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Social influence makes self-interested crowds smarter:
an optimal control perspective

Yu Luo1, Garud Iyengar2, Venkat Venkatasubramanian1∗

Abstract—
It is very common to observe crowds of individuals solv-

ing similar problems with similar information in a largely
independent manner. We argue here that crowds can become
“smarter,” i.e., more efficient and robust, by partially following
the average opinion. This observation runs counter to the widely
accepted claim that the wisdom of crowds deteriorates with
social influence. The key difference is that individuals are self-
interested and hence will reject feedbacks that do not improve
their performance. We propose a control-theoretic methodology
to compute the degree of social influence, i.e., the level to which
one accepts the population feedback, that optimizes performance.
We conducted an experiment with human subjects (N = 194),
where the participants were first asked to solve an optimization
problem independently, i.e., under no social influence. Our the-
oretical methodology estimates a 30% degree of social influence
to be optimal, resulting in a 29% improvement in the crowd’s
performance. We then let the same cohort solve a new problem
and have access to the average opinion. Surprisingly, we find the
average degree of social influence in the cohort to be 32% with
a 29% improvement in performance: In other words, the crowd
self-organized into a near-optimal setting. We believe this new
paradigm for making crowds “smarter” has the potential for
making a significant impact on a diverse set of fields including
population health to government planning. We include a case
study to show how a crowd of states can collectively learn the
level of taxation and expenditure that optimizes economic growth.

I. INTRODUCTION

OFten, large crowds of decision makers are attempting
to solve the same problem with similar information in

a largely independent manner. For the common man, these
problems could be as simple as choosing the most appropriate
product or improving personal fitness. For a crowd of local
governments or nations, the problem could be optimal taxation
to promote economic growth. The process of identifying the
appropriate decision involves an expensive trial and error
process to explore the entire space. Minimizing this search
cost by coordinating and improving this collective learning
process, by making crowds “smarter,” has immense societal
value.

Optimization typically involves balancing trade-offs. Con-
sider the problem of optimal taxation. Under-taxation results
in insufficient funds towards public services and government
functioning, whereas over-taxation drives businesses to places
where taxes are lower, leading once again to a deficit for the
state. Local governments face similar dilemma when setting
expenditure to balance between under- and over-spending.
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To illustrate the learning process to set the optimal taxation
and expenditure, in Fig. 1 we plot the license tax as a
fraction of the total state revenue from 1946 to 2014, and
the secondary education expenditure as a fraction of the total
state spending from 1977 to 2013. The trajectories appear
to have converged in the last decade. A large majority of
the states have converged to the same decision. The main
question we address in this paper is whether one can accelerate
convergence by making the crowd of fifty states “smarter.”
Even a small improvement in the convergence rate, magnified
by the scale of the problem, could potentially save the nation
billions of dollars while improving the overall welfare.

Using a coordinated crowd or swarm to solve complex
problems is well studied in the literature. Particle swarm
optimization (PSO) [3] is a widely adopted global optimization
technique that uses a crowd of simple solvers to explore the
fitness landscape of a problem. This swarm of PSO solvers
mimics the swarming behavior observed in nature, e.g., among
bees, ants, and birds. Each PSO solver revises its search
direction based on its past performance and the position of
the solver that observes the highest fitness. The PSO technique
is very effective in solving deterministic problems that have
multiple local extrema. However, PSO or any other parallel
computing methodology cannot help us in improving the rate
for learning in the optimal taxation and expenditure setting.
The critical difference is that in the PSO setting each solver
observes the same function; however, the reward or fitness
of an individual in a crowd is typically subjective, private,
very noisy, and often, not even numerically expressible. On the
other hand, the inputs to the fitness function are numerically
well defined. We exploit this feature to develop a learning
algorithm.

Wisdom of crowds describes the phenomenon — first in-
troduced as vox populi in 1907 by Francis Galton [4], then
rediscovered and popularized by James Surowiecki a century
later [5] — that the average opinion of a crowd is remarkably
close to the otherwise unknown truth although the opinions of
individuals in the crowd are very erroneous. This phenomenon
partially justifies the efficiency of polling and prediction
markets, where a surveyor can gather an accurate estimate of
an unknown variable by averaging over multiple independent
and informed guesses. Explanations [6]–[8] for the success of
the wisdom of crowds assume that individuals’ estimates are
unbiased and independently distributed [5], [9]–[13]. Social
influence renders the wisdom of crowds ineffective [10], [11],
[14], and in order to guarantee accuracy, interactions among
the respondents should be discouraged. Since individuals make
decisions solely based on their prior knowledge and expertise,
some even suggest vox expertorum, instead of vox populi, to
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Fig. 1. Left: state tax percentage of total revenue (total license taxes, from 1946 to 2014) [1]. Right: state expenditure percentage of total spending (secondary
education direct administrative expenditures, from 1977 to 2013) [2]. Each colored dashed line indicates the time series for one of the 50 states (and District
of Columbia). The blue dotted line indicates the arithmetic mean. Error bars reflect the standard errors of the mean.

be a more suitable name [10], [15], [16].
Increasingly, today individuals are getting all their informa-

tion from highly inter-connected online social networks; thus,
truly independent opinions are becoming rare. The existing
literature suggests that vox populi should not be effective.
And yet, online networks with very high degree of social
interaction appear to be able to harness information effectively
to benefit the individuals. We are relying on polling evermore,
for selecting movies, restaurants, books, shows, etc. The polls
appear to be working in identifying good options, even though
the votes are highly correlated. The crowd benefits from these
interactions by converging to optimum faster. Social influence
here improves, rather than undermines, the collective learning
process. How does one reconcile with the previous results on
the degradation of the impact of vox populi in the presence of
social influence? Is there an optimal degree of social influence
for a learning crowd? This is the question we address in this
study.

In this work, we use control theory to show that self-
interested decision makers can benefit by partially following
the wisdom of crowds. Too little social influence prevents
individuals to harness the wisdom of crowds effect; however,
too high a social influence has an adverse effect on the
accuracy of the wisdom of crowds. The optimal degree of
social influence balances these two effects.

We designed a human subject experiment called the “Fitness
Game” that mimics the real-world situation where individuals
alter their diets to improve health. By analyzing experiment re-
sults, we identify the individual learning dynamics, determine
the average degree of social influence when subjects partially
follow the wisdom of crowds feedback, and calculate the
optimal degree of social influence that could have maximally
improved the crowd’s performance.

II. EXPERIMENT DESIGN

We conducted an online experiment on Amazon Mechanical
Turk with human subjects. There were three sets of experi-
ments: B, N, and S. We focus our analysis on set B (N = 194)

only but present the final results for all three sets. Each set
consisted of five replications of the experiment with its unique
conditions.

The participants (or players of the “Fitness Game”) were
asked to estimate the “diet level” that maximizes the “fitness”
of a virtual character. The true relationship between the
diet level and fitness was a given deterministic and concave
function (i.e., there exists a unique diet level that maximizes
the fitness); however, the players received a noisy value
of the fitness associated with the guessed diet level. This
noise, in reality, could be from other external factors such
as environment and mood. The players were allowed multiple
guesses, and were rewarded instantly based on the character’s
fitness level. The players also received monetary rewards based
on their relative performances.

We conducted five replications of the “Fitness Game” for
each experiment set. In replication p ∈ {1, . . . , 5}, the np
participants first entered a session where they played the game
in an open loop for 240 seconds (four minutes). In this session,
each participant entered a series of guesses to best predict the
unknown optimal diet level θ∗ ∈ [2000, 2500] kcal. When a
player entered a guess for the optimal θ∗, the interface would
refresh and the player would see the virtual character’s fitness
level (maximum 100%) for the guessed value. The player
could then enter a new value until this session ended. The term
open loop indicates that individual decisions did not interact
with each other; thus, the vox populi feedback was absent.

Subsequently, the same cohort entered the treatment session
where they played the same game with a population feedback.
The game was reset and a new optimal diet level θ∗ was
chosen. In this session, in addition to the fitness level corre-
sponding to their own guess z, players also received a feedback
saying “We recommend 1

np

∑np

i=1 zi kcal,” where zi denotes
the most recent guess of the i-th player. This feedback only
updated when the players took actions. The players had the
option of using the feedback in any manner they desired. See
Appendix A for detailed descriptions of the “Fitness Game”
interface.
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In this treatment group, we revealed the population average
of the diet level to each player. Thus, the choices of the players
were not independent. However, we allowed the players the
freedom to accept, reject, or partially accept such a population
feedback, i.e., set the diet level to be a combination of
their individual guesses and the feedback. We call this “soft
feedback” in the sense that learners are allowed to choose the
degree to which they adopt the feedback.

In a previous work [17], we had introduced the possibility
of partial acceptance of population recommendation in the
context of regulating emerging industries. In the regulatory
context, we termed this as “soft” regulation in contrast to
the conventional “hard” regulation where the regulated en-
tities face fines and other punitive consequences for non-
compliance. In our current setting, the individuals are allowed
to partially accept the population feedback. This contrasts
feedback in control theory, which is hard in the sense that it has
to be followed. We showed that soft regulation is appropriate
and efficient (and desirable) when the observed outcomes are
very noisy, individual decision makers are rational utility-
maximizing agents, and the agents are exploiting abundant
resources, and therefore, not competing. Medical research
and health optimization using large-scale social interactions,
for example via Apple’s ResearchKit and CareKit [18], are
examples of systems that satisfy these three conditions. The
“Fitness Game” is meant to mimic these conditions.

Upon completion, participants received monetary rewards
based on their relative game scores within the same cohort.
We hoped to incentivize the participants in this way so that
they would make rational decisions and actively optimize their
virtual character’s fitness, instead of making random guesses
to get the participation rewards.

III. A MULTI-AGENT CONTROL MODEL

We propose the following state-space control model to
describe the collective dynamics of an n-agent crowd in the
open loop setting:

xi(t+ 1) = gi
(
xi(t)

)
+ ωi(t). (1)

In the soft feedback setting, we have

xi(t+ 1) = (1− βi)
(
gi
(
xi(t)

)
+ ωi(t)

)
+ βiu(t). (2)

where xi(t) is the state variable of the i-th agent (i = 1, . . . , n)
at time t; gi(·) is the learning function; ωi(t) is a zero-mean
random variable; u(t) is the soft feedback, and βi is the
degree of social influence.

A. State xi(t) of the i-th Agent

The state variable xi(t) = zi(t)− θ∗ is the decision error,
i.e., difference between the individual decision zi(t) and the
optimal decision θ∗. x∗i = 0 indicates the optimal state (or the
solution).

B. Learning Function gi(·) and Noise ωi(t)

The learning function gi of the i-th player encodes the
process where the agent makes a decision, observes the cor-
responding utility, and then updates the state. We assume that
the optimal state x∗i = 0 is an attracting and unique fixed point
of gi(·), i.e., gi(0) = 0. Thus, regardless of the optimization
technique or the initial decision, an agent can always reach
the optimum. We further assume that gi(x) is differential and
|g′i(x)| < 1, i.e., gi(x) is a contraction [19]. The closer |g′i(x)|
is to 1, the slower gi(x) converges. From mean value theorem,
we can also establish that gi(x)/x = g′i(δx), where 0 ≤ δ ≤ 1,
is strictly less than 1. We define learning gain, denoted by
g̃′i ≡ gi(x)/x, as the amplification of decision error.
ωi(t) is a zero-mean random variable with variance σ2

ω

sampled at t. It represents the impact of the error in function
evaluation on the decision. Such error can be a result of noise
in measurement or external disturbance.

C. Soft Feedback u(t)

We denote the soft feedback as the population average:

u(t) =
1

n

n∑
j=1

xj(t). (3)

Again, unlike feedback in control theory, soft feedback does
not have to be followed. The value of u represents the error
of the wisdom of crowds.

D. Degree of Social Influence βi

The degree of social influence denotes the weight the i-th
player places on the feedback while learning. βi = 0 reduces
the soft feedback setting in (2) to the open loop setting in (1).

E. Convergence of the Soft Feedback Mechanism

We have previously established the following properties of
soft feedback [17]: Social influence does not destabilize the
system, nor does it alter the convergence provided 0 ≤ βi <
100%. We can write the noiseless soft feedback dynamics by
replacing gi(·) with the learning gain g̃′i(t) computed at t:

xi(t+ 1) = (1− βi)g̃′i(t)xi(t) + βiu(t). (4)

In vector form, we have

x(t+ 1) = (I −B)G′(t)x(t) +BSx(t), (5)

where x(t) = [x1(t), . . . , xn(t)]>, B = diag(β1, . . . , βn),
G′(t) = diag

(
g̃′1(t), . . . , g̃′n(t)

)
, and S = 1

n11
>. It is easy

to identify that the largest eigenvalue of the matrix (I −
B)G′(t)+BS is always strictly less than 1 if 0 ≤ βi < 100%.
This implies the soft feedback dynamics also converges to the
solution and is robust against bounded noise. See Appendix B
for detailed proofs.
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F. Efficiency of the Soft Feedback Mechanism

We define the following optimal control problem for com-
puting the optimal degree of social influence βi that minimizes
the cost function V :

min
B

V
(
B;x(0),ω(t), T

)
= E

[
T−1∑
t=0

1

n
x(t)>x(t)

]
, (6)

s. t. x(t+ 1) = (I −B)
(
G′(t)x(t) + ω(t)

)
+BSx(t), (7)

where ω(t) = [ω1(t), . . . , ωn(t)]> denotes a series of noise
vectors. The above optimal control problem minimizes the
cumulative expected mean squared errors (MSE) over a finite
time horizon T .

The time evolution of the total MSE in (6) depends on two
factors: the rate of convergence controlled by

(
(I−B)G′(t)+

BS
)
x(t) and the noise reduction controlled by (I −B)ω(t).

A stronger social influence, i.e., high βi, leads to less noise.
The contraction effect depends on the largest singular value
of the matrix (I − B)G′(t) + BS. Given G′(t) and S, there
always exists a social influence profile B such that the largest
singular value is minimized.

The overall problem is a non-convex optimization problem
and difficult to solve analytically. We further simplify the
problem by assuming g̃′i(t) ≡ g̃ is uniform across all par-
ticipants, and the learning function is approximately linear.
Similarly, we assume βi ≡ β is uniform across participants.
The original dynamics is reduced into the following linear
stochastic dynamics:

x(t+ 1) =
[
(1− β)g̃ + βS

]
x(t) + (1− β)ω(t). (8)

We can obtain the upper bound of the expected MSE as

E
[

MSE(t+ 1)
]
≤ m2 MSE(t) + (1− β)2σ2

ω, (9)

where m = (1 − β)g̃ + β (see Appendix B for detailed
derivation). This is a conservative (or worst case) estimation
of the expected MSE evolution. The practice of computing the
optimal control against worst case scenario is known as robust
control. In this setting, one computes the control by minimizing
the maximum cumulative expected MSE. We denote the robust
solution as β∗R:

β∗R = min
β

max
ω(t)

V
(
β,ω(t);x(0), T

)
. (10)

The worst case V (T ) follows

V (T )

MSE(0)
≤
[

1−m2T

1−m2
+(

T − 1−m2T

1−m2

)
(1− β)2

1−m2

σ2
ω

MSE(0)

]
.

(11)

In Fig. 2 we plot the value of β∗R as a function of the noise-to-
initial-MSE ratio σ2

ω/MSE(0) and the characteristic learning
gain g̃ (given T = 30 and n = 40). A moderate social
influence is optimal when systems are uncertain and one needs
the system to equilibrate quickly.
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Fig. 2. Optimal degree of social influence from robust control by minimizing
the RHS of (11). The general trend is that a moderately strong social influence
is desirable if the system is uncertain (high noise-to-initial-MSE ratio) or the
learning gain is low (fast open loop convergence). An interesting observation
is that as the learning gain crosses a certain threshold (e.g., 0.9), the optimal
degree of social influence rapidly increases as the learning gain increases. For
a high learning gain, the contraction becomes insensitive to the change in β
while the noise reduction still does.

IV. RESULTS

A. Wisdom of Crowds Effect

Let’s begin with the analysis of the wisdom of crowds effect.
We plot the time series of each individual player’s decision
error (xi) as well as that of the wisdom of crowds (u) in
Fig. 3 (similar to the state tax and expenditure time series in
Fig. 1). The performance of the wisdom of crowds is clearly
superior: u steadily and quickly reaches the solution within
the first minute while individual players lag behind.

Fig. 3 also confirms the behavior observed in the literature:
The wisdom of crowds significantly outperforms the individual
estimates, but such effect is weakened by social influence. The
average in the soft feedback setting (red, right) slightly lags
behind that in the open loop (blue, left).

B. Improvement from Soft Feedback

Now, let’s analyze how soft feedback improves the crowd’s
learning performance. By visually inspecting Fig. 3, we ob-
serve the narrowing of individual error distribution in the soft
feedback setting: There are fewer extreme errors than those
in the open loop setting; most guesses are confined within
±100 kcal around optimum. In contrast, there are a significant
number of players making completely off guesses (±500 kcal)
in the open loop (even towards the end of sessions).

In Fig. 4 we plot the MSE time series to quantitatively assess
the crowd’s performance. The total MSE is approximately
30% lower in the soft feedback setting than in the open loop
setting. Unlike the deterioration in the performance of wisdom
of crowds, here social influence improves convergence and re-
duces the effect of noise. The critical feature of soft feedback is
that the players can ignore the feedback. Since self-interested
individuals reject feedbacks that appear unhelpful, the self-
filtered social feedback significantly improves performance.
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The observed improvement from soft feedback indicates
that, without external interference, partially following the
average opinion helped the players solve the “Fitness Game”
problems. In the next section, we will characterize the system
and estimate how much social influence was present in the
experiment, and the optimal degree of social influence that
would have optimized the crowd’s performance.
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Fig. 4. MSE progression. Blue (or red) dots are the MSE values sampled
at different points in time (T = 30) in the open loop (or soft feedback)
setting. The dashed lines are simulation results based on models from system
identification.

C. System Identification

We assumed that gi(x) ≡ g(x) = g̃x and the degree of
social influence βi ≡ β. The estimate ĝ(x) = 0.75x and
σ̂ω = 60 (r2 = 0.97) was computed using the open loop
results. From (9), we first estimated g̃ and σω by regressing
MSE(t + 1) against MSE(t). Using these estimates as an
initial guess, we then ran a Monte Carlo simulation with
5000 samples and computed the average MSE time series. By
minimizing the mean squared difference between that with

the open loop MSE time series, we obtained the g̃ and σω
estimates. The corresponding MSE evolution is plotted in
Fig. 4.

The estimate β̂ = 32% (r2 = 0.99) for the degree of
social influence was computed using the results where the
players received the population feedback. The corresponding
MSE evolution is plotted in Fig. 4. Following the studies
[20], [21] that have established that people rely more on
themselves when the opinions of others are very dissimilar,
we computed an “opinion distance” function β(d), where
d = |g(x)−u| is the distance of an individual decision from the
population feedback. We found it to be β̂(d) = exp(−0.011d)
(r2 = 0.98).

D. Optimal Degree of Social Influence

Given the estimates ĝ(x) and σ̂ω , one can compute the
optimal degree of social influence β∗ that, hypothetically,
would optimize the soft feedback performance. The results
are summarized in Table I, and the associated MSE time series
are displayed in Fig. 5. We first consider the case where the
degree of social influence β is fixed. The empirical estimate β̂
of social influence computed from experiment data is listed as
a reference. The robust social influence β∗R was calculated by
minimizing the RHS in (11), i.e., optimizing the worst case
cumulative expected MSE. The Monte Carlo (MC) estimate
β∗MC was calculated by minimizing the total MSE in (6) with
the expectation approximated by a Monte Carlo estimate. We
regard β∗MC as the true optimal degree of social influence.
In Table I, the column labeled ∆MSE lists the decrease of
the cumulative expected MSE from the open loop to the soft
feedback setting. The performances of the empirical estimate
β̂, the robust estimate β∗R, and the optimal value β∗MC are quite
close. It is comforting to know that the social influence present
in the experiment was close to the optimum.

We expect the degree of social influence, a function of the
opinion distance or a function of time, to likely improve con-
vergence. The β̂(d) profile estimated from experimental data
results in ∆MSE = 30%, which is not distinguishable from the



6

Time (second)
0 20 40 60 80 100 120

M
ea

n 
sq

ua
re

d 
er

ro
r 

(k
ca

l2
)

#104

0

0.5

1

1.5

2

2.5

3

Time (second)
0 50 100 150 200 250

M
ea

n 
sq

ua
re

d 
er

ro
r 

(k
ca

l2
)

#104

0

2

4

6

8

10

D
eg

re
e 

of
 s

oc
ia

l i
nf

lu
en

ce

0

0.2

0.4

0.6

0.8

1
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MC(d). Right: Red dashed line with markers is with dynamic social influence β∗

R(t); magenta
dotted line is the dynamic social influence time series.

TABLE I
OPTIMAL DEGREE OF SOCIAL INFLUENCE

Type Value ∆MSE
β (observed) β̂ = 32% 29%
β (robust) β∗

R = 23% 27%
β (MC, true optimum) β∗

MC = 30% 29%
β profile (observed) β̂(d) = exp(−0.011d) 30%
β profile (MC, true optimum) β∗

MC(d) = exp(−0.026d) 47%
Dynamic β (robust) β∗

R(t) 39%

performance of a constant β. However, the optimal β profile
β∗MC(d) with ∆MSE = 47% is significantly superior. The
performance of the optimal dynamic robust social influence
β∗R(t) is also listed in Table I. Since we do not have evidence
to suggest the subjects used a dynamic value for β, and the
performance of β̂(d) is close to β̂, we assume that the subjects
used the constant β̂ for the rest of our results.

E. U.S. State Tax and Expenditure Case Study

Next, we apply this control-theoretic analysis to the state
tax and expenditure case study. The results are displayed in
Table II. The learning gains of the states are all very close
to 1, i.e., in a noiseless setting, the convergence is very
slow. A possible explanation is that drastic change of tax and
expenditure strategies is either prohibited or discouranged. A
larger noise (see e.g., T09 and E065) or a smaller learning gain
(see e.g., T20 and E65) calls for a larger optimal degree of
social influence, which is consistent with the results presented
in Fig. 2. The improvement from soft feedback ranges from
14% to 73%. As mentioned earlier, even a small improvement
could make a significant difference in the nation’s overall
welfare.

V. DISCUSSION

There is a fundamental difference between vox populi and
the soft feedback mechanism proposed in this paper. Even

though both come under the umbrella of “collective intel-
ligence,” the vox populi aggregates the wisdom of experts
while the latter harnesses the wisdom of learners. Experts
base their opinions on prior knowledge. Such knowledge
comes from experience and beliefs, which are unlikely to
change. Independency and diversity of opinions prevent the
“groupthink” behavior — undesirable convergence of indi-
vidual estimates [22]. In this setting, social influence, which
violates independency, reduces the accuracy of the wisdom of
crowds.

Learners, on the other hand, revise their decisions by
interacting with the problem as well as other learners. Con-
sider, for example, flocking birds. The birds have to adapt to
changing weather; they gather local information, follow their
closest neighbors, and revise directions constantly [23]. In this
collective learning environment, individuals, like the flocking
birds, are both respondents who generate new information, and
surveyors who poll their social networks to improve decisions.

It appears that a social influence degree of 30% is robust
across many different scenarios. In Table II, the optimal degree
of social influence ranges from 30% to 32% for the “Fitness
Game” experiment. Prior literature [20], [24]–[27] also reports
30% to be the commonly observed degree of social influence
on average. Whether this value is a mere coincidence requires
further investigation.

The self-interested filtering of the feedback is key to ensur-
ing the accuracy and efficiency of the soft feedback mecha-
nism. Individuals will reject the feedbacks that appear useless.
The experimentally observed magnitude of soft feedback is
close to the theoretically predicted value for the optimal degree
of social influence. This discovery suggests the promise of
soft feedback for challenging real-world problems that require
collective learning and action.
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TABLE II
ALL RESULTS

Description Duration Crowd size (n) Horizon (T ) Learning gain (ˆ̃g) Noise (σ̂ω) r2 Noise ratio Optimal β ∆MSE
The Fitness Game (Set B) 0-240s 39 30 0.75 60 0.97 5% 30% 29%
The Fitness Game (Set N) 0-240s 41 30 0.7 57 0.98 4% 32% 25%
The Fitness Game (Set S) 0-240s 9 30 0.65 51 0.98 3% 30% 17%
Total Gen Sales Tax (T09) 1946-2014 50 69 0.96 4 0.89 3% 35% 73%
Total License Taxes (C118) 1946-2014 50 69 0.97 0.82 0.89 0.4% 14% 34%
Alcoholic Beverage Lic (T20) 1946-2014 50 69 0.93 0.04 0.99 0.09% 20% 34%
Individual Income Tax (T40) 1946-2014 50 69 0.98 2.9 0.86 1% 14% 32%
Educ-NEC-Dir Expend (E037) 1977-2013 51 37 0.96 0.097 0.85 1% 28% 54%
Emp Sec Adm-Direct Exp (E040) 1977-2013 51 37 0.93 0.037 0.99 0.6% 11% 14%
Total Highways-Dir Exp (E065) 1977-2013 51 37 0.93 0.76 0.89 3% 31% 53%
Liquor Stores-Tot Exp (E107) 1977-2013 51 37 0.95 0.17 0.95 1% 42% 67%

APPENDIX A
THE “FITNESS GAME”

All experiments have been approved by the IRB of
Columbia University (Protocol Number: IRB-AAAQ2603).
We developed the “Fitness Game” using Google Apps Script
and conducted the experiments on Amazon Mechanical Turk
(AMT). All the data were stored in Google Sheets. Once the
players accepted the task on AMT, they were first asked to
carefully read the game instructions (see Fig. 6). The total
task duration was ten minutes. The open loop (game level
1) and soft feedback (game level 2) sessions lasted precisely
four minutes each. Players who wished to practice could
enter the practice mode (game level 0) any time before open
loop session began. After completing both open loop and
soft feedback sessions, the players received a message about
compensation information.

The interactive app (see Fig. 7) consists of the following
components: The upper left panel shows the number of
attempted guesses, the most recent guess, the fitness level,
and the latest score. The panel changes from red to green
whenever the player earns one point. In the soft feedback
session, an additional message recommends the current vox
populi population feedback (see Fig. 7, right). The upper right
panel records latest game scores. The lower left scatter chart
plots the ten most recent entries (fitness versus diet). The lower
right line chart plots the fitness history of the ten most recent
entries.

The virtual character’s random fitness level f(x) as a
function of the input x = z − θ∗ was given by

f(x) = f0 −
(x
κ

)2
+ ω̃,

where f0 = 98% is the maximum achievable fitness, κ =
500 kcal is the scale of the fitness function, and ω̃ is a sample
from a random variable uniformly distributed over [−2%, 2%].
The player was awarded one score point whenever the guess
led to a fitness level of 99% or higher.

APPENDIX B
MATHEMATICAL MODEL AND PROOFS

We first begin with the noiseless dynamics and then extend
the model to include noise. The noiseless dynamics for the
n-player “Fitness Game” is as follows:

xi(t+ 1) = (1− βi)gi
(
xi(t)

)
+ βiu(t),

where xi(t) is the i-th player’s state, i.e., deviation from
optimum θ∗ at time t, and restricted to belong to a
bounded set X ⊆ R, the learning function gi(·) denotes
the player’s own state update process, βi ∈ [0, 1] (degree
of social influence) is the weight player i puts on the soft
feedback u(t) = 1

n

∑
i xi(t). Note that in the paper, we

refer to β as percentage. The individual learning functions
{gi(x) : 1 ≤ i ≤ n} are assumed to satisfy the following
regularity condition:

Assumption 1. For all i ∈ {1, . . . , n}, the function gi is
differentiable, x∗ = 0 is the unique attracting fixed point of
gi, and furthermore, gi is a contraction, i.e., |g′i(x)| < 1 for
all 1 ≤ i ≤ n and x ∈ X.

This assumption is motivated by the fact that all players
converged to the optimal point in the open loop setting
independent of the starting guess.

Let x ≡ [x1, . . . , xn]> ∈ Xn denote the state vector for the
n agents. The soft feedback map for the vector x is given by
x(t+ 1) = h

(
x(t)

)
where the map

h(x) =

(1− β1)g1(x1) . . . 0
...

. . .
...

0 . . . (1− βn)gn(xn)

+

1

n

β1...
βn

1>x.

We first show that the state vector x(t) converges to x∗ = 0
if the functions {gi(x) : 1 ≤ i ≤ n} satisfy Assumption 1
and 0 ≤ maxi βi < 1.

Theorem 1. The spectral radius ρ
(
J(x)

)
of the Jacobian

matrix of the soft feedback map h(x) satisfies ρ
(
J(x)

)
≤

m = max1≤i≤n,x∈X

{
(1− βi)|g′i(x)|+ βi

}
< 1.

Proof. The Jacobian of h(x) is

J(x) = diag
(
(1− β1)g′1(x1), . . . , (1− βn)g′n(xn)

)
+

1

n

β1...
βn

1>.
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Fig. 6. Instructions.

Fig. 7. Game interface.

The induced ∞-norm ‖J(x)‖∞ of the Jacobian J satisfies

‖J(x)‖∞ = max
‖v‖∞=1

‖J(x)v‖∞,

= max
‖v‖∞=1

max
1≤i≤n

|Ji(x)v|,

= max
‖v‖∞=1

max
1≤i≤n

[
(1− βi)|g′i(xi)|vi +

1

n
βi(1

>v)
]
,

≤ m(x),

where Ji(x) denotes the i-th row of the Jacobian J(x). The
result follows from noting that ρ

(
J(x)

)
≤ ‖J(x)‖∞ = m(x).

It is easy to see that m(x) < 1 whenever maxi βi < 1.

This result immediately implies that x∗ = 0 is an
asymptotically stable fixed point of the map h(x).

Theorem 2. The fixed point x∗ = 0 of the map h is robust
when subjected to bounded disturbances.

Proof. Let V (x) = ‖x‖∞. Since h(0) = 0, the mean value
theorem implies that

h(x) =

J1(δ1x)
...

Jn(δnx)

x,

for some δi ∈ [0, 1], i = 1, . . . , n, and Ji(δix) denotes the
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i-th row of the Jacobian of h(δix). Thus,

V
(
h(x)

)
= ‖h(x)‖∞,
= max

1≤i≤n
|Ji(δix)x|,

≤
(

max
1≤i≤n

‖J(δix)‖∞
)
‖x‖∞,

< m‖x‖∞,

where the first inequality follows from the definition of
‖J(δix)‖∞.

Since the continuous function V (x) is a Lyapunov function
for h, the result follows from standard results in stability
theory [28].

In the rest of this section, we will assume that βi are
identically equal to β.

Theorem 3. Suppose βi are all identically equal to
β. Then ‖h(x)‖2 ≤ m‖x‖2, where m = (1 −
β) max1≤i≤n,x∈X |g′i(x)|+ β.

Proof. Using the mean value theorem, one can write

h(x) =
(

(1− β)diag
(
g′1(δ1x1), . . . , g′n(δnxn)

)
+
β

n
11>

)
x,

where δi ∈ [0, 1] for i = 1, . . . , n. Let G′ =
diag(g′1(δ1x1), . . . , g′n(δnxn)) and J = (1 − β)G′ + β

n11
>.

Then

‖G′‖22 = max
‖v‖2=1

‖G′v‖22,

= max
‖v‖2=1

∑
i

|g′i(δix)|2v2i ,

≤ max
1≤i≤n

|g′i(δixi)|2

≤ max
1≤i≤n,x∈X

|g′i(x)|2.

Thus, ‖G′‖2 ≤ max1≤i≤n,x∈X |g′i(x)|. Therefore,

‖J‖22 = max
‖v‖2=1

‖Jv‖22,

= max
‖v‖2=1

{
(1− β)2‖G′v‖22 +

β2

n2
(1>v)2‖1‖22+

2β(1− β)

n
(1>v)(1>G′v)

}
,

≤ (1− β)2‖G′‖22 + β2 +

2β(1− β)

n

(
max
‖v‖2=1

|1>v|
)(

max
‖v‖2=1

|1>G′v|
)
,

≤ (1− β)2‖G′‖22 + β2 +

2β(1− β)√
n

‖1‖2
(

max
‖v‖2=1

‖G′v‖2
)
,

= (1− β)2‖G′‖22 + β2 + 2β(1− β)‖G′‖2 = m2.

Since h(x) = Jx, it follows that ‖h(x)‖2 = ‖Jx‖2 ≤
‖J‖2‖x‖2 ≤ m‖x‖2.

Next, we introduce noise in the game dynamics. Let
{ω(t) ∈ Rn : t ≥ 0} denote an IID sequence of random
vectors where ω(t) = [ω1(t), . . . , ωn(t)]>, and each ωi(t) is

an IID sample of a zero mean random variable with variance
σ2
ω . The noisy game dynamics is given by

xi(t+ 1) = (1− βi)
(
gi
(
xi(t)

)
+ ωi(t)

)
+ βiu(t),

i.e., we replace gi
(
xi(t)

)
by the noisy state update gi

(
xi(t)

)
+

ωi(t). This modification models the fact that the players
sample a noisy version of the fitness function, and use these
noisy samples to generate the update; therefore, we expect the
state update to be noisy. Note that the noise is not measurement
noise, rather noise in the function evaluation.

Define the mean squared error MSE

MSE(t) =
1

n

∑
i

xi(t)
2 =

1

n
‖x(t)‖22.

Then

E
[

MSE(t+ 1) | x(t)
]

=
1

n
E
[
‖x(t+ 1)‖22 | x(t)

]
,

=
1

n
E
[
‖h(x(t)) + (1− β)ω(t)‖22 | x(t)

]
,

=
1

n
‖h(x(t))‖22 +

(1− β)2

n
E
[
‖ω(t)‖22

]
, (12)

≤ m2

n
‖x(t)‖22 + (1− β)2σ2

ω, (13)

= m2 MSE(t) + (1− β)2σ2
ω, (14)

where (12) follows from the fact that ω(t) is independent of
x(t), and (13) follows from the bound in Theorem 3. Iterating
the bound (14) we get

E[MSE(t)] ≤ m2tMSE(0) +
(1− β)2(1−m2t)

(1−m2)
σ2
ω.
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