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and Cédric Richard, Senior Member, IEEE

Abstract—Active noise control (ANC) in the wave-domain has
been widely used to perform noise cancellation in large spatial
areas with time-varying acoustic characteristics. Most of existing
works on ANC focus on centralized strategies where the residual
signals from all microphones are required for performing each
estimate update. Nonetheless, as the number of speakers and
microphones increases, the centralized strategy might encounter
challenges related to flexibility and scalability. The aim of this
work is to introduce a distributed wave-domain ANC method
based on a convex sum of non-convex quadratic costs to spread
the computational load amongst nodes to overcome these issues.
In order to minimize the ANC cost, we consider a group diffusion
adaptation strategy, where the errors measured at each node,
and the driving signal estimated at each node, involve those
nodes individually and their neighbors. As a result, additional
nodes with microphones or speakers can be easily integrated into
the system, and each node can process with low computational
complexity. Comparing the proposed algorithm to its centralized
and distributed counterparts, we evaluate the algorithm’s efficacy
in various environments.

Index Terms—Distributed optimization, active noise control,
non-convex decomposition, distributed networks, diffusion adap-
tation.

I. INTRODUCTION

ECAUSE noise can cause permanent damage to auditory
organs and interfere with sleep, recreation, and work,
environmental noise represents a serious global health concern.
Many epidemiological studies have linked ambient noise to a
variety of health issues, such as myocardial infarction, arterial
hypertension, and stroke [1]. Among other solutions, active
noise control (ANC) permits a noise cancellation zone to
control secondary sound sources for cancelling the original
noise via destructive interference [2]. This strategy has been
successfully applied, for instance, in vehicles [3], [4].
Adaptive algorithms have been widely studied as tools to
perform noise cancellation over time-varying environments.
They can operate in the frequency domain [5], time domain [6]
or wave domain [7]. Wave-domain-based methods, which
minimize the sum of squared harmonic coefficients over the
entire spatial region, have shown improved spatial consistency.
Nonetheless, they need to collect data from all sensors and
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process them with a centralized approach. This prevents their
use over large spatial areas because of the high communication
and computation costs [8]. In applying the wave-domain ANC
methods in practical vehicles [3], [4], it is crucial to consider
adjusting the sensor count and position to accommodate var-
ious application scenarios. This necessitates that the system
be more scalable. Then, to tackle these difficulties, it has ap-
peared reasonable to explore ways of implementing distributed
strategies. Wireless acoustic sensor networks (WASN) have
contributed to significant breakthroughs in distributed methods
for ANC as they allow to distribute the computation load over
all nodes [8]-[10]. In [9], the authors introduce an incremental
strategy into ANC systems. Nevertheless, data need to travel
from one node to the next until browsing the whole network.
On the other hand, the effectiveness of diffusion methods
introduced in [11]-[13] has motivated researchers to imple-
ment this strategy in the wave domain, leading to diffusion-
based ANC [8], [10]. Nevertheless, the performance of the
diffusion-based algorithm introduced in [10] is hindered by an
approximate formulation of the centralized problem required
by the distributed strategy. The distributed minimum variance
distortionless response (MVDR) problem is formulated in [14]
by splitting the global quadratic cost into a convex sum of non-
convex local costs [15]. A similar non-convex decomposition
is considered in [16]. The optimization problem is addressed
with the Primal-Dual Method of Multipliers. The effectiveness
of these distributed strategies for minimizing non-convex de-
compositions of global quadratic costs definitely offers new
perspectives to address ANC in a distributed manner.

The objective of this paper is to address the ANC problem
in the wave domain with a distributed strategy by considering
a non-convex decomposition of the centralized quadratic cri-
terion. The group diffusion least mean square algorithm [17]
is used so that each node can estimate its own driving signal
parameters based on information sharing with its neighbors.
Simulations are conducted to validate the proposed algorithm
over free and reverberant fields.

II. PROBLEM FORMULATION

We shall now address the ANC problem over a spatial area
illustrated in Figure 1(a). Assume, for the sake of generality,
that the noise cancellation zone is delimited by a circular area
of radius R while the noise source is locate beyond this area,
and the secondary sources are generated by a circular array of
loudspeakers with () elements and radius R, where Ry > R;.



A feedback control strategy is employed to cancel the noise in
the rejection area [18]. In the zone of noise cancellation, the
residual signals shall be measured at free position r = (r, 6,.).
Within the control region » < R;, the primary noise wave
field v(r, k) observed at r is approximated as the sum of a
finite number of modes using the cylindrical harmonic wave

function expansion:
s

~ Y Bplkg)Tp(rks) exp(ipfe), (D)

=-S5
where the wave nuf;nber is defined as ky = 27f/c with
frequency f and sound speed ¢, an integer number p € [—S S]
is the order of the Bessel function J,(-) with S = [rk;] [19],
and B,(ky) is the coefficients of the primary noise field in
wave-domain.

Likewise, the loudspeaker array generates the secondary
sound field s(r, ky) at r as [20]:

s

s(rokg)~ Y vp(kp)Tp(rks)exp(ipbr), 2)

=-S5
where the wave- dom/;lin coefﬁcients v,(ky) are given by:

Zd (k) Tpq(ky), 3)

with the g-th loudspeaker drlven by the signal d (k). For
sound propagation in free field, the coefficients qu(kf) of
the acoustic transfer function (ATF) in the wave domain are
calculated as follows:

J .
T,q(ky) = *Hff)(kflqull) exp(jpbr,), 4)

where the p- th order of Hankel function in the second kind is
denoted as ”H,p () and r, is the location of the g-th source.
Based on (1) and (2), the residual signals at = are given by:
e(r, kf) = ’U(T, kf) + s(r, kf)
s

~ Z (Bp(kyg) +0(ks)) Tp(rkys) exp(jpbyr), ()

p==5
ap(ky)

v(r, ky)

Vo(ky)

with a,(ks) the error sound field decomposition coefficients.

Using a block-wise operation, we transform the micro-
phone signal into the time-frequency domain and consequently
represent it as the wave-domain coefficients, based on (5).
Wave-domain ANC involves designing the loudspeaker driving
signals s(r, kf) to cancel v(r, ky) in the control zone. Based
on signal propagation models (1) and (2), for notational
simplicity, we express the residual sound field coefficients in
the wave domain at a given time index ¢ in matrix form by
removing the wave number kj as:

a(i) = B(i) +~(i) = () + Td(i), (6)
where « (i), B(7) and ~(i) are vectors of length 25 + 1 with
entries (i), B,(4) and ~,(2), respectively, T' is a matrix of
size (25+1) xQ with entries T}, ;(k7) and d(¢) is the )-length
vector with entries dg(ky).

Based on (5), the residual sound field coefficients at each
iteration ¢ (the i-th time block) can be rewritten as:

a(i) = B~'Fe(i), (7
with e(4) the vector of errors measured by the N microphones
located at 7, = (R;,6,) with n = 0,...,N — 1, and the
diagonal matrix B = diag{J_g(Riky),...,Ts(Riks)} of

s e
»
/7 .
7 Mlcrophone array
/
o \
| S |
| e ((a
\
) ! Noise source |
°
\ /
[
LN

o 3 Loudspeaker array

(b) Distributed network of 11
nodes, where each node pos-
sesses 1 microphone and 1
speaker.

@t
(a) Schema of the system within the con-
trol field (green area), equipped with a
circular array of microphones with radius
R; and a circular array of loudspeakers
with radius Ro.

Fig. 1: The simulated ANC System.

corresponding Bessel function coefficients. In this expression,
F denotes the (25 4+ 1) x N complex matrix with (p, n)-th
entry defined as: F), ,, = & 7 (=9+p=10n,

The cost function for minimizing residual field energy is
the sum of the squared coefficients of the residual signal in
the wave domain [21]:

> (i) = " (i)afi), ®)

p==5

J(a) =

where () denotes the conjugate transpose. Note that J(c)
is strictly convex with respect to (). As shown in the next
section, this property is no longer valid locally when J(c) is
distributed over the nodes of the network.

ITI. DISTRIBUTED WAVE-DOMAIN ANC BASED ON
CONVEX SUM OF NON-CONVEX LOCAL COSTS

Consider a network with a set N of N nodes interconnected
by a set of edges £ supporting some ANC architecture. If an
edge exists between two nodes k and ¢, we say (k, /) € £. All
nodes are considered self-connected. The set of nodes having
an edge with a node k defines its neighbourhood Nj.

In the ANC architecture, each node is specified as a module
having one or more microphones and loudspeakers, as well as
a processor with communication and computational capabil-
ities. As illustrated in Figure 1(b), for simplicity, we shall
consider the single-channel situation in which each node k is
equipped with a single microphone and a single loudspeaker.
This means that () = N. To reformulate the ANC problem in
a distributed manner, it can be checked that cost (8) can also
be written as follows, where the time index ¢ is omitted for
simplicity:

J(d) = d"Re +v"R"d + ), 9)
where d is the N-length vector whose entry dj, is the driving
signal of the loudspeaker at node k, v is the N-length vector
whose entry vy, defined in (1) is the observation provided by
the microphone at node k, R £ + T"B~'F and A £ ||B]2.
Note that R, v and A are independent of the driving vector d,
while e = v+ NF"BTd depends on d. Criterion (9) is thus
quadratic (and strictly convex) with respect to d. As shown
hereafter, formulation (9) simplifies local gradients calculation.

A. Problem Reformulation

Following the decomposition principle introduced in [14]
for the first two terms depending on R in (9), the cost J(d)



in (9) is equivalently expressed as the sum of local costs
Ji(dy):

N
min J(d) = > Ji(dy) (10a)
k=1
st. Credp+Copdp =0, V(k,£)€&, (10b)
with N
Ju(dp) = di} Z e + vl Z dy, + = (11)

N
where dj, € CWVel denotes the sub-vector of d whose entries

are the driving signals at all nodes in N}, that is, node k itself
and its neighbors. We write:

di, = [d]n,, (12)
where [-]z denotes the entries of the vector or matrix argument
of the operator indexed by set Z. Similarly, | Ny |-length vectors
vy, and ey, follow the same construction rule as dj, that is,

Vi = [U]Nk €k £ [e]Nk (13)
Let us denote by A the adjacency matrix defined as: Agy = 1
if (k,¢) € € including k = ¢, and 0 otherwise. In (11), matrix
Zy, is defined as:

Z, £ [(A?)°" o Rly;, (14)
with (-)°~! the Hadamard (element-wise) inverse of its matrix
argument, here A2, and o the Hadamard product. Note that
local costs Ji (dy) are quadratic but no longer convex because
of the Hadamard inverse operator in the definition of matrix
Zj.. Linear equality constraints in (10b) maintain the consis-
tency between all entries, say, of dj and d, with £ € N,
when these entries are related to a same node. Accordingly,
possible entries for matrices Cyy and Cyi are —1, 0 and 1.

In the next section, we shall devise a diffusion algorithm
for solving problem (10) in a distributed manner. We initially
introduced the Group diffusion least mean square (LMS)
in [17] to address problems that differ from (10). Interestingly,
it is used here because it allows us to address linear constraints
in a convenient way.

B. Distributed optimization with Group Diffusion Adaptation

Consider using a diffusion LMS strategy [22] for minimiz-
ing the global cost (10). The network estimates d through the
collaboration of all nodes with their neighbors, and uses it to
control secondary sound sources for ANC task. That is, at each
time instant ¢, a local parameter vector dj,; of length |[Nj| x 1
is estimated at each node k. It is defined as:

dkﬂ' = COl{dZ,k,i}ZeNk Vk = 1, ‘e ,N. (15)
where col{-} stacks its scalar arguments on top of each other,
and dg ; is the estimate at node k£ and time index ¢ of the
driving signal coefficient intended for loudspeaker /.

Standard diffusion LMS originally defined in [22] cannot be
used to address problem (10) because it aims to collaboratively
estimate a single parameter vector which is common to all
nodes. On the contrary, with definition (12), parameter vectors
d;, differ structurally because each one contains local driving
signal estimates for loudspeakers in its neighborhood Nj.
However, consistency conditions (10b) point out the need for
entries {dy i tren, to reach a consensus. Indeed, they are all
estimates of the same driving signal parameter d; ¢ ,; intended

(a) Topology 1.

(b) Topology 2.

Fig. 2: Examples of network topologies for distributed system.

for loudspeaker ¢, individually processed by all nodes in the
neighborhood of node /.

The Group diffusion LMS originally defined in [17] allows
groups of parameter vectors entries scattered over neighboring
nodes, to reach a consensus. We consider using this strategy to
estimate the driving signal parameter dy,; in a collaborative
manner at each node ¢ based on a consensus reached within
each group G, £ {dek,i}ren, for all £ € N. Note that each
entry of dj, is individually involved in a group, and:

N
UG=6. GnG=0itk#¢, (16)

k=1
with G the set of all entries of all parameter vectors dj, in the
network. We denote by [dy, ;]g,, the entry of dj, ; in group G,
if any. The Group diffusion LMS [17] applied to problem (10)
leads to the proposed distributed non-convex decomposition
wave-domain ANC via Group diffusion algorithm (DNCD-G):

Yri =dki—1 — pVJIp(dki-1)
(drilg,, = Y akmltheilg.,

LEN

with VJy(dg i—1) = Zey,;—1 the gradient of Jy(dy) defined
by (11) with respect to dil, = uo/|| Zx||?, with pg > 0 the
normalized step-size, and ||-|| the ¢z-norm of its vector or
matrix argument. The coefficients ayy, ,, are usually treated as
free weighting parameters to be chosen by the designer. It is
sufficient to select them as non-negative convex combination
coefficients satisfying:

a7
(18)

ag,m = 0, Z aok,m = 1, (192)
LENG,
pm = 0 if V4 ¢ N or 4,k g:‘ Gm.- (19b)

where condition (19b) means that we can only combine entries
which are in a same group. The selection of as . €.g., the
static combination rules [12] and the adaptive combination
rules [11], has a substantial effect on the algorithm’s efficacy.

IV. SIMULATIONS

The effectiveness of the proposed DNCD-G algorithm
is validated by comparing its performance to that of the
distributed normalized wave-domain algorithm based on the
diffusion LMS (DNWD-G) [10] and its centralized counterpart
(CNWD) [18] both in free and reverberant environments.

Consider the image-source approach for generating the
reverberant field of the room [23]. We considered the circular
control field depicted in Figure 1 with radius R; equal to 0.5
meter, and a 2D point-wise noise source located at (2,0°), with
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control area; (c) Primary noise field; (d) Noise cancellation performance of topology 1 after 20 iterations.
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TABLE I: Comparison of computational complexity

Algorithms Additions Multiplications

CNWD 2N x (NEf+Nyi)+ (N xN)xF 2N X (NF 4+ N) + [N x (N +1)] x F
DNCD-G 2N x (NE+ N + (V] x [N]) x F 2INg| X (NF + N+ [Ni] x 2INg| +1)] x F
DNWD-G  2[Ni| x (NF + N + (Nel X INGD) X F - 2ING] x (N + N + [Ve] x (NG| +2)] x F

W0 800 1000 1200 1400 1600
Number of iterations

(2) (b)

Fig. 5: Comparison of the multi-frequency noise reduction perfor-
mance in free field. (a) Residual noise inside the control region on
frequency bin after 2000 iterations; (b) Residual noise inside the
control region over iterations.

a magnitude of 15 and a frequency of 500 Hz. The ceiling
and floor of the 6meters x 6meters rectangular room were
represented with fully absorbing surfaces. On the contrary, the
reflection coefficients of the remaining side walls were set to
0.75. We set the modes in (1) to p € [—5, 5] based on [19],
with 25+1 = 11 equiangularly-equipped microphones located
on the boundary for measuring the residual signal. The sec-
ondary sound source was created with Q = 11 loudspeakers
arranged in a circle of radius Ry equal to 1.5 meter.

We simulated signal-task ANC networks with the two
topologies depicted in Figures 2(a) and 2(b). We adopted
the uniform rule to determine the value of the coefficients
{@ok,m}, specifically: agg, m = W ,if £ e Ny, and £,k € G,;
otherwise, agy,,, = 0. For both free and reverberant fields,
a window length of 3200 samples and a sampling rate of
8 kHz were employed. The microphone signal at each node
was characterized by a SNR of 40 dB with zero-mean white

Gaussian noise added. We set the step size to po = 8 for all
nodes in the comparison of the performance of the centralized
algorithm and its distributed counterparts. In order to evaluate
the algorithms, we considered two criteria for the performance
comparlson i.e., the res1dual noise on the boundary of control

area Ey(i) £ 1()log10 =" ||en((0))||2 and the residual noise inside

i (2)]? .
the control area Ej,(i) £ 10log;, %, respectively,
where e, (i) and ej (i) denoted the residual signals observed
at the n-th microphone and the arbitrary position r inside the

control area at time instant ¢, respectively.

Figures 3 and 4 illustrate the noise cancellation behavior
of the proposed DNCD-G algorithm with the two network
topologies, in the free field and reverberant environment,
respectively. Figures 3(a) and 4(a) represent the residual noise
measured by the 11 microphones. Figures 3(b) and 4(b)
illustrate the residual noise measured at 1296 points uniformly
sampled throughout the control region. With topology 1, the
residual noise fields are shown in Figures 3(d) for free field and
4(d) for reverberant field in comparison to the primary noise
fields (Figures 3(c) and 4(c)), where the proposed DNCD-G
algorithm executes for 20 and 80 iterations, respectively.

After a number of iterations, in the free field, both dis-
tributed algorithms DNCD-G and DNWD-G reached a steady
state comparable to their centralized counterpart (CNWD).
However, the DNCD-G algorithm achieved improved con-
vergence performance with a faster convergence rate com-
pared to the DNWD-G algorithm. In the reverberant field,
only the DNCD-G and CNWD attained similar steady-state



misadjustment, while DNWD-G diverged. Moreover, DNCD-
G over topology 2 performed better in reverberant fields. This
is most likely because a larger number of node connections
will result in longer estimated filter lengths on nodes, which
will influence the algorithm’s convergence speed.

Figure 5 depicts multi-frequency noise reduction per-
formance in the control zone in free field, where a
single noise source was generated by the combination

of H = 11 dominant narrowband components located
at (2,0°). Each frequency bin fn,h = 1,...,H, had
the same pressure magnitude of 15, with values of

{150, 250, 275, 310, 320, 360, 400, 450, 500, 550, 650}. In or-
der to ensure the performance of the algorithms, we
set the corresponding step size o for each frequency
point, that is, {0.9,8,8,8,8,8,8,8,8,8,8} for CNWD and
{2,0.9,0.9,8,8,8,8,8,8,0.9,0.9} for distributed counter-
parts. Other experiment settings were identical to the ANC
task for the single-frequency signal in the free field. Validation
of the proposed algorithm was over the network topology
of 1. Figure 5(a) demonstrates that, after 2000 iterations,
the DNCD-G performs comparably to the CNWD across all
frequency bins. In Figure 5(b), it is evident that the DNCD-G
operates in a steady state comparable to its centralized version,
while the DNWD-G diverges swiftly after execution.

We further conducted an analysis of the computational com-
plexity of the wave domain-based ANC methods, as shown in
Table 1. We evaluated the computational load at each iteration
on the centralized processor for centralized algorithms and
on the processor of each node k for distributed algorithms.
The computational complexity was divided into three compo-
nents: the FFT operation, wave-domain transform, and wave-
domain processing. The parameter F in this table represents
the number of fast Fourier transform (FFT) operations with
N} £ Flog, F and N7 = g log, F as the complex addi-
tions and multiplications numbers, respectively. NJJ(A and N
represent the complex additions and multiplications numbers
in wave-domain transform, respectively. The results presented
in Table I demonstrate that the proposed distributed method
effectively distributes the computational load among to the
processors of each node, thereby reducing the communication
load compared to the centralized approach. In wave-domain
processing, the proposed DNCD-G method has marginally
greater computational complexity in terms of multiplications
than the DNWD-G method. This improvement in load dis-
tribution enhances the system’s scalability and controls the
performance versus computational complexity trade-off.

V. CONCLUSION

In this paper, a distributed wave-domain ANC algorithm was
proposed based on the convex sum of non-convex quadratic
costs. The optimization problem was proposed with the Group
diffusion LMS to ensure the consistency of the driving signal
parameters locally estimated by nodes and their neighbors.
This approach enables a distributed implementation with scal-
ability and minimal computational cost. Simulation results in
free field and reverberant environments and computational
complexity analysis validated the proposed algorithm. Our

future work will consist of the convergence analysis the
DNCD-G algorithm, and extension to multi-channel and real-
world environments.
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