
∆nw̃n−1w̃

⊤
n−1∆n

}
+ E

{
∆nw̃n−1w̃

⊤
n−1

}
E
{
Φn

}
. (42)

We assume that the entries of ∆n are small in comparison
with those of E{Φn} because equation (6) means that Φn is
a low-pass filtering of x⊤

nxn [26]–[28]. Therefore, the first
term on the r.h.s. of (40)–(42) dominates the remaining ones,
leading to the approximations.
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