
1

Imbalanced Large Graph Learning Framework for
FPGA Logic Elements Packing Prediction

Zhixiong Di, Member, IEEE, Runzhe Tao, Lin Chen, Qiang Wu, Yibo Lin, Member, IEEE

Abstract—Packing is a required step in a typical FPGA CAD
flow. It has high impacts to the performance of FPGA placement
and routing. Early prediction of packing results can guide design
optimization and expedite design closure. In this work, we
propose an imbalanced large graph learning framework, ImLG,
for prediction of whether logic elements will be packed after
placement. Specifically, we propose dedicated feature extraction
and feature aggregation methods to enhance the node represen-
tation learning of circuit graphs. With imbalanced distribution
of packed and unpacked logic elements, we further propose
techniques such as graph oversampling and mini-batch training
for this imbalanced learning task in large circuit graphs. Experi-
mental results demonstrate that our framework can improve the
F1 score by 42.82% compared to the most recent Gaussian-based
prediction method. Physical design results show that the proposed
method can assist the placer in improving routed wirelength by
0.93% and SLICE occupation by 0.89%.

Index Terms—FPGA, packing prediction, physical design,
graph neural networks, imbalanced graph learning.

I. INTRODUCTION

IN a typical FPGA CAD flow, packing clusters all the low-
level logic elements such as lookup tables (LUTs) and flip-

flops (FFs) into the basic operational objects, i.e., basic logic
elements (BLEs) in configurable logic blocks (CLBs) for the
placement, as shown in Fig. 1. Packing is usually performed
during placement and routing (P&R), and its quality has high
impacts on the P&R closure.

State-of-the-art (SOTA) FPGA placement algorithms [1]–
[4] require packing prediction in the optimization iterations
for logic resource estimation. [1] and [2] propose to predict
packing by setting static empirical resource demands, which
has poor generalization among designs. [3] and [4] propose
a Gaussian-based approach for packing prediction through
estimating resource demands. Despite its effectiveness, the
previous approaches have two major drawbacks. Firstly, re-
source demands alone are not enough to decide whether an
instance can be packed or not. Secondly, as the number of
packed elements is much larger than that of unpacked ones,
these approaches are not able to capture the imbalanced distri-
bution of packing results, causing low accuracy on predicting
unpacked elements, i.e., high false positive rates.

This work was supported by National Natural Science Foundation of
China (61504110, 62034007). Corresponding author: Zhixiong Di (dizhix-
iong2@126.com).

Zhixiong Di, Runzhe Tao, Lin Chen and Qiang Wu are School of Infor-
mation Science and Technology, Southwest Jiaotong University, Chengdu,
China. (e-mail:dizhixiong2@126.com, 825140517@qq.com, mix lc@qq.com,
wq cool@126.com).

Yibo Lin is with the Center for Energy-Efficient Computing and Appli-
cations, School of Integrated Circuits, Peking University, Beijing, China.
(email:yibolin@pku.edu.cn)

LUT FF

FF

LUT

CLK

Netlist

BLE

Fatures

Label

Datasets

Prediction

Auto

Encoder
GAN

Learning Model

Packed :0

Unpacked :1

GraphGlobal Placement

Legalization

CLB

CLB

Global

Placement

Legalization

Detail

Placement

FPGA Design

Synthesis

Routing

Placement

Packing

Prediction Model

Prediction

Packing Label

Target

Packing Label

(a) FPGA CAD Flow (b) Packing Prediction Framework

Supervision

Input

Output

Optimization

Extraction

BLE0 BLE1 BLE2 BLE3

BLE4 BLE5 BLE6 BLE7

LUT A

FF B

(CK1, SR1, CEA1, CEB1)

(CK2, SR2, CEA2, CEB2)

FF A

CLB DSP BRAM

CLB

6

LUT B

O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

CLB DSP BRAM

RTL Design

Synthesis

Placement

Routing

Global

Placement

Legalization

Detail

Placement

BEL0 BEL1 BLE3

BLE4 BLE5 BLE6 BLE7

(CK1, SR1, CEA1, CEB1)

(CK2, SR2, CEA2, CEB2)

Prediction

Result

Packing

Prediction Model

Packing

Label

Input

Optimization

Extraction

Output

Supervision

(a) FPGA CAD Flow (b) Packing Prediction (c) Packing Constraints

CLB

DSP

BRAM

CLB

LUT A

FF B

FF A

6

LUT B

O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

LUT A

FF B

FF A

6

LUT B

O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

BEL2

(d) FPGA Architecture

RTL Design

Synthesis

Placement

Routing

Global

Placement

Legalization

Detail

Placement

BEL0

(CK1, SR1, CEA1, CEB1)

(CK2, SR2, CEA2, CEB2)

Prediction

Result

Packing

Prediction Model

Packing

Label

Input

Optimization

Extraction

Output

Supervision

(b) FPGA CAD Flow (c) Packing Prediction (a) FPGA Packing

CLB

DSP

BRAM

CLB

LUT A

FF B

FF A

6
O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

LUT A

FF B

FF A

6
O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

(d) FPGA Architecture

LUT B

BEL1 BEL2 BEL3

BEL0 BEL1 BEL2 BEL3

Basic

Objects

RTL Design

Synthesis

Placement

Routing

Global

Placement

Legalization

& Packing

Detailed

Placement

BLE0

(CK1, SR1, CEA1, CEB1)

(CK2, SR2, CEA2, CEB2)

Packing

Prediction Model

(b) FPGA CAD Flow (c) Packing-driven Approach (a) FPGA Packing

CLB

DSP

BRAM

CLB

LUT A

FF B

FF A

6
O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

LUT A

FF B

FF A

6
O

MUX

CEA

CEB

Q0

Q1

X

I

CK SR

(d) FPGA Architecture

LUT B

BLE1 BLE2 BLE3

BLE0 BLE1 BLE2 BLE3

Basic

Objects

Optimized

Resource Area

Placement

Result

Fig. 1: The packing-driven FPGA CAD flow.

As an FPGA design can be represented as a circuit graph,
packing prediction can be viewed as a graph learning task
on large circuit graphs with physical information and imbal-
anced label distribution on nodes. Recent studies have shown
promising results of leveraging graph neural networks (GNNs)
for related tasks like routing congestion prediction in physical
design [6] – [8]. Inspired by these works, in this work, we
propose an imbalanced large graph learning framework for
packing prediction of logic elements in the FPGA desgin
flow. Different from routing congestion prediction, packing
prediction is more challenging since the operational objects
in this task are instance-level logic elements with complex
netlists and imbalanced distribution of packing labels.

The key contributions are summarized as follows.

• We propose a new graph learning based paradigm for
FPGA packing prediction with graph oversampling and
mini-batch training to handle imbalanced distribution of
packed and unpacked elements.

• We propose a region-encoding based feature extraction
scheme that aligns with the local nature of packing
process.

• We propose a homophily-aware feature aggregation
method to capture the differences between packed ele-
ments and unpacked ones, which enhances the quality of
embeddings.

Detailed experiments demonstrate that our framework outper-
forms the most recent Gaussian-based method in prediction
accuracy. And this technique improves the routed wirelength
by 0.93% and the SLICE occupation by 0.89% for physical
design.

The rest of the paper is organized as follows. Section II
introduces the background and overview. Section III provides
the proposed framework. Section IV demonstrates the results.

ar
X

iv
:2

30
8.

03
23

1v
1

 [
cs

.L
G

]
 7

 A
ug

 2
02

3

2

3G

Global PlacementGlobal Placement

Graph

Establishment

1G 2G

Graph

Partition

Feature

Extraction
...

d

n

Legalization SolutionLegalization Solution

Placement Tool
Packing Label

Packing

Prediction

Supervision
forward

backward

Input

...

GNN ModelGNN Model

3G

Global Placement

Graph

Establishment

1G 2G

Graph

Partition

Feature

Extraction
...

d

n

Legalization Solution

Placement Tool
Packing Label

Packing

Prediction

Supervision
forward

backward

Input

...

GNN Model

Graph

 Establishment

Feature

Extraction Prediction

Packing Label

Supervision

Input

GNN ModelGNN Model

forward

backward

Placement Tool Target

Packing Label

Global PlacementGlobal Placement Legalization SolutionLegalization Solution

...

...

...

...

Graph

Partition

...

...

...

...

Physical Design

Data Processing Graph Learning

Input

Graph

 Establishment

Feature

Extraction Prediction

Packing Label

Supervision

Input

GNN Model

forward

backward

Placement Tool Target

Packing Label

Global Placement Legalization Solution

...

...

Graph

Partition

...

...

Physical Design

Data Processing Graph Learning

Input

3G

1G 2G

Output

Prediction

Packing Label

Supervision

Input

GNN ModelGNN Model

forward

backward

...

...

...

...

3G

1G 2G

Output

Structure DecoderHomophily-aware Encoder

P

P

P

P P

P

P

P

P P

P

P

P

P P

K=1

K=2

U

U

SMOTE

Classifier

Prediction

Packing Labels

P

P

P

P P

P

P

P

P P

U

U

P

P

P

P P

U

U

Feature

Train Flow

Inference Flow

Adjacency

AdjacencyAdjacency

Input
UU

P

P

P

P P

P

P

P

P P

P

P

P

P P

U

U

P

P

P

P P

U

U

UU

UU

U

P

P

P

P P

U

U

U

UP

P

P

P P

P

P

P

P P

U

U

P

P

P

P P

U

U

P

P

P P

U

P

P

P P

U

P

P

P P

U

Output

P Packed Nodes

Unpacked Nodes

Raw Graph

Agumented Graph



Region

Slice

Example LUT

Output

Data Processing

Graph Learning

Input

Physical Design

Features

Target

Packing Label

Legalization SolutionLegalization Solution

..
......
......
.

..
.

..
.

..
.

...

...

...

...

...

x-L x x+L

..
.

..
.

y

y-L

y+L

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

..
......
....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..
......
.... ..
......
....

Slice-level Board

1 p a
1

q

b

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

...

...

...

...

...

...

...

...

...

...

...

..
......
....

..
.... ..
......
....

..
......
....

1 p a
1

q

b

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

...

...

...

...

...

...

...

...

...

...

...

..
....

..
.... ..
....

..
....

Region-level Board
..

......
.

..
.

..
.

..
.

...

...

...

...

...

x-L x x+L

..
.

..
.

y

y-L

y+L

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

..
....

...

...

...

...

...

...

...

...

...

...

...

...

..
.... ..
....

Slice-level Board

1 p a
1

q

b

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

...

...

...

...

...

...

...

...

...

...

...

..
....

..
.... ..
....

..
....

Region-level Board

P

P

P

P P

U

P

P

P

P P

U

K=1

K=2

U

Homophily-aware Encoder

...

...

...

... P

P

P

P P

P

P

P

P P

U

U

P

P

P

P P

U

U

Structure Decoder

Adjacency

METIS

Global PlacementGlobal Placement

... ...

..
.

..
.

Classifier

P

P

P P

U

P

P

P P

U

P

P

P P

U

P

P

P

P P

P

P

P

P P

U

U

P

P

P

P P

U

U

Raw Graph

UU

P

P

P

P P

U

U

UU

UU

Agumented Graph

SMOTE

Prediction

Packing Result

Extract Feature

Establish

Graph



Raw Connection

Generated Connection

Supervision

Higher

Region-level

Board

Training Flow

Inference Flow

Noncandidate FF

Noncandidate LUT

Candidate FF

Candidate LUT

Example LUT

Residual Connection

Correlation Connection

Congeneric ConnectionCongeneric Connection

U

Neighboring Connection Region-encoding

Fig. 2: Proposed imbalanced large graph learning framework.

Section V concludes the paper.

II. PRELIMINARIES AND OVERVIEW

A. FPGA Architecture

To detail the FPGA architecture, a typical architecture Xilinx
UltraScale VU095 is illustrated in Fig. 1, in which a CLB slice
contains eight BLEs and each BLE further contains two LUTs
and FFs. The LUTs or FFs satisfying constraints are packed
into the high-level BLEs. And each CLB is composed of LUTs
and FFs with specific logical constraints.

B. Imbalanced Graph Learning for Binary Classification

Given the packing prediction can be modeled as a binary
node classification task on an imbalanced graph Gim, where
the number of packed elements is much larger than that of
unpacked ones by more than 10 : 1. Such biased data greatly
weaken the classification performance of the GNN model. The
current SOTA methods, such as [15] [16], solve this problem
with data oversampling algorithms, as it has been found to
be the most effective and stable solution. These methods
aim to balance the raw data distribution for achieving good
classification performance on the augmented balanced graph.

C. Packing Prediction in elfPlace

In elfPlace, legalization and packing are carried out simul-
taneously. Therefore, in the global placement stage, elfPlace
performs a Gaussian method to predict packing results by
estimating resource demands and thus assigning appropriate
resources for each instance. This packing-driven approach has
the ability to enhance circuit quality. However, considering
the low prediction accuracy of the Gaussian method, a better
packing prediction paradigm will be proposed to assist the
placer to achieve better solution.

D. Overview of Proposed Framework

The overall framework is depicted in Fig. 2, which consists
of physical design, data processing, and graph learning. The
red row represents the training flow, while the blue row
represents the inference flow.

The physical design generates the target packing labels
through a legalization process. This part is only performed
in the training stage. Regarding data processing, the packing-
specific connection and encoding scheme are performed to rep-
resent a global placement solution as a graph. Moreover, graph
learning achieves the mapping of nodes to packing results by
leveraging the graph oversampling with mini-batch training
and the homophily-aware aggregation method. With the well-
trained GNN model, the packing results of a completely new
design can be rapidly inferred without the physical design
stage.

III. PACKING-SPECIFIC DATA PROCESSING

To better training of the GNN model, two packing-specific
data-processing methods are proposed, namely, (1) graph es-
tablishment with neighbor-priority connection and (2) feature
extraction with region-encoding. The first method can effec-
tively reduce the network size and improve the training effi-
ciency, while the second method can extract more informative
features for the packing problem.

A. Graph Establishment with Neighbor-priority Connection
To establish the graph of the global placement, the difficulty

is to build appropriate edges with the fixed number of nodes,
since excessive edges bring two defects: (1) high computa-
tional burden and (2) redundancy information utilization.

To alleviate these deficiencies, we propose a neighbor-
priority connection scheme based on the Direct-Legalize [3]
shown in the slice-level board of Fig. 2, which are (1)
Congeneric Connection: Node u, and its congeneric node
v satisfy max (|xv − xu| , |yv − yu|) ≤ L, and the packing
constraints are connected together, where (xu, yu) and (xv, yv)
are the coordinates of u and v, respectively, and L is em-
pirically set to five CLB slices. (2) Correlation Connection:
We add connections for LUT and FF, in which the LUT’s
output pin and the FF’s data pin share the same net. This
maintains the correlation between the sub-graph of LUTs and
FFs. (3) Residual Connection: We follow the netlist to build
edges between the isolated nodes and other nodes with logic
relationships.

The above procedures can greatly reduce the adjacency size
and also preserve informative connections as much as possible.

3

B. Feature Extraction with Region-encoding
It is well known that informative features have a very

important impact on the performance of machine learning
models. However, for packing prediction, two main challenges
exist: (1) few attributes can be utilized, and (2) efficient feature
representations are desired. To overcome these, we propose
an attributed feature extraction (AFE) method with a region-
encoding scheme.

In the proposed framework, we make full use of the element
type and element location, and encode them as features. First,
a six-bit code is used to represent six instance types, which are
{LUT2,· · · , LUT6, FF}. Second, we adopt a region-encoding
scheme to represent the location attribute illustrated in the
region-level board of Fig. 2. In practice, we partition the layout
into multiple regions and then encode the instance’s location
according to the region in which it falls. By repeating this
process, we can customize the location features’ dimension.
This approach can greatly reduce the features’ dimension size
and generate similar location features for the neighboring logic
elements.

IV. IMBALANCED LARGE GRAPH NEURAL NETWORKS

We present the imbalanced large graph (ImLG) neural net-
works, which comprise an improved model based on [9]. The
packing-specific improvements are summarized as follows.

• We propose a homophily-aware aggregation method for
the class-rebalanced autoencoder, which captures the dif-
ferences between nodes.

• We add a penalty term for the graph reconstruction
error, which enhances the dependability of the augmented
graph’s topology structure.

• We implement cross-graph inductive learning through the
mini-batch training strategy.

We first introduce the graph-oversampling-based model
architecture shown in Figure 2. The raw graph is loaded
into the homophily-aware encoder to obtain informative graph
embeddings. With the help of synthetic minority oversampling
(SMOTE) algorithms [16], the minority embeddings are ar-
tificially generated. Then, the structure decoder reconstructs
the graph topology from the augmented embeddings, and the
classifier performs prediction on the augmented graph. With
a well-trained encoder and classifier, the prediction labels can
be directly inferred on an unseen graph without the SMOTE
and graph reconstruction steps.

A. Graph-oversampling-based Model
Our model consists of a class-rebalanced autoencoder that

implements graph oversampling and a graph-based classifier
that enables node binary classification.

1) Homophily-aware Encoder for Embedding Mapping:
Since the unpacked logic elements are surrounded by the
packed ones in the circuit layout, measuring the homophily
is an effective way to differ between these two types of
elements. Thus, for each node v, we implement a specialized
aggregation method aiming to capture the homophily, which
can be expressed as

Zv = σ
(
W1 · CONCAT(Xv,X v

N ,X v
N −Xv)

)
, (1)

where σ is the activation function, W1 the learnable weight
matrix, and Zv,Xv , and X v

N the embedding, raw feature, and
aggregated neighbor feature of node v, respectively.

2) Raw Graph Oversampling: We first utilize the SMOTE
algorithm to generate the augmented embedding Z̃ , which is
performed by the structure decoder using the inner product to
reconstruct the augmented adjacency Ã. The adjacency matrix
Ã has Ãij = 1 if there is an edge between node i and j.

3) Graph-based Classifier: We adopt GraphSAGE for clas-
sification on the augmented graph G̃ = (Ã, Z̃) to output P̃ ,
from which the prediction packing labels Ỹ ′ can be obtained
through an argmax operation.

Algorithm 1 Model training algorithm.

Input: Graph G with adjacency A, feature X , label Y;
Output: Optimal network parameters θEnc, θDec, θClf for

Encoder, Decoder, Classifier, respectively;
1: Gc ← partition G by METIS;
2: θEnc, θDec, θClf ← initialize network parameters
3: for iter=1, · · · ,max iter do
4: Ĝ = (Â, X̂ , Ŷ) ← random mini-batch from Gc;
5: Ẑ ← Encoder(Â, X̂);
6: Z̃ ← SMOTE for Ẑ;
7: Ã ← Decoder(Z̃);
8: Ỹ ← Classifier(Ã, Z̃)
9: Compute loss Lrec,Lclf followed Eqs. (2), (4);

10: // Update model parameters
11: θEnc

+←− −∇θEnc
(Lrec + Lclf);

12: θDec
+←− −∇θDec

Lrec;
13: θClf

+←− −∇θClf
Lclf ;

14: end for

TABLE I: ISPD 2016 Contest Benchmarks Statistics

Benchmark LUT FF Minority Ratio
FPGA01 50K 55K 8087 7.69%
FPGA02 100K 66K 7969 4.57%
FPGA03 250K 170K 40105 9.55%
FPGA04 250K 172K 46468 11.02%
FPGA05 250K 174K 46773 11.02%
FPGA06 350K 352K 92373 13.15%
FPGA07 350K 355K 96683 13.68%
FPGA08 500K 216K 40055 5.59%
FPGA09 500K 366K 93249 10.76%
FPGA10 350K 600K 107428 11.31%
FPGA11 480K 363K 80325 9.52%
FPGA12 500K 602K 86833 7.88%

B. Model Optimization with Reconstruction-error Penalty

The loss function of the autoencoder can be written as

Lrec = ∥(A− ÃR)⊙ η∥2F , (2)

where ÃR refers to predicted connections between nodes in
the raw graph G, ⊙ represents the Hadamard product, and the
penalty term η can be written as

ηi,j =

{
1 if Ai,j = 0
η otherwise , (3)

4

TABLE II: Comparison of Different Methods on ISPD 2016 Contest Benchmarks

Methods Gaussian Method [4] Cluster-SAGE1 [13] Proposed ImLG
TPR@20 TPR@40 F1 score AUC TPR@20 TPR@40 F1 score AUC TPR@20 TPR@40 F1 score AUC

FPGA01 0.2787 0.4777 0.1368 0.5726 0.3716 0.6276 0.4800 0.6617 0.4746 0.7498 0.5212 0.7254
FPGA02 0.2725 0.5450 0.0853 0.5756 0.3201 0.6332 0.4884 0.6488 0.4403 0.6504 0.5122 0.7177
FPGA03 0.1783 0.3566 0.1213 0.4885 0.4264 0.6184 0.4804 0.6646 0.5184 0.7336 0.5902 0.7371
FPGA04 0.1875 0.3751 0.1436 0.4936 0.3234 0.6504 0.4723 0.6580 0.4907 0.7070 0.5969 0.7199
FPGA05 0.1866 0.3731 0.1438 0.4951 0.4029 0.6746 0.4717 0.6827 0.4863 0.7047 0.5932 0.7174
FPGA06 0.1807 0.3480 0.1671 0.5281 0.3749 0.6328 0.4921 0.6477 0.4918 0.7285 0.5886 0.7371
FPGA07 0.1805 0.3456 0.1688 0.5265 0.3700 0.6730 0.4731 0.6826 0.4789 0.6989 0.5998 0.7115
FPGA08 0.2758 0.5515 0.1004 0.5748 0.3413 0.6478 0.4856 0.6843 0.4553 0.7556 0.5188 0.7354
FPGA09 0.1988 0.3976 0.1466 0.5145 0.3684 0.6584 0.4715 0.6678 0.4432 0.6985 0.5779 0.7128
FPGA10 0.1917 0.5959 0.1526 0.6210 0.5046 0.7902 0.4781 0.7480 0.5968 0.8550 0.5987 0.7789
FPGA11 0.2306 0.4576 0.1489 0.5628 0.4527 0.7059 0.4750 0.6885 0.5005 0.7227 0.5351 0.7127
FPGA12 0.2799 0.4634 0.1423 0.6198 0.5036 0.7334 0.4995 0.7185 0.5503 0.7787 0.5630 0.7574
Average 0.2201 0.4406 0.1381 0.5477 0.3968 0.6705 0.4807 0.6783 0.4939 0.7320 0.5663 0.7303

where η > 1 imposes more cost on the reconstruction error of
the non-zero elements.

The loss function of the classifier is expressed by Eq. (4):

Lclf =
∑
u∈Ṽ

∑
c∈C

(
1 (Yu == c) · log

(
P̃u,c

))
. (4)

where Yu is the predicted result of node u, and P̃u,c the
probability that node u belongs to class c. Above all, the
overall optimization objective of the proposed model can be
written as

min
ϕ,φ
Lclf + λ · Lrec, (5)

wherein ϕ and φ are the parameters for the autoencoder and
classifier, respectively, and λ is the parameter that controls the
trade-off between structure reconstruction and node classifica-
tion.

C. Graph Partition & Model Training Algorithm

To handle the large placement graph, we partition it into
clusters using the graph-clustering algorithm METIS. We set
the clustering configuration to create clusters of approximately
10, 000 nodes each, with the ISPD 2016 contest benchmarks
rounded to the nearest integer to achieve the target cluster size.
We use Algorithm 1 to train our model on these clusters.

V. EXPERIMENT RESULTS

A. Experimental Setup

To validate the effectiveness of the proposed packing pre-
diction framework, we conduct experiments on ISPD 2016
contest benchmarks. The detailed statistics of the benchmark
are shown in Table I, where “K” denotes 1000, “Minority”
represents the number of unpacked logic elements, and “Ratio”
represents the proportion of the minority class.

The proposed model is implemented using the PyTorch
framework, utilizing a single NVIDIA GeForce RTX 3090
GPU. The Adam optimizer is employed with a learning rate
of 1e − 3 and weight decay of 5e − 4 to update the model
parameters. The maximum training epoch is set to 1000. The
routing process is executed using Vivado tool.

1An improved version of the Cluster-GCN developed by us.

TABLE III: Comparison of Effectivenes of Different Feature
Extraction Methods

Methods
ClusterSAGE

+GCGE
Proposed
ImLG+GCGE

ClusterSAGE
+AFE

Proposed
ImLG+AFE

F1 score AUC F1 score AUC F1 score AUC F1 score AUC
FPGA01 0.3940 0.5242 0.4800 0.5376 0.4800 0.6617 0.5212 0.7254
FPGA02 0.3500 0.5422 0.4986 0.5918 0.4884 0.6488 0.5122 0.7177
FPGA03 0.4590 0.5303 0.4749 0.5530 0.4804 0.6646 0.5902 0.7371
FPGA04 0.4344 0.5192 0.4709 0.5453 0.4723 0.6580 0.5969 0.7199
FPGA05 0.4098 0.5409 0.4708 0.5524 0.4717 0.6827 0.5932 0.7174
FPGA06 0.4069 0.5292 0.4778 0.5489 0.4921 0.6477 0.5886 0.7371
FPGA07 0.4168 0.5120 0.4633 0.5353 0.4731 0.6826 0.5998 0.7115
FPGA08 0.3895 0.5077 0.4856 0.5388 0.4856 0.6843 0.5188 0.7354
FPGA09 0.4183 0.5216 0.4715 0.5368 0.4715 0.6678 0.5779 0.7128
FPGA10 0.4145 0.5233 0.4700 0.5525 0.4781 0.7480 0.5987 0.7789
FPGA11 0.4333 0.5088 0.4749 0.5221 0.4750 0.6885 0.5351 0.7127
FPGA12 0.3944 0.5122 0.4795 0.5281 0.4995 0.7185 0.5630 0.7574
Average 0.4101 0.5226 0.4765 0.5452 0.4807 0.6783 0.5663 0.7303

B. Models Evaluation

In this subsection, we compare our proposed ImLG with
the following two baseline methods.

• Gaussian Method: An analytic packing-prediction ap-
proach in [4] through estimating the resource demands.

• Cluster-SAGE: An improved version of ClusterGCN
[10] developed by us, which achieves cross-graph training
and further improves generalizability.

The evaluation utilizes four standard binary classification
metrics: TPR (true positive rate), FPR (false positive rate),
AUC (area under the curve), and F1 score. TPR@20 and
TPR@40 denote TPR values at FPR=0.2 and 0.4, respectively.
The experimental results are shown in Table II. Our proposed
method outperforms Cluster-SAGE and the Gaussian method
by 8.56% and 42.82% in F1 score, respectively.

C. Comparison of feature-extraction methods

We compare the efficiency of the proposed AFE method
and generalizable cross-graph embedding (GCGE) method
[7] shown in TABLE III. The column headed “ImLG+AFE”
indicates that the ImLG model uses the AFE method, and
other columns are similar. From the statistics, the proposed
AFE method consistently achieves better AUC and F1 score
evaluations than the GCGE method, which indicates that the
AFE method tends to generate quality features for the packing

5

Fig. 3: Performance Comparison of Various Models on
FPGA03 Using AUC-ROC Curves.

prediction task. Fig. 3 presents a performance comparison of
various models on the FPGA03, indicating that graph-based
approaches utilizing the AFE method outperform the Gaussian
approach by a significant margin.

D. Improvement on Physical Design
We integrate our well-trained packing predictor into our

placer and present experimental results in TABLE IV. The
two columns represent the placement results obtained by the
placer using the Gaussian method and the ImLG model to
implement the packing prediction, respectively. The“WL” and
“SO” metrics indicate the routed wirelength and occupied
SLICE sites, respectively. “WLR” and “SOR” represent the
wirelength and occupation ratios normalized to our proposed
method. The experiments show that our packing predictor im-
proves the routed wirelength by 0.93% and SLICE occupation
by 0.89%, supporting our assumption that a well-predicted
model can guide the placer to achieve better wirelength with
minimal resource usage.

TABLE IV: Routed Wirelength (WL) and SLICE Occupation
(SO) Comparsion on ISPD 2016 Benchmarks

Methods
Our Placer [19]

+ Gaussian Method [4]
Our Placer [19] + ImLG

WL WLR SO SOR WL WLR SO SOR
FPGA01 322575 1.0023 8189 1.0272 321843 1.0000 7972 1.0000
FPGA02 581221 1.0044 14722 1.0035 578955 1.0000 14671 1.0000
FPGA03 2875306 1.0024 37157 1.0020 2868524 1.0000 37083 1.0000
FPGA04 4871569 1.0016 37252 1.0020 4863815 1.0000 37177 1.0000
FPGA05 9283586 1.0060 41197 1.0171 9228212 1.0000 40504 1.0000
FPGA06 5729110 1.0014 55227 1.0039 5720987 1.0000 55013 1.0000
FPGA07 8621724 1.0039 57396 1.0119 8588057 1.0000 56721 1.0000
FPGA08 7421319 1.0065 67057 1.0170 7373437 1.0000 65933 1.0000
FPGA09 10587173 1.0010 67145 1.0016 10576955 1.0000 67035 1.0000
FPGA10 6131167 1.0182 65873 1.0198 6021620 1.0000 64596 1.0000
FPGA11 10055329 1.0374 67070 1.0004 9692931 1.0000 67042 1.0000
FPGA12 6569251 1.0271 67188 1.0003 6396026 1.0000 67167 1.0000
Norm. 6087444 1.0093 48789 1.0089 6019255 1.0000 48409 1.0000

VI. CONCLUSION

In this paper, we develop a graph learning based FPGA
packing prediction framework that can achieve inductive

learning on large FPGA designs with an imbalanced dis-
tribution of labels. We present dedicated feature extraction
and homophily-aware feature aggregation methods to enhance
node representation learning. We further propose techniques
like graph oversampling and mini-batching training to tackle
imbalanced label distribution in large graphs. Experimental
results on the ISPD 2016 contest benchmarks showed that the
proposed framework outperformed the most recent Gaussian-
based method by 42.82% in F1 score. Physical design results
demonstrated that our approach improved routed wirelength
by 0.93% and SLICE occupation by 0.89%.

REFERENCES

[1] G. Chen, C.-W. Pui, W.-K. Chow, K.-C. Lam, J. Kuang, E. F. Y. Young
and B. Yu, “RippleFPGA: Routability-driven simultaneous packing and
placement for modern FPGAs,” IEEE Trans. Com-put.-Aided Design
Integr. Circuits Syst., vol. 37, no. 10, pp. 2022–2035, Oct. 2017.

[2] R. Pattison, Z. Abuowaimer, S. Areibi, G. Gréwal, and A. Vannelli,
“GPlace: A congestion-aware placement tool for ultrascale FPGAs,” in
Proc. ICCAD, Austin, TX, USA, 2016, pp. 1–7.

[3] W. Li and D. Z. Pan, “A new paradigm for FPGA placement without
explicit packing,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 11, pp. 2113–2126, Nov. 2018.

[4] W. Li, Y. Lin and D. Z. Pan, “elfPlace: Electrostatics-based Placement
for Large-Scale Heterogeneous FPGAs,” in Proc. ICCAD, Westminster,
CO, USA, 2019, pp. 915–922.

[5] W. Li, S. Dhar and D. Z. Pan, “ UTPlaceF: A routability-driven
FPGA placer with physical and congestion aware packing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 4, pp. 869-882,
Apr. 2018.

[6] R. Kirby, S. Godil, R. Roy, B. Catanzaro, “CongestionNet: Rout-ing
congestion prediction using deep graph neural networks,” in Proc. VLSI-
Soc, Cuzco, Peru, 2019, pp. 217-222.

[7] A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu and M. Coates, “General-
izable cross-graph embedding for GNN-based congestion prediction,” in
Proc. ICCAD, Munich, Germany, 2021, pp. 1-9.

[8] X. Chen, Z. Di, W. Wu, Q. Wu, J. Shi and Q. Feng, “Detailed routing
short violation prediction using graph-based deep learning model,” in
IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 2, pp. 564-568,
Feb. 2022.

[9] T. Zhao, X. Zhang, and S. Wang, “Graphsmote: Imbalanced node clas-
sification on graphs with graph neural networks,” in Proc. WSDM, New
York, NY, USA, 2021, pp. 833–841.

[10] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio and C.-J. Hsiseh,
“Cluster-GCN:An efficient algorithm for training deep and large graph
convolutional networks,” in Proc. KDD, Anchorage, AK, USA, 2019, pp.
257-266.

[11] B. Perozzi, R. AI-Rfou and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. KDD, New York, NY, USA, 2014, pp.
701-710.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan and Q. Mei, “LINE: Large-
scale information network embedding,” in Proc. WWW, Florence, Italy,
2015, pp. 1067-1077.

[13] W. L. Hamilton, R. Ying and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NIPS, Long Beach, CA, USA, 2017,
pp. 1025-1035.

[14] K. M. Ting, “An instance-weighting method to induce cost-sensitive
trees,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 3, pp. 659-665, Jun.
2002.

[15] L. Qu, H. Zhu, R. Zheng, Y. Shi and H. Yin, ”ImGAGN: Imbalanced
network embedding via generative adversarial graph networks,” in Proc.
KDD, Singapore, 2021, pp. 1390-1398.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
”SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell.
Res., vol. 16, no.11, pp. 321-357, Mar. 2002.

[17] H. Fan, F. Zhang, and Z. Li, “AnomalyDAE: Dual autoencoder for
anomaly detection on attributed networks,” in Proc. ICASSP, Barcelona,
Spain, 2020, pp. 5685-5689.

[18] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc.
NIPS, 2016.

[19] J. Mai, Y. Meng, Z. Di, and Y. Lin, “Multi-electrostatic FPGA placement
considering SLICEL-SLICEM heterogeneity and clock feasibility,” in
Proc. DAC, San Francisco, CA, USA, 2022, pp. 649-654.

	Introduction
	Preliminaries and Overview
	FPGA Architecture
	Imbalanced Graph Learning for Binary Classification
	Packing Prediction in elfPlace
	Overview of Proposed Framework

	Packing-specific Data Processing
	Graph Establishment with Neighbor-priority Connection
	Feature Extraction with Region-encoding

	Imbalanced Large Graph Neural Networks
	Graph-oversampling-based Model
	Homophily-aware Encoder for Embedding Mapping
	Raw Graph Oversampling
	Graph-based Classifier

	Model Optimization with Reconstruction-error Penalty
	Graph Partition & Model Training Algorithm

	Experiment Results
	Experimental Setup
	Models Evaluation
	Comparison of feature-extraction methods
	 Improvement on Physical Design

	Conclusion
	References

