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ABSTRACT
The matrix factorization (MF) technique has been widely
adopted for solving the rating prediction problem in rec-
ommender systems. The MF technique utilizes the latent
factor model to obtain static user preferences (user latent
vectors) and item characteristics (item latent vectors) based
on historical rating data. However, in the real world user
preferences are not static but full of dynamics. Though
there are several previous works that addressed this time
varying issue of user preferences, it seems (to the best of our
knowledge) that none of them is specifically designed for
tracking concept drift in individual user preferences. Moti-
vated by this, we develop a Temporal Matrix Factorization
approach (TMF) for tracking concept drift in each individ-
ual user latent vector. There are two key innovative steps in
our approach: (i) we develop a modified stochastic gradient
descent method to learn an individual user latent vector at
each time step, and (ii) by the Lasso regression we learn a
linear model for the transition of the individual user latent
vectors. We test our method on a synthetic dataset and
several real datasets. In comparison with the original MF,
our experimental results show that our temporal method is
able to achieve lower root mean square errors (RMSE) for
both the synthetic and real datasets. One interesting find-
ing is that the performance gain in RMSE is mostly from
those users who indeed have concept drift in their user la-
tent vectors at the time of prediction. In particular, for the
synthetic dataset and the Ciao dataset, there are quite a
few users with that property and the performance gains for
these two datasets are roughly 20% and 5%, respectively.

Categories and Subject Descriptors
H3.3 [Information Storage and Retrieval]: Information
Search and Retrieval–Information filtering

General Terms

Algorithms; Experimentation

Keywords
Recommender systems, Rating prediction, Matrix factoriza-
tion, Temporal dynamics, Concept drift.

1. INTRODUCTION
With the accelerated growth of the Internet and a wide
range of web services such as electronic commerce and online
video streaming, people are easily overwhelmed by massive
amounts of information and therefore recommender systems
are indispensable tools to alleviate the information overload
problem. At the heart of each recommender system, there
is an algorithm that handles the rating prediction task and
the accuracy of the rating prediction algorithm is the foun-
dation of the system. The most successful and widely used
approach to implement such an algorithm is collaborative fil-
tering with matrix factorization (MF). Such an approach has
the advantage of high accuracy, robustness and scalability,
and it is thus more favorable than the other approaches, such
as the neighborhood-based approach and the graph-based
approach [29, 28]. The MF approach proved its success in
the Netflix Prize competition [6] as the winning submission
of this competition was heavily relied on it to predict unob-
served ratings. The MF approach decomposes a user-item
rating matrix into two low-rank matrices which directly pro-
file users and items to the latent factor space respectively
and these representative latent factors form the main basis
for further prediction in the future.

Although MF is the state-of-the-art approach that can
successfully process the relational rating data, its capabil-
ity of capturing the temporal dynamics of users’ preferences
is quite limited. As we are facing the fast-moving business
environment, the real world is not static but full of dynam-
ics. There are a great variety of sources that can cause the
changes of users’ behavior, including shifting trends in the
community, the arrival of new products, the changes in users’
social networks, and so on. Recent research in [22] consid-
ered the aspect of personal development and pointed out
that user’s expertise may change from amateurs to connois-
seurs as they become more experienced. To satisfy users’
current taste and need, a key building block for recom-
mender systems is to accurately model such user preferences
as they evolve over time.
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The need to model the temporal dynamics of user prefer-
ences raises some fundamental challenges. First of all, the
amount of available data is significantly reduced in a specific
time step and the sparsity problem of recommender systems
is more severe in this situation. In addition, how can we
generally incorporate the temporal dimension and further
capture the evolution of preferences at the individual level
for every time step? Finally, what is the principled method
to model this kind of transition for every user in order to
make more accurate predictions in the future? Toward this
end, we propose a general and principled temporal dynamic
model for tracking concept drift in each individual user la-
tent vector. Such an approach can further effectively and
efficiently achieve a lower RMSE than that of MF.

The main contributions of this paper include:

• We propose a Temporal Matrix Factorization approach
(TMF) for tracking concept drift in each individual
user latent vector. Such a method not only breaks the
limit of using static decompositions in the original MF
approach, but also provides a tool for recommender
systems to better serve “valuable” customers in the fu-
ture.

• We develop a modified stochastic gradient descent
method to learn an individual user latent vector at
each time step by using both the overall rating logs
and the rating logs within the specific time step.

• By using the Lasso regression for the user latent vector
at every time step, we learn a linear system model that
can be used for modelling the transition pattern at the
individual level.

• We conduct comprehensive experiments on a synthetic
dataset and four real datasets, Ciao, Epinions, Flixster
and MovieLens. In comparison with the original MF,
our experimental results show that our TMF approach
is able to achieve lower root mean square errors (RMSE)
for both the synthetic and real datasets. In partic-
ular, there is roughly a 17-26% improvement on the
synthetic dataset and a 5% improvement on the Ciao
dataset. Such an improvement is quite significant.

• Our experiments also reveal one interesting finding.
The performance gain in RMSE is mostly from those
users who indeed have concept drift in their user latent
vectors at the time of prediction. In particular, for the
synthetic dataset and the Ciao dataset, there are quite
a few users with that property and the performance
gains for these two datasets are more significant than
those for the other datasets.

The rest of paper is organized as follows. In Section 2,
we provide a review of related work. We define the rating
prediction problem in Section 3 and propose the method of
incorporating temporal dynamics including capturing and
predicting the user preferences in Section 4. In Section 5,
we conduct experiments on both synthetic and several real
datasets to validate our proposed temporal method. Finally,
we conclude our work and point out the future research di-
rections in Section 6.

2. RELATED WORK
In this section, we first briefly review the MF approach for
recommender systems and several recent approaches that
intend to incorporate temporal dynamics with MF, including
time-dependent collaborative filtering, tensor factorization,
and collaborative Kalman filter.

2.1 Matrix Factorization
Matrix Factorization (MF) performs well in the rating pre-
diction task and has attracted considerable attention. The
rationale behind the MF approach is to characterize each
user and item by a series of latent factors that can be used
for representing or approximating the interactions between
users and items from the historical rating logs. Specifically,
given an M ×N rating matrix R = (Ri,j) with M users and
N items, the MF approach considers the following optimiza-
tion problem:

min
P,Q

1

2

M∑
i=1

N∑
j=1

Iij
(
Rij −QT

j · Pi

)2
+
λ

2

(
‖P‖2 + ‖Q‖2

)
,

(1)
where P and Q are the latent matrices which record the
latent factors of users and items respectively. Also, Pi is the
ith column of P , Qj is the jth column of Q, and Iij is an
indicator function that is equal to 1 if user i rated item j and
equal to 0 otherwise. The vector Pi, called the user latent
vector of user i, is commonly used for representing (latent)
user preferences, and the vector Qj , called the user latent
vector of item j, is commonly used for representing (latent)
item characteristics. The regularization terms are added in
the optimization problem to prevent overfitting.

We can also view MF from a probabilistic perspective.
Probabilistic Matrix Factorization (PMF) [23, 20] defines
the following conditional distribution over the observed rat-
ings based on the linear model with Gaussian observation
noise:

p
(
R|P,Q, σ2) =

M∏
i=1

N∏
j=1

[
N
(
Rij |QT

j · Pi, σ
2
)]Iij

, (2)

where N
(
x|µ, σ2

)
denotes the probability density function

of the Gaussian distribution with mean µ and variance σ2.
With placing zero-mean spherical Gaussian priors on the la-
tent factors, the problem of maximizing the log-posterior
with the fixed variance is equivalent to the optimization
problem in (1).

Note that both Pi and Qj are unknowns in (1) and the
objective function is not convex [18]. Simon Funk [33] popu-
larized a stochastic gradient descent (SGD) algorithm which
loops through all ratings in the training set to find the latent
matrices P and Q. For each training example Rij , one first
computes the associated prediction error

eij = Rij −QT
j · Pi. (3)

One then updates Pi and Qj in the opposite direction of the
gradient as follows:

Pi ← Pi + α (eijQj − λPi) , (4)

Qj ← Qj + α (eijPi − λQj) , (5)



where α is the learning rate and λ is the regulator parameter.
This incremental and iterative approach provides a practical
way to scale the MF method to large datasets.

2.2 Time-dependent Collaborative Filtering
In order to provide recommendations that fit users’ present
preferences, time-dependent collaborative filtering (CF) [28]
employs the availability of temporal information (time
stamps) associated with user-item rating logs to put more
emphasis on the recent ratings. Such an approach is based
on the plausible assumption that recent logs have bigger in-
fluence on future events than old and obsolete logs. There
are many prior works on time-dependent collaborative fil-
tering, including neighborhood-based CF [9, 19], social in-
fluence analysis [36, 11, 25], temporal bipartite projection
[34] and timeSVD++ [17]. Among all these prior works,
timeSVD++ [17] is perhaps the most related work to MF.
In [17], Koren proposed adding a time-varying rating bias
for each user and each item to the estimate from the origi-
nal MF. As such, the temporal dynamics of user latent vec-
tors are only modelled by a simple sum of three factors, the
stationary portion, a possible gradual change with linear
equation of a deviation function, and a day-specific param-
eter for sudden drift. Even so, it was reported in [17] that
timeSVD++ significantly outperforms SVD and SVD++
[16] (that considered implicit feedback).

Although these methods improve the accuracy of the pre-
diction compared to the baseline MF estimator, there are
some difficulties in the time-dependent CF approach. The
system model in timeSVD++ for the user latent vectors
is too simple to have any structural characterizations or
constraints on their parameters. As such, these parame-
ters (in various aspects and time steps) have to be learned
individually and need lots of efforts on fine tuning. Thus,
timeSVD++ maybe too data-specific to be used as a general
model. Also, the assumption that claims recent ratings are
always more important than old data may be oversimplified.

2.3 Tensor Factorization
Tensor factorization (TF) extends MF into a three-dimen-
sional tensor by incorporating the temporal features into
the prediction model. The underlying physical meaning of
TF is that the given ratings not only depend on the user
preferences and the item characteristics but also the current
trend. There are two kinds of popular tensor factorization
models in CF [15]: the CANDECOMP/PARAFAC (CP)
model that decomposes the tensor into same rank of latent
factors, and the Tucker model that considers the problem as
the higher-order PCA.

There are some works that adopt the TF model for ex-
ploiting temporal information associated with user-item in-
teractions. The Bayesian Probabilistic Tensor Factorization
(BPTF) [35] extended PMF to CANDECOMP/PARAFAC
tensor factorization that models each rating as the inner
product of the latent factors of user, item, and time slice as
well. It also imposes constraints that the adjacent time slices
should share similar latent factors. The advantage of BPTF
is its almost parameter-free probabilistic tensor factorization
algorithm with a fully Bayesian treatment derivation while
the drawback is it is not sensitive enough to capture the
local changes of preferences compared with timeSVD++.

Recently, Rafailidis and Nanopoulos [26] modeled contin-
uous user-item interactions over time and defined a new
measure of user preference dynamics to capture the shift-
ing rate for each user. In a broader sense, recommendation
can be regarded as a bipartite link prediction problem that
aims to infer new interactions between users and items which
are likely to occur in the near future. Based on this idea,
Dunlavy et al. [10] considered bipartite graphs that evolve
over time and demonstrated that tensor-based methods are
effective for temporal data with varying periodic patterns.
Apart from incorporating the temporal information, tensor
factorization is a popular approach to integrate further infor-
mation such as context of implicit feedback in content-based
recommender systems. For instance, Moghaddam et al. [24]
added review as the third dimension based on the Tucker
tensor model to address the problem of personalized review
quality prediction and Shi et al. [27] directly trained the ten-
sor model for creating an optimally ranked list of items for
individual users in the context-aware recommender systems.

Tensor factorization provides a principled and well-struc-
tured approach to incorporate the temporal dynamics in rec-
ommender systems; however, the structure also limits the
flexibility of the model so that it is hard to process and solve
the decomposition especially for a large-scale and sparse ten-
sor. Given the same amount of rating data, the higher order
the tensor model is, the more severe the sparsity problem
is. The sparsity problem leads to time-consuming comput-
ing, high space complexity and the convergence issues in the
decomposition procedure.

2.4 Collaborative Kalman Filter
Inspired by the success of PMF that places Gaussian priors
on the latent factors and formulates the matrix factoriza-
tion problem as an optimization problem for obtaining the
Maximum-a-Posteriori (MAP) estimate, there are some re-
cent works that compute the MAP optimally by using the
Kalman filter [14]. Considering the observed measurements
over time with noise and uncertainties, the Kalman filter
is the optimal linear estimator of unknown variables. Its
recursive structure also allows new measurements to be pro-
cessed as they arrive. The Kalman filter can be concep-
tualized in two phases: the predict phase is called a priori
estimate which produces an estimation without the observa-
tion at the current time step, and the update phase is known
as a posteriori estimate which refines the estimation with
the current observation. The refinements of the state and
covariance estimates are based on the optimal Kalman gain
computed at every time step.

The paper [21] by Lu et al. might be the first paper to
use the Kalman filter in recommender systems. In that pa-
per, they exploited the Kalman filter to model the change
of user preferences in its temporal component. Though they
provided a new perspective to the recommender systems,
their approach is still not general enough as the transition
matrix used in the Kalman filter was only modeled by an
identity matrix. As such, one can only capture the drifts
of user preferences. In another recent paper [12], Gultekin
and Paisley proposed the collaborative Kalman filter (CKF)
approach that used a geometric Brownian motion to model
the dynamically evolving drift of each latent factor. The
dynamic state space model proposed by [31, 30] is most re-



lated to our work. To solve the system identification problem
for the linear system in the Kalman filter, they develop an
EM algorithm that performs the Kalman filter and the RTS
smoother. The EM algorithm is an iterative two-pass algo-
rithm that yields estimates for the model parameters by us-
ing all observations in the expectation step, and then refines
the estimates of the model parameters in the maximization
step. Although the model is comprehensive and provides
better results compared to the SVD and timeSVD++ ap-
proaches, there are some limitations in practice: (i) it makes
a very strong assumption that assumes the transition matrix
is homogeneous for all users. Such a homogeneous assump-
tion is needed to simplify the model (as otherwise it is very
difficult, if not impossible, to determine all their parameters
form the EM algorithm [30]), and (ii) it is not suitable for
large datasets due to the tractability and runtime perfor-
mance.

In this paper, we will remove the assumption that the
transition matrix is homogeneous for all users. By doing so,
we allow our system to track concept drift in each individ-
ual user latent vector. Our experiments further verify that
users do have different transition matrices. Some of them
are simply governed by the identity matrix and have no con-
cept drift in their latent vectors. On the other hand, some of
them have significant changes of their latent vectors and the
improvement of the rating for those users is the key factor
for lowering RMSE in our temporal approach.

3. PROBLEM DEFINITION
In this paper, we study the rating prediction problem with
time stamped logs. Specifically, there are M users, indexed
from i = 1, 2, . . ., M , and N items, indexed from j =
1, 2, . . . , N . For these users and items, we are given a set
of time stamped logs, where each log is represented by the
four tuple:

(user, item, rating, time).

We assume that every rating is a real-valued number and
each item can be rated by a user at most once. If we neglect
the time stamps of these logs, then the ratings of these logs
can be represented by an M × N matrix R = (Rij), where
Rij is the rating of user i on item j if item j has been rated
by user i. On the other hand, if item j has not been rated
by user i, then Rij is said to be missing. In practice, the
matrix R is a sparse matrix and there are many missing
values. The rating prediction problem is then to predict the
missing values in the matrix R.

To evaluate the performance of a rating prediction al-
gorithm, the rating logs are partitioned into two sets: the
training set and the testing set. The training set is given to
a rating prediction algorithm to “learn” the needed param-
eters for rating prediction. On the other hand, the testing
set is not revealed to a rating prediction algorithm and is
only available for testing the accuracy of a rating prediction
algorithm. Though there are many metrics for evaluating
the performance of rating prediction algorithms, in this pa-
per we adopt the root mean square error (RMSE) that can
be computed as follows:

RMSE =

√√√√∑(i,j)∈Testing Set

(
Rij − R̂ij

)2
|Testing Set| , (6)

where R̂ij is the prediction for Rij via a rating prediction al-
gorithm. The RMSE has been widely used in the literature,
including the competition for the Netflix Prize. Although
the range of RMSE might be quite small, there is evidence
(see e.g., [16]) that small improvement in RMSE can have a
significant impact on the quality of the top few recommen-
dations from a rating prediction algorithm.

The original MF does not use the information of time
stamps and simply decomposes the matrix R approximately
into a product of two matrices: the user latent matrix and
the item latent matrix. Though the item latent matrix could
be quite stationary with respect to time, it is a general be-
lieve (see e.g., [17, 21, 31, 30]) there might be concept drift
in the user latent matrix as users tend to change their mind
over time. In view of this, our aim is to develop a temporal
dynamic model for tracking concept drift in each individ-
ual user latent vector by using the time stamps of rating
logs. By doing so, we can effectively and efficiently achieves
a lower RMSE than that of MF.

4. TEMPORAL MATRIX FACTORIZATION
For the rating prediction problem described in the previ-
ous section, we propose a Temporal Matrix Factorization
(TMF) approach that is capable of tracking concept drift in
each individual user latent vector. Our approach is based
on the following assumptions that were previously used in
the literature (see e.g., [17, 21, 31, 30]):

(i) Like the original MF, there are a user latent matrix P ∈
RD×M and an item latent matrix Q ∈ RD×N that can
be used for approximating the rating matrix R. The
ith column of the user latent matrix P , denoted by Pi,
is called the user latent vector of user i, i = 1, 2, . . . ,M ,
that can be viewed as the preferences of user i for theD
latent factors. Similarly, the jth column vector of the
item latent matrix Q, denoted by Qj , is called the item
latent vector of item j, j = 1, 2, . . . , N . The rating for
user i on item j is then predicted by the inner product
of Pi and Qj .

(ii) There is concept drift in each individual user latent vec-
tor as people might change their preferences over time.
For this, we denote by P (t) the user latent matrix at
time t, and Pi(t) the user latent vector of user i at time
t, i = 1, 2, . . . ,M .

(iii) As the characteristics of items are stationary, we as-
sume that the item latent matrix Q is invariant with
respect to time.

In view of these assumptions, the key ingredient of our
TMF approach is to use the training data set to capture the
dynamics of the concept drift in each individual user latent
vector. For this, our approach consists of the following steps:

(i) Use the rating logs in the training data set to construct
a time series of M × N rating matrices, {R(t), t =
1, 2, . . . , T − 1}.

(ii) Use the time series of rating matrices {R(t), t = 1, 2, . . .,
T−1} to learn a time series of D×1 user latent vectors,
{Pi(t), t = 1, 2, . . . , T − 1}, i = 1, 2, . . . ,M .



(iii) For each user i, use the time series of user latent vec-
tors, {Pi(t), t = 1, 2, . . . , T − 1} to learn the dynamics
of the concept drift in the user latent vector.

(iv) Use the dynamics of the concept drift in each individual
user latent vector to predict the user latent vector at
time T , i.e., P (T ). Then use the product of P (T ) and
the item latent matrix Q to predict the missing values
in the testing data set.

4.1 Construction of a time series of rating ma-
trices

The simplest way to construct a time series of rating matri-
ces {R(t), t = 1, 2, . . . , T − 1} is to partition rating logs into
equally spaced time slices according to their time stamps.
But, as the original rating matrix in a real data set might
have already been very sparse, further partitioning of the
rating logs might yield a time series of extremely sparse rat-
ing matrices that might not have any statistical significance
at all. In view of the sparsity problem, the number of time
slices T cannot be too large. To further mitigate the sparsity
problem, one can consider a sliding window approach that
merges the rating logs in several consecutive time slices into
a single step. By doing so, there are overlapping rating logs
in such a time series of rating matrices. Such an approach
can not only mitigate the sparsity problem but also ensure
smooth change of rating matrices so that prediction could
be possible.

4.2 Learning a time series of user latent vec-
tors

To learn a time series of user latent vectors for each user, we
first perform MF for the rating matrix R to obtain the user
latent matrix P and the item latent matrix Q. As we assume
that the item latent matrix Q is invariant with respect to
time, one might expect that

Ri(t) = QT · Pi(t), (7)

where Ri(t) is the rating vector for user i on the N items
(that can be extracted from the rating matrix R(t)). In
view of this, a näive way to learn a time series of D× 1 user
latent vectors, {Pi(t), t = 1, 2, . . . , T − 1}, is to simply com-
pute the Moore-Penrose pseudoinverse of QT from (7). It
is well-known that the Moore-Penrose pseudo inverse com-
putes a “best fit,” i.e., the least squared solution to a system
of linear equations and its uniqueness follows from the SVD
theorem in matrix algebra. Such an approach works fine if
all the entries in the vector Ri(t) are known. In reality, there
are many missing values in the vector Ri(t) and thus make
a direct computation of the Moore-Penrose pseudo inverse
infeasible. One way to remedy this is to pad the missing
values in Ri(t) with the predicted values of user i by MF,
i.e., QT · Pi. In particular, one can generate another vector
R̃i(t) as a linear combination of these two vectors, i.e.,

R̃i(t) = βRi(t) + (1− β)QT · Pi. (8)

If β is small, the padded values in R̃i(t) are all from the vec-

tor QT · Pi. As such, the vectors R̃i(t), t = 1, 2, . . . , T − 1,
are all very similar and the corresponding Moore-Penrose
pseudo inverse vectors also very similar. As a result, there
is basically no change of the user latent vectors and that
defeats the purpose of tracking the dynamics of user latent

vectors. On the other hand, if β is large, then we basi-
cally ignore all the missing values in Ri(t) and that causes
great fluctuation of the user latent vectors which makes it
extremely difficult to track the dynamics of user latent vec-
tors. Also, as there are many missing values in Ri(t), it is
not clear whether the user latent vectors obtained this way
possess any statistical significance.

The key insight to tackle this problem is that the user
preferences at a specific time step are not only related to
the ratings during that specific time step but also related to
his/her overall behavior. In view of this, we first set Pi(t) as
the original user latent vector Pi. Then we use the observed
ratings during that time step to “learn” Pi(t). Specifically,
we propose the following modified stochastic gradient de-
scent method:

eij(t) = Rij(t)−QT
j · Pi(t), (9)

Pi(t)← Pi(t) + α [eij(t)Qj − λPi(t)] . (10)

Unlike the standard stochastic gradient descent method for
MF in (3)–(5), here we only update the latent vector Pi(t) for
every rating provided by user i at time t (as the item matrix
Q is stationary). By doing so, the user latent vector Pi(t)
only updates his/her preferences for those items rated during
time t and thus retains his/her overall behavior for those
items not rated during time t. Such an approach not only
overcomes the obstacle of data sparsity but also possesses
meaningful user preferences in the temporal setting.

4.3 Learning the dynamics of the concept drift
in the user latent vector

To track concept drift in the user latent vector, we need to
identify a system model for the dynamics of the time series
of the user latent vectors. Such a problem is known as the
system identification problem in the literature [13]. One of
the most commonly used models for system identification
problems is the linear system model. As such, we consider
the linear system model for the latent vector of each user.
Specifically, we consider Pi(t) as the state vector at time t
and model the evolution of the state vector by

Pi(t) = Ai · Pi(t− 1) + bi, (11)

where Ai is a D ×D matrix and bi is a D × 1 vector. The
matrix Ai is called the transition matrix for user i and bi is
called the bias vector of user i.

It seems plausible to assume that the user latent vectors
do not vary a lot in each time step. As such, we replace the

transition matrix Ai by
(
I + Ãi

)
in (11). This then leads

to

Zi(t) = Ãi · Pi(t− 1) + bi, (12)

where

Zi(t) = Pi(t)− Pi(t− 1). (13)

By doing so, we expect that the matrix Ãi is sparse and it
only contains a small number of nonzero entries. It is known
[32] that the Lasso regression provides parameter shrinkage
and variable selection that limit the number of nonzero el-
ements in the parameters. As such, we apply the Lasso
regression to estimate Ãi and bi in (12) from the T − 2 “ob-
servations” of the output {Zi(t), t = 2, . . . , T − 1} with the



input {Pi(t), t = 2, . . . , T − 1}. Specifically, for each factor

k, k = 1, 2, . . . , D, we let A
(k)
i be the kth row of Ai, b

(k)
i be

the kth element in bi, Z
(k)
i (t) be the kth element in Zi(t)

and consider the following optimization problem:

min
Ã

(k)
i ,b

(k)
i

1

2(T − 2)

T−1∑
t=2

(
Z

(k)
i (t)− Ã(k)

i · Pi(t)− b(k)i

)2
+λ‖Ãi

(k)‖1, (14)

where ‖Ãi
(k)‖1 is the L1-norm of the vector Ãi

(k)
and λ is

a nonnegative regulator parameter for the Lasso regression.
As λ increases, the number of nonzero elements in the vector

Ãi
(k)

decreases. In our experiments, we will use the Matlab
tool [5] to solve the above Lasso regression.

4.4 Rating prediction
Once we obtain the transition matrix Ai and the bias vector
bi, we can use the system dynamic in (11) to predict the
latent vector of user i at time T by the following equation:

Pi(T ) = Ai · Pi(T − 1) + bi. (15)

As in the original MF, the missing values in the testing data
set are then predicted by using the product of the user latent
vector and the item latent matrix, i.e.,

Ri(T ) = QT · Pi(T ). (16)

5. EXPERIMENT RESULTS
In this section, we perform various experiments to evalu-
ate the performance and efficiency of our temporal method
via a synthetic dataset and four real datasets. All our ex-
periments are implemented in MATLAB and executed on
a server equipped with an Intel Core i7 (4.2GHz) processor
and 64G memory on the Linux system.

5.1 Experiments on the Synthetic Dataset
We first conduct our experiments on a synthetic data. The
main reason of doing this is to test our method in a control-
lable environment so that we can gain insights of the effects
of various parameters and thus better understand when our
method could be effective.

To generate the synthetic data, we set M = 10, 000 and
N = 10, 000, i.e., there 10,000 users and 10,000 items. The
density of the rating matrix R is set to 1%, and that gives
1,000,000 ratings. We generate all the entries in both the
initial user latent matrix P (1) and the item latent matrix
Q by uniformly distributed random variables over (0, 1). To
model the evolution of the user latent vector for each user
i, the transition matrix Ai is generated by the sum of the
identity matrix and a random matrix R′ with all its entries
generated from a uniform distribution. The entries in the
bias vector bi are also generated from a uniform distribution.
Various ranges of the entries in R′ and bi are specified in
our experiments (see Table 1). The number of steps T is set
to 10 and the rating logs are then generated according to
equations (7) and (11).

In Table 1, we report the RMSE for both the original
MF (implemented by the LIBMF library [7, 8]) and our
method for various parameter settings. The parameters that

Table 1: The RMSE results on the synthetic dataset
for various parameter settings.

Range of R′ Range of bi MF Our method Improvement

(-0.01, 0.01)

(-0.01, 0.01)

0.4566 0.4246 7.01%

(-0.05, 0.05) 0.8468 0.6758 20.19%

(-0.1, 0.1) 1.2667 0.9790 22.71%

(-0.3, 0.3) 1.7007 1.3780 18.97%

(-0.5, 0.5) 1.8046 1.4967 17.06%

(-0.01, 0.01)

(-0.1, 0.1)

0.5763 0.5124 11.09%

(-0.05, 0.05) 0.9645 0.7660 21.20%

(-0.1, 0.1) 1.2985 0.9539 26.54%

(-0.3, 0.3) 1.7092 1.3673 19.96%

(-0.5, 0.5) 1.8091 1.4787 18.26%

we choose for MF are the learning rate α= 0.01, the regula-
tor parameter λ = 0.02, and the number of factors D = 30.
We run 50 iterations of SGD to obtain the latent factors
in the original MF. The learning rate α and the regulator
parameter λ in equation (10) for computing the user latent
vector at every time step in our method are set to be the
same as those for MF. As can be seen from this table, our
method consistently and significantly outperforms MF in all
the parameter settings. The improvement depends on the
transition matrix and the bias vector that are selected to
control the concept drift in the user latent vector. A more
careful examination reveals that the improvement for our
method is relatively small if the range of the entries in the
random matrix R′ is small, e.g., (−0.01, 0.01). This is be-
cause the transition matrix in such a scenario is very close
to the identity matrix and there is almost no change of the
user latent vectors. As such, MF performs well and yields
a low RMSE. On the other hand, if such a range is large,
the prediction accuracy of MF is low as MF relies on the
assumption of stationary user preferences. As our method
is capable of tracking the concept drift in the user latent
vector, our method achieves roughly 17-26% improvement
in terms of RMSE.

Next, we study the effect of the range of bi. In Table
1, we consider two different ranges of bi. The experimental
results show that the values of RMSE are larger when the
given range is larger (under the condition of using the same
transition matrix). Moreover, the performance gain from
our method is also larger. This shows the importance of
adding the bias vectors in our linear system model.

In addition to the prediction results presented above, we
demonstrate the state tracking ability of our temporal
method. Denote by P̂i(t) the user latent vector of user i
at time t (computed by our temporal method) and Pi(t)
the given ground truth in the synthetic dataset. We com-
pute the dissimilarity measure of these two latent vectors by
using the RMSE metric as follows:

s
(
Pi(t), P̂i(t)

)
=

√√√√∑D
d=1

(
Pid(t)− P̂id(t)

)2
D

, (17)

where D is the dimensions of these two latent vectors. To
compare the tractability of the MF approach and our tem-
poral method, we measure the average of the dissimilarities
among all the users at a specific time step t and plot the re-
sults in Figure 1. As can be seen from Figure 1, the gain of
using our temporal method to track the user latent vectors
increases over time and at the time for prediction, i.e., the



Figure 1: The average dissimilarities among all users
at each time step.

Table 2: The rating prediction results with extreme
actual ratings.

user ID item ID actual rating MF Our method

26

1139 5 4.51 4.95

1303 5 4.62 5.07

2092 5 3.87 4.26

2200 5 4.22 4.63

2625 5 3.83 4.21

2867 5 4.43 4.86

3515 5 4.69 5.14

6495 5 4.67 5.13

7864 5 3.71 4.07

8693 5 4.21 4.62

28

92 1 2.24 0.88

1440 1 2.44 0.96

1626 1 3.08 1.18

1917 1 3.15 1.27

3234 1 2.95 1.15

3556 1 2.62 0.98

4425 1 2.91 1.10

8990 1 2.23 0.85

9262 1 2.37 0.94

9978 1 2.79 1.09

10th time step, the gain is near 13%.

To dig further, we examine the rating prediction result
for each user. We observe that our temporal method consis-
tently obtains better prediction results if the MF approach
always overestimates (or underestimates) all the ratings pro-
vided by a user in the testing dataset. For instance, we show
in Table 2 a user (user ID 26) who gives extreme high rat-
ings and another user (user ID 28) who gives extremely low
ratings. This is because the MF approach cannot track the
concept drift in the user latent vector even when there is
a distinct downward (or upward) trend in the evolution of
user preferences. On the other hand, if the ratings provided
by a user are distributed over the entire range as shown in
Table 3, then the ratings predicted by our temporal method
are not always better than those from those predicted by
the MF. But, the overall accuracy of our temporal method
is still better. In summary, our temporal method is good at
capturing the general trend and thus yields improvement on
the overall performance.

5.2 Experiments on the Real Datasets
To validate our temporal method in practical environments,
in this section we conduct our experiments on real datasets.
Motivated by the increasing importance of recommender
systems on electronic commerce and online video streaming
services, we consider Ciao, Epinions, Flixster and Movie-
Lens. With Web 2.0 technique to gather users’ feedbacks

Table 3: The rating prediction results when actual
ratings are distributed over the entire range.

user ID item ID actual rating MF Our method

32

976 3 2.74 3.09

1224 4 2.63 2.98

1379 5 3.17 3.64

1691 2 2.72 3.06

3989 4 2.86 3.25

5079 1 2.62 2.95

6541 2 2.60 2.95

7455 4 2.58 2.93

9691 3 2.46 2.79

9944 3 2.47 2.81

Table 4: Statistics of the real datasets.
Ciao Epinions Flixster MovieLens

Users 1,947 21,752 114,747 125,041

Items 5,004 242,842 44,439 17,951

Training Ratings 22,068 830,043 7,376,472 18,000,243

Testing Ratings 826 23,621 416,293 353,575

Density 0.23% 0.02% 0.14% 0.80%

Earliest Rating Jun. 2000 Jul. 1999 Dec. 2005 Jan. 1995

Latest Rating Apr. 2011 May 2011 Nov. 2009 Mar. 2015

such as explicit ratings and implicit reviews, Ciao and Epin-
ions are two of the most popular online-shopping websites.
Ciao is a European-based online-shopping portal with web-
sites and claims and it reaches an audience of 28.4 million
monthly unique visitors in Europe [1]. Epinions is estab-
lished in 1999 and now is the largest consumer review site
with thousands of product reports in the world. Another
focus is the movie/video recommendation platform which
becomes more popular in our daily life. For this, we con-
sider Flixster and MovieLens in our work. Flixster is an
American social movie site which also provides applications
in Facebook and MySpace for users to share film reviews
and ratings whereas MovieLens is a recommender system
for research of collaborative filtering run by GroupLens Re-
search. These datasets with the information of ratings and
the associated time stamps are publicly available in [2, 3, 4]
and their statistics information is shown in Table 4.

All of these platforms provide services for users to rate
items using a 5-point Likert scale while Flixster adopts 10
discrete numbers in the range [0.5,5] with step size 0.5. Each
log in a dataset contains the information of user ID, item ID,
rating and timestamp. First of all, we sort these logs in the
chronological order to form a time series. Note that this set-
ting is more practical than the traditional approach because
we are only allowed to use the past data to predict future
events. We partition the whole dataset into 10 time slices
equally and leave the last slice as the testing set. In or-
der to have an enough number of representative ratings and
have smooth and trackable transitions, we apply the sliding
window approach to combine the logs in every 5 consecutive
time slices to form a time step. By doing so, 4 of the slices in
each step overlap with those in the next time step and there
are totally 6 time steps (T = 6) in this setting. Next, we
remove new users and new items, i.e., the users and items
appear only once in the testing set, and focus on tracking
the evolution for the latent vectors of existing users. We
adopt the same parameter settings as those in the synthetic
dataset except that we choose the learning rate α = 0.005
(in (10)) for the Flixster and MovieLens datasets. The ex-
perimental results for RMSE by the MF method and our
method are shown in Table 5.



Table 5: The RMSE results for the four real
datasets.

Ciao Epinions Flixster MovieLens

MF 1.1099 1.1287 1.1189 0.8170

Our method 1.0540 1.1189 1.1102 0.8150

Improvement 5.04% 0.87% 0.78% 0.24%

In comparison with the MF approach, we can see from Ta-
ble 5 that our temporal method improves the performance
in RMSE in all four real datasets. However, the gain varies
from one to another. In Ciao, we obtain 5% improvement.
For the other three datasets, the improvements are not that
significant. One possible explanation for this is that the tem-
poral effect depends on the dataset due to its intrinsic prop-
erties. We also observe the improvements in real datasets
are not as significant as those in the synthetic dataset. The
main reason is that we purposely construct the synthetic
dataset so that it possesses the desired concept drift in the
user latent vector. It is not clear whether there are concept
drifts in the user latent vectors in the Epinions, Flixster,
and MovieLens datasets.

To see whether there is performance gain by tracking con-
cept drift in the latent vector of a user, we further examine
the evolution of various user latent vectors and their corre-
sponding rating prediction results (see Figure 2). An inter-
esting finding is that users basically can be classified into
two types: one is beneficial to track concept drift in his/her
user latent vector and the predicted latent vector from our
method is substantially different from that from MF, and
the other is worthless to track concept drift in his/her user
latent vector as the predicted latent vector from our method
is quite close to that from MF. In the Ciao dataset, we ob-
serve that the majority of improvement made by the users
whose latent vectors evolve in a consistent direction. A plain
example of this case is that the user latent vector changes
in only one step from the original latent vector. We list the
evolution of the first five latent factors of the latent vector
(due to space limitation) and the corresponding ratings in
Table 6. To visualize this case more clearly, we also plot the
factors of the latent vector for the original Pi (computed by
MF and marked in blue), the factors of the user latent vector
at time step T −1 (marked in yellow), and the factors of the
predicted user latent vector Pi(T ) with T = 6 (marked in
red) for user 49 in the Ciao dataset in the leftmost figure in
Figure 2. As can be seen from this figure, the predicted la-
tent vector from our method is substantially different from
that from MF. For this user, the corresponding ratings in
Table 6 show that such a user is beneficial to track concept
drift in his/her user latent vector. On the other hand, we
plot in the middle figure of Figure 2 the factors of the latent
vector for the original Pi (computed by MF and marked in
blue), the factors of the user latent vector at time step t
(marked in yellow), and the factors of the predicted user la-
tent vector Pi(T ) with T = 6 (marked in red) for user 108
in the Ciao dataset. For user 108, the predicted latent vec-
tor by our method is very close to that from MF. As such,
the predicted rating by using our method and MF are also
very close as shown in Table 7. For such a user, there is lit-
tle performance gain to track concept drift in his/her latent
vector.

Table 6: The first five factors of user 49 in the Ciao
dataset and the corresponding prediction results.

Factor 1 2 3 4 5

Pi 0.4592 0.2673 0.2304 0.3172 0.3549

P̂i(1)

0.4592 0.2673 0.2304 0.3172 0.3549P̂i(2)

P̂i(3)

P̂i(4)

P̂i(5) 0.5507 0.3000 0.2411 0.3640 0.4328

P̂i(6) 0.5737 0.3082 0.2438 0.3757 0.4522

user ID item ID actual rating MF Our method

49

36 4 3.13 3.76

138 4 3.50 4.20

711 5 3.11 3.74

712 5 3.80 4.57

713 5 3.78 4.55

Table 7: The first five factors of user 108 in the Ciao
dataset and the corresponding prediction results.

Factor 1 2 3 4 5

Pi 0.5814 0.5842 0.5738 0.5327 0.4485

P̂i(1) 0.5814 0.5842 0.5738 0.5327 0.4485

P̂i(2) 0.5777 0.4566 0.4518 0.4261 0.3749

P̂i(3) 0.6218 0.4630 0.4285 0.4449 0.3949

P̂i(4) 0.5849 0.4845 0.4855 0.4655 0.4043

P̂i(5) 0.5590 0.5398 0.4818 0.4703 0.4174

P̂i(6) 0.5534 0.5287 0.4588 0.4547 0.4096

user ID item ID actual rating MF Our method

108

122 5 4.16 4.12

251 4 3.57 3.59

447 5 4.47 4.49

469 5 4.83 4.88

531 5 4.49 4.57

768 5 5.01 5.01

823 5 3.78 3.86

1258 5 3.65 3.70

1319 4 4.16 4.13

1320 5 3.74 3.78

1321 5 5.17 5.16

1322 5 4.78 4.82

1323 4 3.72 3.62

1324 5 4.74 4.79

1325 5 4.74 4.77

1326 5 5.03 5.14

In Epinions, Flixster and MovieLens datasets, we observe
that the latent vectors of most users change smoothly but
not usually in a consistent direction. As such, the predicted
Pi(T ) is similar to the original latent factors Pi. The corre-
sponding latent vectors and the prediction results are shown
in Table 8 and the rightmost figure of Figure 2 for a typical
user (user 339) in the Epinions dataset. In this case, con-
sidering the overall ratings without using the information of
time stamps (such as MF) is capable of yielding good esti-
mations and there is little performance gain to track concept
drift in the user latent vector for most users.

At the end of this section, we report the run-time of our
temporal method on these datasets in Table 9. The run-
time includes learning the user latent vectors, learning the
transition matrices, and further performing rating predic-
tion which quantify the additional efforts after obtaining the
original latent matrices P and Q from MF. As we use Matlab
to implement our temporal method (except we use LIBMF
[7, 8] in the step for MF), we also implement MF by us-
ing Matlab and report the run-time for performing MF on
these datasets. As shown in Table 9, the run-time of MF
by LIBMF is in the order of seconds and the run-time of



Figure 2: The evolution of various user latent vectors (from left to right): user 49 in the Ciao dataset, user
108 in the Ciao dataset, and user 339 in the Epinions dataset.

Table 8: The first five factors of user 339 in the
Epinions dataset and the corresponding prediction
results.

Factor 1 2 3 4 5

Pi 0.4953 0.5479 0.4734 0.5847 0.5540

P̂i(1) 0.4781 0.5194 0.4089 0.6105 0.5400

P̂i(2) 0.4810 0.5245 0.4178 0.6249 0.5505

P̂i(3) 0.4968 0.5065 0.4450 0.6246 0.5427

P̂i(4) 0.4793 0.5483 0.4625 0.6249 0.5398

P̂i(5) 0.4825 0.5496 0.4789 0.5966 0.5512

P̂i(6) 0.4837 0.5571 0.4964 0.5932 0.5540

user ID item ID actual rating MF Our method

339

9188 4 3.57 3.59

9189 1 0.95 0.96

9190 4 3.38 3.39

9191 4 3.93 3.93

9192 4 3.54 3.56

9193 5 3.98 4.11

9194 3 4.02 4.03

Table 9: The run-time for our temporal method and
MF on various datasets.

Synthetic Ciao Epinions Flixster MovieLens

TMF 57.60m 3.79m 25.90m 78.42m 143.08m

MF (LIBMF) 2.32s 0.18s 6.85s 20.47s 44.27s

MF (Matlab) 27.61m 0.67m 24.58m 218.75m 532.93m

TMF and MF by Matlab is in the order of minutes. The
additional efforts of our temporal methods (in terms of run-
time) are comparable to those for performing MF by using
Matlab.

6. CONCLUSIONS
In this paper, we proposed a Temporal Matrix Factorization
approach (TMF) for tracking concept drift in each individual
user latent vector. There are two key innovative steps in our
approach: (i) a modified stochastic gradient descent method
to learn an individual user latent vector at each time step,
and (ii) a linear model for the transition of the individual
user latent vectors by the Lasso regression. In comparison
with the other approaches that intend to incorporate tem-
poral dynamics with MF in the literature, there are several
distinctive features of our temporal method:

(i) In comparison with timeSVD++ [17], our systematic ap-
proach is more structured and does not require fine tuning
a lot of unstructured parameters.

(ii) Our modified stochastic gradient descent method is able

to alleviate the data sparsity problem for learning the user
preferences at a certain time step. This overcomes the data
sparsity problem in tensor factorization.

(iii) Unlike the CKF approach [30], we do not need to assume
the transition matrix is homogeneous. Thus, we are allowed
to track concept drift in each individual user latent vector.

In comparison with the original MF, our temporal method
is able to achieve lower root mean square errors (RMSE) for
both the synthetic and real datasets. One interesting finding
is that the performance gain in RMSE is mostly from those
users who indeed have concept drift in their user latent vec-
tors at the time of prediction. As our temporal method
is specifically designed for each user, one can save a lot of
efforts by only tracking those users who indeed have con-
cept drift in their user latent vectors at the time of predic-
tion. However, identifying those users is not an easy task
and might require further study. One possible approach for
this is to examine the transition matrix for each user. In
our experiments, we found that there are many users whose
transition matrices are the identity matrix and those users
are not worth tracking.

Another research direction is to study the effect of cold
start users (who have very few ratings). One might think
cold start users are difficult to predict and then immediately
filter out their ratings in the preprocessing step. However, in
our temporal method, the ratings of cold start users might
be valuable as they contribute to the item latent matrix Q
which in turn affects the accuracy of estimating the time
series of the latent vectors of other users.
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