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Abstract—The majority of influence maximization (IM) studies
focus on targeting influential seeders to trigger substantial infor-
mation spread in social networks. Motivated by the observation
that incentives could “boost” users so that they are more likely to
be influenced by friends, we consider a new and complementary
k-boosting problem which aims at finding k users to boost so
to trigger a maximized “boosted” influence spread. The k-
boosting problem is different from the IM problem because
boosted users behave differently from seeders: boosted users
are initially uninfluenced and we only increase their probability
to be influenced. Our work also complements the IM studies
because we focus on triggering larger influence spread on the
basis of given seeders. Both the NP-hardness of the problem and
the non-submodularity of the objective function pose challenges
to the k-boosting problem. To tackle the problem on general
graphs, we devise two efficient algorithms with the data-dependent
approximation ratio. To tackle the problem on bidirected trees,
we present an efficient greedy algorithm and a dynamic pro-
gramming that is a fully polynomial-time approximation scheme.
Extensive experiments using real social networks and synthetic
bidirected trees verify the efficiency and effectiveness of the
proposed algorithms. In particular, on general graphs, we show
that boosting solutions returned by our algorithms achieves
boosts of influence that are up to several times higher than those
achieved by boosting intuitive solutions with no approximation
guarantee. We also explore the “budget allocation” problem
experimentally, demonstrating the beneficial of allocating the
budget to both seeders and boosted users.

Index Terms—Influence maximization, Information boosting,
Social networks, Viral marketing

I. INTRODUCTION

W ITH the popularity of online social networks, viral
marketing, which is a marketing strategy to exploit

online word-of-mouth effects, has become a powerful tool for
companies to promote sales. In viral marketing campaigns,
companies target influential users by offering free products
or services with the hope of triggering a chain reaction of
product adoption. Initial adopters or seeds are often used
interchangeably to refer to these targeted users. Motivated
by the need for effective viral marketing strategies, influence
maximization has become a fundamental research problem in
the past decade. The goal of influence maximization is usually
to identify influential initial adopters [1–8].

In practical marketing campaigns, companies often consider
a mixture of multiple promotion strategies. Targeting influen-

Yishi Lin and John C.S. Lui are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong. (Emails:
{yslin,cslui}@cse.cuhk.edu.hk)

Wei Chen is with Microsoft Research, Beijing, China. (Email:
weic@microsoft.com)

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

tial users as initial adopters is one tactic, and we list some
others as follows.

• Customer incentive programs: Companies offer incentives
such as coupons or product trials to attract potential cus-
tomers. Targeted customers are in general more likely to be
influenced by their friends.

• Social media advertising: Companies reach intended audi-
ences via digital advertising. According to an advertising
survey [9], owned online channels such as brand-managed
sites are the second most trusted advertising formats, second
only to recommendations from family and friends. We
believe that customers targeted by advertisements are more
likely to follow their friends’ purchases.

• Referral marketing: Companies encourage customers to re-
fer others to use the product by offering rewards such as
cash back. In this case, targeted customers are more likely
to influence their friends.

As one can see, these marketing strategies are able to “boost”
the influence transferring through customers. Furthermore, for
companies, the cost of “boosting” a customer (e.g., the average
redemption and distribution cost per coupon, or the advertising
cost per customer) is much lower than the cost of nurturing an
influential user as an initial adopter and a product evangelist.
Although identifying influential initial adopters have been
actively studied, very little attention has been devoted to
studying how to utilize incentive programs or other strategies
to further increase the influence spread of initial adopters.

In this paper, we study the problem of finding k boosted
users so that when their friends adopt a product, they are more
likely to make the purchase and continue to influence others.
Motivated by the need for modeling boosted customers, we
propose a novel influence boosting model. In our model, seed
users generate influence same as in the classical Independent
Cascade (IC) model. In addition, we introduce the boosted
user as a new type of user. They represent customers with
incentives such as coupons. Boosted users are uninfluenced at
the beginning of the influence propagation process, However,
they are more likely to be influenced by their friends and
further spread the influence to others. In other words, they
“boost” the influence transferring through them. Under the
influence boosting model, we study how to boost the influence
spread given initial adopters. More precisely, given initial
adopters, we are interested in identifying k users among other
users, so that the expected influence spread upon “boosting”
them is maximized. Because of the essential differences in
behaviors between seed users and boosted users, our work is
very different from influence maximization studies focusing
on selecting seeds.
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Our work also complements the studies of influence max-
imization problems. First, compared with nurturing an initial
adopter, boosting a potential customer usually incurs a lower
cost. For example, companies may need to offer free products
to initial adopters, but only need to offer coupons to boost
potential customers. With both our methods that identify users
to boost and influence maximization algorithms that select
initial adopters, companies have more flexibility in allocating
their marketing budgets. Second, initial adopters are some-
times predetermined. For example, they may be advocates of
a particular brand or prominent bloggers in the area. In this
case, our study suggests how to effectively utilize incentive
programs or similar marketing strategies to take the influence
spread to the next level.
Contributions. We study a novel problem of how to boost
the influence spread when the initial adopters are given. We
summarize our contributions as follows.
• We present the influence boosting model, which integrates

the idea of boosting into the Independent Cascade model.
We formulate a k-boosting problem that asks how to maxi-
mize the boost of influence spread under the influence boost-
ing model. The k-boosting problem is NP-hard. Computing
the boost of influence spread is #P-hard. Moreover, the
boost of influence spread does not possess the submodu-
larity, meaning that the greedy algorithm does not provide
performance guarantee.

• We present approximation algorithms PRR-Boost and
PRR-Boost-LB for the k-boosting problem. For the k-
boosting problem on bidirected trees, we present a greedy
algorithm Greedy-Boost based on a linear-time exact
computation of the boost of influence spread and a fully
polynomial-time approximation scheme (FPTAS) DP-Boost
that returns near-optimal solutions. 1 DP-Boost provides a
benchmark for the greedy algorithm, at least on bi-directed
trees, since it is very hard to find near optimal solutions in
general cases. Moreover, the algorithms on bidirected trees
may be applicable to situations where information cascades
more or less follow a fixed tree architecture.

• We conduct extensive experiments using real social net-
works and synthetic bidirected trees. Experimental results
show the efficiency and effectiveness of our proposed algo-
rithms, and their superiority over intuitive baselines.

Paper organization. Section II provides background. We
describe the influence boosting model and the k-boosting prob-
lem in Section III. We present building blocks of PRR-Boost
and PRR-Boost-LB for the k-boosting problem in Section IV,
and the detailed algorithm design in Section V. We present
Greedy-Boost and DP-Boost for the k-boosting problem on
bidirected trees in Section VI. We show experimental results
in Sections VII-VIII. Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide backgrounds about influence
maximization problems and related works.

1An FPTAS for a maximization problem is an algorithm that given any
ε > 0, it can approximate the optimal solution with a factor 1 − ε, with
running time polynomial to the input size and 1/ε.

Classical influence maximization problems. Kempe et al. [1]
first formulated the influence maximization problem that asks
to select a set S of k nodes so that the expected influence
spread is maximized under a predetermined influence propaga-
tion model. The Independent Cascade (IC) model is one clas-
sical model that describes the influence diffusion process [1].
Under the IC model, given a graph G = (V,E), influence
probabilities on edges and a set S ⊆ V of seeds, the influence
propagates as follows. Initially, nodes in S are activated.
Each newly activated node u influences its neighbor v with
probability puv . The influence spread of S is the expected
number of nodes activated at the end of the influence diffusion
process. Under the IC model, the influence maximization
problem is NP-hard [1] and computing the expected influence
spread for a given S is #P-hard [4]. A series of studies have
been done to approximate the influence maximization problem
under the IC model or other diffusion models [3, 4, 6–8, 10–
13].
Influence maximization on trees. Under the IC model, tree
structure makes the influence computation tractable. To devise
greedy “seed-selection” algorithms on trees, several studies
presented various methods to compute the “marginal gain”
of influence spread on trees [4, 14]. Our computation of
“marginal gain of boosts” on trees is more advanced than
the previous methods: It runs in linear-time, it considers the
behavior of “boosting”, and we assume that the benefits of
“boosting” can be transmitted in both directions of an edge.
On bidirected trees, Bharathi et al. [15] described an FPTAS
for the classical influence maximization problem. Our FPTAS
on bidirected trees is different from theirs because “boosting”
a node and targeting a node as a “seed” have significantly
different effects.
Boost the influence spread. Several works studied how to
recommend friends or inject links into social networks in
order to boost the influence spread [16–21]. Lu et al. [22]
studied how to maximize the expected number of adoptions
by targeting initial adopters of a complementing product. Chen
et al. [23] considered the amphibious influence maximization.
They studied how to select a subset of seed content providers
and a subset of seed customers so that the expected number
of influenced customers is maximized. Their model differs
from ours in that they only consider influence originators
selected from content providers, which are separated from
the social network, and influence boost is only from content
providers to consumers in the social network. Yang et al. [21]
studied how to offer discounts assuming that the probability
of a customer being an initial adopter is a known function
of the discounts offered to him. They studied how to offer
discounts to customers so that the influence cascades triggered
is maximized. Different from the above studies, we study how
to boost the spread of influence when seeds are given. We
assume that we can give incentives to some users (i.e., “boost”
some users) so that they are more likely to be influenced by
their friends, but they themselves would not become adopters
without friend influence. This article is an extended version
of our conference paper [24] that formulated the k-boosting
problem and presented algorithms for it. We add two new
algorithms that tackle the k-boosting problem in bidirected
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trees, and report new experimental results.

III. MODEL AND PROBLEM DEFINITION

In this section, we first define the influence boosting model
and the k-boosting problem. Then, we highlight the challenges
associated with solving the proposed problem.

A. Model and Problem Definition

Traditional studies of the influence maximization problem
focus on how to identify a set of k influential users (or seeds)
who can trigger the largest influence diffusion. In this paper,
we aim to boost the influence propagation assuming that seeds
are given. We first define the influence boosting model.

Definition 1 (Influence Boosting Model). Suppose we are
given a directed graph G=(V,E) with n nodes and m edges,
two influence probabilities puv and p′uv (with p′uv > puv) on
each edge euv , a set S ⊆ V of seeds, and a set B ⊆ V of
boosted nodes. Influence propagates in discrete time steps as
follows. If v is not boosted, each of its newly-activated in-
neighbor u influences v with probability puv . If v is a boosted
node, each of its newly-activated in-neighbor u influences v
with probability p′uv .

In Definition 1, we assume that “boosted” users are more
likely to be influenced. Our study can also be adapted to the
case where boosted users are more influential: if a newly-
activated user u is boosted, she influences her neighbor v with
probability p′uv instead of puv . To simplify the presentation,
we focus on the influence boosting model in Definition 1.

s v0 v1

ps,v0 =0.2

p′s,v0
=0.4

pv0,v1 =0.1

p′v0,v1
=0.2

B σS(B) ∆S(B)

∅ 1.22 0.00
{v0} 1.44 0.22
{v1} 1.24 0.02
{v0, v1} 1.48 0.26

Fig. 1: Example of the influence boosting model (S={s}).

Let σS(B) be the expected influence spread of S upon
boosting nodes in B. We refer to σS(B) as the boosted
influence spread. Let ∆S(B) = σS(B) − σS(∅). We refer
to ∆S(B) as the boost of influence spread of B, or simply
the boost of B. Consider the example in Figure 1. We have
σS(∅) = 1.22, which is essentially the influence spread
of S in the IC model. When we boost node v0, we have
σS({v0}) = 1 + 0.4 + 0.04 = 1.44, and ∆S({v0}) = 0.22.
We now formulate the k-boosting problem.

Definition 2 (k-Boosting Problem). Given a directed graph
G = (V,E), influence probabilities puv and p′uv on every
edges euv , and a set S ⊆ V of seed nodes, find a boost set
B ⊆ V with k nodes, such that the boost of influence spread
of B is maximized. That is, determine B∗ ⊆ V such that

B∗ = arg maxB⊆V,|B|≤k ∆S(B). (1)

By definition, the k-boosting problem is very different from
the classical influence maximization problem. In addition,
boosting nodes that significantly increase the influence spread
when used as additional seeds could be extremely inefficient.

For example, consider the example in Figure 1, if we are
allowed to select one more seed, we should select v1. However,
if we can boost a node, boosting v0 is much better than
boosting v1. Section VII provides more experimental results.

B. Challenges of the Boosting Problem

We now provide key properties of the k-boosting problem
and show the challenges we face. Theorem 1 summarizes the
hardness of the k-boosting problem.

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
Computing ∆S(B) given S and B is #P-hard.

Proof. The NP-hardness is proved by a reduction from the
NP-complete Set Cover problem [25]. The #P-hardness of the
computation is proved by a reduction from the #P-complete
counting problem of s-t connectedness in directed graphs [26].
The full analysis can be found in the appendix.

Non-submodularity of the boost of influence. Because of the
above hardness results, we explore approximation algorithms
to tackle the k-boosting problem. In most influence maximiza-
tion problems, the expected influence of the seed set S (i.e.,
the objective function) is a monotone and submodular function
of S.2 Thus, a natural greedy algorithm returns a solution with
an approximation guarantee [1, 6–8, 13, 28]. However, the ob-
jective function ∆S(B) in our problem is neither submodular
nor supermodular on the set B of boosted nodes. On one hand,
when we boost several nodes on different parallel paths from
seed nodes, their overall boosting effect exhibits a submodular
behavior. On the other hand, when we boost several nodes on
a path starting from a seed node, their boosting effects can
be cumulated along the path, generating a larger overall effect
than the sum of their individual boosting effect. This is in fact
a supermodular behavior. To illustrate, consider the graph in
Figure 1, we have ∆S({v0, v1})−∆S({v0}) = 0.04, which is
larger than ∆S({v1})−∆S(∅) = 0.02. In general, the boosted
influence has a complicated interaction between supermodular
and submodular behaviors when the boost set grows, and is
neither supermodular nor submodular. The non-submodularity
of ∆S(·) indicates that the boosting set returned by the greedy
algorithm may not have the (1−1/e)-approximation guarantee.
Therefore, the non-submodularity of the objective function
poses an additional challenge.

IV. BOOSTING ON GENERAL GRAPHS: BUILDING BLOCKS

In this section, we present three building blocks for solving
the k-boosting problem: (1) a state-of-the-art influence max-
imization framework, (2) the Potentially Reverse Reachable
Graph for estimating the boost of influence spread, and (3)
the Sandwich Approximation strategy [22] for maximizing
non-submodular functions. Our algorithms PRR-Boost and
PRR-Boost-LB integrate the three building blocks. We will
present their detailed algorithm design in the next section.

2 A set function f is monotone if f(S) ≤ f(T ) for all S ⊆ T ; it is
submodular if f(S ∪{v})− f(S) ≥ f(T ∪{v})− f(T ) for all S ⊆ T and
v 6∈ T , and it is supermodular if −f is submodular.
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A. State-of-the-art influence maximization techniques
One state-of-the-art influence maximization framework is

the Influence Maximization via Martingale (IMM) method [8]
based on the idea of Reverse-Reachable Sets (RR-sets) [6].
We utilize the IMM method in this work, but other similar
frameworks based on RR-sets (e.g., SSA/D-SSA [13]) could
also be applied.
RR-sets. An RR-set for a node r is a random set R of nodes,
such that for any seed set S, the probability that R ∩ S 6= ∅
equals the probability that r can be activated by S in a random
diffusion process. Node r may also be selected uniformly at
random from V , and the RR-set will be generated accordingly
with r. One key property of RR-sets is that the expected
influence of S equals to n · E[I(R ∩ S 6= ∅)] for all S ⊆ V ,
where I(·) is the indicator function and the expectation is taken
over the randomness of R.
General IMM algorithm. The IMM algorithm has two phases.
The sampling phase generates a sufficiently large number of
random RR-sets such that the estimation of the influence
spread is “accurate enough”. The node selection phase greedily
selects k seed nodes based on their estimated influence spread.
If generating a random RR-set takes time O(EPT ), IMM
returns a (1− 1/e− ε)-approximate solution with probability
at least 1−n−`, and runs in O(EPTOPT ·(k+`)(n+m) log n/ε2)
expected time, where OPT is the optimal expected influence.

B. Potentially Reverse Reachable Graphs
We now describe how we estimate the boost of influence.

The estimation is based on the concept of the Potentially
Reverse Reachable Graph (PRR-graph) defined as follows.

Definition 3 (Potentially Reverse Reachable Graph). Let r be
a node in G. A Potentially Reverse Reachable Graph (PRR-
graph) R for a node r is a random graph generated as
follows. We first sample a deterministic copy g of G. In the
deterministic graph g, each edge euv in graph G is “live”
in g with probability puv , “live-upon-boost” with probability
p′uv− puv , and “blocked” with probability 1− p′uv . The PRR-
graph R is the minimum subgraph of g containing all paths
from seed nodes to r through non-blocked edges in g. We
refer to r as the “root node”. When r is also selected from V
uniformly at random, we simply refer to the generated PRR-
graph as a random PRR-graph (for a random root).

r

v1

v4

v6

v0

v3

v2

v5

v7

PRR-graph R

v8

v9

v10

live

live

upon boost

blocked

• Estimating the boost
– fR(∅) = 0
– fR({v1}) = 1
– fR({v3}) = 1
– fR({v2, v5}) = 1

• Critical nodes
– CR = {v1, v3}

• Estimating the lower bound
– µ(B)=I(B∩CR 6= ∅)

Fig. 2: Example of a Potentially Reverse Reachable Graph.

Figure 2 shows an example of a PRR-graph R. The
directed graph G contains 12 nodes and 16 edges. Node r

is the root node. Shaded nodes are seed nodes. Solid, dashed
and dotted arrows with crosses represent live, live-upon-boost
and blocked edges, respectively. The PRR-graph for r is the
subgraph in the dashed box. It contains 9 nodes and 13 edges.
Nodes and edges outside the dashed box do not belong to
the PRR-graph, because they are not on any paths from seed
nodes to r that only contain non-blocked edges. By definition,
a PRR-graph may contain loops. For example, the PRR-graph
in Figure 2 contains a loop among nodes v1, v5, and v2.
Estimating the boost of influence. Let R be a given PRR-
graph with root r. By definition, every edge in R is either live
or live-upon-boost. Given a path in R, we say that it is live
if and only if it contains only live edges. Given a path in R
and a set of boosted nodes B ⊆ V , we say that the path is
live upon boosting B if and only if the path is not a live one,
but every edge euv on it is either live or live-upon-boost with
v∈B. For example, in Figure 2, the path from v3 to r is live,
and the path from v7 to r via v4 and v1 is live upon boosting
{v1}. Define fR(B) : 2V →{0, 1} as: fR(B) = 1 if and only
if, in R, (1) there is no live path from seed nodes to r; and
(2) a path from a seed node to r is live upon boosting B.
Intuitively, in the deterministic graph R, fR(B) = 1 if and
only if the root node is inactive without boosting, and active
upon boosting nodes in B. In Figure 2, if B = ∅, there is
no live path from the seed node v7 to r upon boosting B.
Therefore, we have fR(∅) = 0. Suppose we boost a single
node v1. There is a live path from the seed node v7 to r that
is live upon boosting {v1}, and thus we have fR({v1}) = 1.
Similarly, we have fR({v3}) = fR({v2, v5}) = 1. Based on
the above definition of fR(·), we have the following lemma.

Lemma 1. For any B ⊆ V , we have n ·E[fR(B)] = ∆S(B),
where the expectation is taken over the randomness of R.

Proof. For a random PRR-graph R whose root node is ran-
domly selected, Pr[fR(B) = 1] equals the difference between
probabilities that a random node in G is activated given that
we boost B and ∅.

Let R be a set of independent random PRR-graphs, define

∆̂R(B) =
n

|R|
·
∑
R∈R

fR(B),∀B ⊆ V. (2)

By Chernoff bound, ∆̂R(B) closely estimates ∆S(B) for any
B ⊆ V if |R| is sufficiently large.

C. Sandwich Approximation Strategy

To tackle the non-submodularity of function ∆S(·), we
apply the Sandwich Approximation (SA) strategy [22]. First,
we find submodular lower and upper bound functions of
∆S , denoted by µ and ν. Then, we select node sets B∆,
Bµ and Bν by greedily maximizing ∆S , µ and ν under
the cardinality constraint of k. Ideally, we return Bsa =
arg maxB∈{Bµ,Bν ,B∆}∆S(B) as the final solution. Let the
optimal solution of the k-boosting problem be B∗ and let
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OPT = ∆S(B∗). Suppose Bµ and Bν are (1 − 1/e − ε)-
approximate solutions for maximizing µ and ν, we have

∆S(Bsa) ≥
µ(B∗)

∆S(B∗)
· (1− 1/e− ε) ·OPT, (3)

∆S(Bsa) ≥
∆S(Bν)

ν(Bν)
· (1− 1/e− ε) ·OPT. (4)

Thus, to obtain a good approximation guarantee, at least one
of µ and ν should be close to ∆S . In this work, we derive
a submodular lower bound µ of ∆S using the definition of
PRR-graphs. Because µ is significantly closer to ∆S than any
submodular upper bound we have tested, we only use the
lower bound function µ and the “lower-bound side” of the
SA strategy with approximation guarantee in Inequality (3).
Submodular lower bound. We now derive a submodular
lower bound of ∆S . Let R be a PRR-graph with the root
node r. Let CR = {v|fR({v}) = 1}. We refer to nodes in CR
as critical nodes of R. Intuitively, the root node r becomes
activated if we boost any node in CR. For any node set B ⊆ V ,
define f−R (B) = I(B ∩ CR 6= ∅). By definition of CR and
f−R (·), we have f−R (B) ≤ fR(B) for all B ⊆ V . Moreover,
because the value of f−R (B) is based on whether the node
set B intersects with a fixed set CR, f−R (B) is a submodular
function on B. For any B ⊆ V , define µ(B) = n · E[f−R (B)]
where the expectation is taken over the randomness of R.
Lemma 2 shows the properties of the function µ.

Lemma 2. We have µ(B) ≤ ∆S(B) for all B ⊆ V . Moreover,
µ(B) is a submodular function of B.

Proof. For all B ⊆ V , we have µ(B) ≤ ∆S(B) because we
have f−R (B) ≤ fR(B) for any PRR-graph R. Moreover, µ(B)
is submodular on B because f−R (B) is submodular on B for
any PRR-graph R.

Our experiments show that µ is close to ∆S especially for
small k (e.g., less than a thousand). Define

µ̂R(B) =
n

|R|
·
∑
R∈R

f−R (B),∀B ⊆ V.

Because f−R (B) is submodular on B for any PRR-graph R,
µ̂R(B) is submodular on B. Moreover, by Chernoff bound,
µ̂R(B) is close to µ(B) when |R| is sufficiently large.
Remarks on the lower bound function µ(B). The lower
bound function µ(B) does correspond to a physical diffusion
model, as we now explain. Roughly speaking, µ(B) is the
influence spread in a diffusion model with the boost set B,
and the constraint that at most one edge on the influence
path from a seed node to an activated node can be boosted.
More precisely, on every edge euv with v ∈ B, there are
three possible outcomes when u tries to activate v: (a) normal
activation: u successfully activates v without relying on the
boost of v (with probability puv), (b) activation by boosting:
u successfully activates v but relying on the boost of v (with
probability p′uv−puv); and (c) no activation: u fails to activate
v (with probability 1 − p′uv). In the diffusion model, each
activated node records whether it is normally activated or
activated by boosting. Initially, all seed nodes are normally
activated. If a node u is activated by boosting, we disallow u

to activate its out-neighbors by boosting. Moreover, when u
normally activates v, v inherits the status from u and records
its status as activated by boosting. However, if later u can
be activated again by another in-neighbor normally, u can
resume the status of being normally activated, resume trying
to activate its out-neighbors by boosting. Furthermore, this
status change recursively propagates to u’s out-neighbors that
were normally activated by u and inherited the “activated-by-
boosting” status from u, so that they now have the status of
“normally-activated” and can activate their out-neighbors by
boosting. All the above mechanisms are to insure that the chain
of activation from any seed to any activated node uses at most
one activation by boosting.

Admittedly, the above model is convoluted, while the
PRR-graph description of µ(B) is more direct and is easier
to analyze. Indeed, we derived the lower bound function
µ(B) directly from the concept of PRR-graphs first, and
then “reverse-engineered” the above model from the PRR-
graph model. Our insight is that by fixing the randomness
in the original influence diffusion model, it may be easier
to derive submodular lower-bound or upper-bound functions.
Nevertheless, we believe the above model also provides some
intuitive understanding of the lower bound model — it is
precisely submodular because it disallows multiple activations
by boosting in any chain of activation sequences.

V. BOOSTING ON GENERAL GRAPHS: ALGORITHM
DESIGN

In this section, we first present how we generate random
PRR-graphs. Then we obtain overall algorithms by integrating
the general IMM algorithm with PRR-graphs and the Sandwich
Approximation strategy.

A. Generating PRR-graphs

We classify PRR-graphs into three categories. Let R be
a PRR-graph with root node r. (1) Activated: If there is
a live path from a seed node to r; (2) Hopeless: There is
no path from seeds to r with at most k non-live edges;
(3) “Boostable”: not the above two categories. If R is not
boostable (i.e. case (1) or (2)), we have fR(B) = f−R (B) = 0
for all B ⊆ V . Therefore, for “non-boostable” PRR-graphs, we
only count their occurrences and we terminate the generation
of them once we know they are not boostable. Algorithm 1
depicts generation of a random PRR-graph in two phases. The
first phase (Lines 1-19) generates a PRR-graph R. If R is
boostable, the second phase compresses R to reduce its size.
Figure 3 shows the results of two phases, given that the status
sampled for every edge is same as that in Figure 2.
Phase I: Generating a PRR-graph. Let r be a random node.
We include into R all non-blocked paths from seed nodes
to r with at most k live-upon-boost edges via a a backward
Breadth-First Search (BFS) from r. The status of each edge
(i.e., live, live-upon-boost, blocked) is sampled when we first
process it. The detailed backward BFS is as follows. Define
the distance of a path from u to v as the number of live-upon-
boost edges on it. Then, the shortest distance from v to r is the
minimum number of nodes we have to boost so that at least a
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Super-seed
{v4, v7}

r

v1

v4

v6

v0

v3

v2

v5

v7

v8

removed
later

(a) Results of phase I

Super-seed
{v4, v7}

r

v1

v4v3

v2

v5

v7

(b) Results of phase II

Fig. 3: Generation of a PRR-Graph. (Solid and dashed ar-
rows represent live and live-upon-boost edges respectively.)

Algorithm 1: Generating a random PRR-graph (G,S, k)

1 Select a random node r as the root node
2 if r ∈ S then return R is activated
3 Create a graph R with a singleton node r
4 Create a double-ended queue Q with (r, 0)
5 Initialize dr[r]← 0 and dr[v]← +∞,∀v 6= r
6 while Q is not empty do
7 (u, dur)← Q.dequeue front()
8 if dur > dr[u] then continue // we’ve processed u
9 for each non-blocked incoming edge evu of u do

10 dvr ← I(evu is live-upon-boost) + dur
11 if dvr > k then continue // pruning
12 Add evu to R
13 if dvr < dr[v] then
14 dr[v]← dvr
15 if v ∈ S then
16 if dr[v] = 0 then return R is activated

17 else if dvr=dur then
Q.enqueue front((v, dvr))

18 else Q.enqueue back((v, dvr))

19 if there is no seed in R then return R is hopeless
20 Compress the boostable R to reduce its size
21 return a compressed boostable R

path from v to r becomes live. For example, in Figure 3a, the
shortest distance from v7 to r is one. We use dr[·] to maintain
the shortest distances from nodes to the root node r. Initially,
we have dr[r] = 0 and we enqueue (r, 0) into a double-ended
queue Q. We repeatedly dequeue and process a node-distance
pair (u, dur) from the head of Q, until the queue is empty.
Note that the distance dur in a pair (u, dur) is the shortest
known distance from u to r when the pair was enqueued.
Thus we may find dur > dr[u] in Line 8. Pairs (u, dur) in Q
are in the ascending order of the distance dur and there are
at most two different values of distance in Q. Therefore, we
process nodes in the ascending order of their shortest distances
to r. When we process a node u, for each of its non-blocked
incoming edge evu, we let dvr be the shortest distance from v
to r via u. If dvr > k, all paths from v to r via u are impossible
to become live upon boosting at most k nodes, therefore we
ignore evu in Line 11. This is in fact a “pruning” strategy,

because it may reduce unnecessary costs in the generation
step. The pruning strategy is effective for small values of k.
For large values of k, only a small number of paths need to be
pruned due to the small-world property of real social networks.
If dvr ≤ k, we insert evu into R, update dr[v] and enqueue
(v, dvr) if necessary. During the generation, if we visit a seed
node s and its shortest distance to r is zero, we know R is
activated and we terminate the generation (Line 16). If we
do not visit any seed node during the backward BFS, R is
hopeless and we terminate the generation (Line 19).
Remarks. At the end of phase I, R may include nodes and
edges not belonging to it (e.g., non-blocked edges not on any
non-blocked paths from seeds to the root). These extra nodes
and edges will be removed in the compression phase. For
example, Figure 3a shows the results of the first phase, given
that we are constructing a PRR-graph R according to the root
node r and sampled edge status shown in Figure 2. At the end
of the first phase, R also includes the extra edge from v8 to
v2 and they will be removed later.
Phase II: Compressing the PRR-graph. When we reach
Line 20, R is boostable. In practice, we observe that we can
remove and merge a significant fraction of nodes and edges
from R (i.e., compress R), while keeping values of fR(B) and
f−R (B) for all |B| ≤ k same as before. Therefore, we compress
all boostable PRR-graphs to prevent the memory usage from
becoming a bottleneck. Figure 3b shows the compressed result
of Figure 3a. First, we merge nodes v4 and v7 into a single
“super-seed” node, because they are activated without boosting
any node. Then, we remove node v6 and its incident edges,
because they are not on any paths from the super-seed node to
the root node r. Similarly, we remove the extra node v8 and
the extra edge from v8 to v2. Next, observing that there are
live paths from nodes v0, v1, v2 and v3 to root r, we remove
all outgoing edges of them, and add a direct live edge from
each of these nodes to r. After doing so, we remove node v0

because it is not on any path from the super-seed node to r.
Now, we describe the compression phase in detail.

The first part of the compression merges nodes into the
super-seed node. We run a forward BFS from seeds in R and
compute the shortest distance dS [v] from seeds to v for every
node v in R. Let X = {v|dS [v] = 0}, we have fR(B) =
fR(B\X) for all B ⊆ V because whether we boost any subset
of X has nothing to do with whether the root node of R is
activated. Thus, we merge nodes in X as a single super-seed
node: we insert a super-seed node x into R; for every node
v in X , we remove its incoming edges and redirect every of
its outgoing edge evu to exu. Finally, we clean up nodes and
edges not on any paths from the super-seed node to the root
node r.

In the second part, we add live edges so that nodes
connected to r through live paths are directly linked to r. We
also clean up nodes and edges that are not necessary for later
computation. For a node v, let d′r[v] be the shortest distance
from v to r without going through the super-seed. If a node v
satisfies d′r[v] +dS [v] > k, every path going through v cannot
be live with at most k nodes boosted, therefore we remove v
and its adjacent edges. If a non-root node v satisfies d′r[v] = 0,
we remove its outgoing edges and add a live edge from v to
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r. In fact, in a boostable R, if a node v satisfies d′r[v] = 0, we
must have dr[v] = 0 in the first phase. In our implementation,
if a node v satisfies dr[v] = 0, we in fact clear outgoing edges
of v and add the live edge evr to R in the first phase. Finally,
we remove “non-super-seed” nodes with no incoming edges.
Time complexity. The cost for the first phase of the PRR-
graph generation is linear to the number of edges visited
during the generation. The compression phase runs linear to
the number of uncompressed edges generated in the generation
phase. Section VII shows the average number of uncompressed
edges in boostable PRR-graphs in several social networks.

B. PRR-Boost Algorithm

We obtain our algorithm, PRR-Boost, by integrating PRR-
graphs, the IMM algorithm and the Sandwich Approximation
strategy. Algorithm 2 depicts PRR-Boost.

Algorithm 2: PRR-Boost(G,S, k, ε, `)

1 `′ = ` · (1 + log 3/ log n)
2 R ← SamplingLB(G,S, k, ε, `′) // sampling in IMM [8]

using the PRR-graph generation of Algo. 1
3 Bµ ← NodeSelectionLB(R, k) // maximize µ
4 B∆ ← NodeSelection(R, k) // maximize ∆S

5 Bsa = arg maxB∈{B∆,Bµ} ∆̂R(B)

6 return Bsa

Lines 1-3 utilize the IMM algorithm [8] with the PRR-graph
generation given in Algorithm 1 to maximize the lower bound
µ of ∆S under the cardinality constraint of k. Line 4 greedily
selects a set B∆ of nodes with the goal of maximizing ∆S , and
we reuse PRR-graphs inR to estimate ∆S(·). Finally, between
Bµ and B∆, we return the set with a larger estimated boost
of influence as the final solution.
Approximation ratio. Let B∗µ be the optimal solution for
maximizing µ under the cardinality constraint of k, and let
OPTµ = µ(B∗µ). By the analysis of the IMM method, we have
the following lemma.

Lemma 3. In Algorithm 2, define ε1 = ε · α/((1 −
1/e)α + β) where α =

√
`′ log n+ log 2, and β =√

(1− 1/e) · (log
(
n
k

)
+ `′ log n+ log 2). With a probability

of at least 1 − n−`
′
, the number of PRR-graphs generated

in Line 2 satisfies

|R| ≥
(2− 2/e) · n · log

((
n
k

)
· 2n`′

)
(ε− (1− 1/e) · ε1)

2 ·OPTµ

(
Th.2 by [8]

)
. (5)

Given that Inequality (5) holds, with probability at least 1 −
n−`

′
, the set Bµ returned by Line 3 satisfies

n·µ̂R(Bµ) ≥ (1− 1/e)(1− ε1) ·OPTµ
(
Th.1 by [8]

)
.
(6)

Ideally, we should select Bsa = arg maxB∈{Bµ,B∆}∆S(B).
Because of the #P-hardness of computing ∆S(B) for any
given B, we select Bsa between Bµ and B∆ with the larger
estimated boost of influence in Line 5. The following lemma
shows that boosting Bsa leads to a large expected boost.

Lemma 4. Given that Inequalities (5)-(6) hold, with a prob-
ability of at least 1 − n−`′ , we have ∆S(Bsa) ≥ (1 − 1/e −
ε) ·OPTµ ≥ (1− 1/e− ε) · µ(B∗).

Proof. (outline) Let B be a boost set with k nodes, we say
that B is a bad set if ∆S(B) < (1− 1/e− ε) ·OPTµ. Let B
be an arbitrary bad set with k nodes. If we return B, we must
have ∆̂R(B) > ∆̂R(Bµ), and we can prove that Pr[∆̂R(B) >
∆̂R(Bµ)] ≤ n−̀ ′/

(
n
k

)
. Because there are at most

(
n
k

)
bad sets

with k nodes, and because OPTµ ≥ µ(B∗), Lemma 4 holds.
The full proof can be found in the appendix.

Complexity. Let EPT be the expected number of edges
explored for generating a random PRR-graph. Generating a
random PRR-graph runs in O(EPT ) expected time, and the
expected number of edges in a random PRR-graph is at
most EPT . Denote the size of R as the total number of
edges in PRR-graphs in R. Lines 1-3 of PRR-Boost are
essentially the IMM method with the goal of maximizing µ.
By the analysis of the general IMM method, both the expected
complexity of the sampling step in Line 2 and the size of R
are O( EPTOPTµ

· (k + `)(n + m) log n/ε2). The node selection
in Line 3 corresponds to the greedy algorithm for maximum
coverage, thus runs in time linear to the size of R. The node
selection in Line 4 runs in O( EPTOPTµ

·k(k+`)(n+m) log n/ε2)

expected time, because updating ∆̂R(B ∪ {v}) for all v /∈
B∪S takes time linear to the size of R after we insert a node
into B.

From Lemmas 3-4, we have ∆S(Bsa) ≥ (1−1/e−ε)·µ(B∗)
with probability at least 1− 3n−`

′
= 1− n−`. Together with

the above complexity analysis, we have the following theorem
about PRR-Boost.

Theorem 2. With a probability of at least 1−n−`, PRR-Boost
returns a (1−1/e−ε)· µ(B∗)

∆S(B∗) -approximate solution. Moreover,
it runs in O( EPTOPTµ

·k · (k+`)(n+m) log n/ε2) expected time.

The approximation ratio given in Theorem 2 depends on
the ratio of µ(B∗)

∆S(B∗) , which should be close to one if the lower
bound function µ(B) is close to the actual boost of influence
∆S(B), when ∆S(B) is large. Section VII demonstrates that
µ(B) is indeed close to ∆S(B) in real datasets.

C. The PRR-Boost-LB Algorithm

PRR-Boost-LB is a simplification of PRR-Boost where we
return the node set Bµ as the final solution. Recall that the
estimation of µ only relies on the critical node set CR of
each boostable PRR-graph R. In the first phase of the PRR-
graph generation, if we only need to obtain CR, there is no
need to explore incoming edges of a node v if dr[v] > 1.
Moreover, in the compression phase, we can obtain CR right
after computing dS [·] and we can terminate the compression
earlier. The sampling phase of PRR-Boost-LB usually runs
faster than that of PRR-Boost, because we only need to
generate CR for each boostable PRR-graph R. In addition, the
memory usage is significantly lower than that for PRR-Boost,
because the averaged number of “critical nodes” in a ran-
dom boostable PRR-graph is small in practice. In summary,
compared with PRR-Boost, PRR-Boost-LB has the same
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approximation factor but runs faster than PRR-Boost. We will
compare PRR-Boost and PRR-Boost-LB by experiments in
Section VII.

D. Discussion: The Budget Allocation Problem

A question one may raise is what is the best strategy if
companies could freely decide how to allocation budget on
both seeding and boosting. A heuristic method combing influ-
ence maximization algorithms and PRR-Boost is as follows.
We could test different budget allocation strategy. For each
allocation, we first identify seeds using any influence maxi-
mization algorithm, then we find boosted user by PRR-Boost.
Finally, we could choose the budget allocation strategy leading
to the largest boosted influence spread among all tested ones.
In fact, the budget allocation problem could be much harder
than the k-boosting problem itself, and its full treatment is
beyond the scope of this study and is left as a future work.

VI. BOOSTING ON BIDIRECTED TREES

In this section, we study the k-boosting problem where
influence propagates on bidirected trees. On bidirected trees,
the computation of the boost of influence spread becomes
tractable. We are able to devise an efficient greedy algorithm
and an approximation algorithm with a near-optimal approx-
imation ratio. This demonstrates that the hardness of the k-
boosting problem is partly due to the graph structure, and
when we restrict to tree structures, we are able to find near-
optimal solutions. Moreover, using near-optimal solutions as
benchmarks enables us to verify that a greedy node selection
method on trees in fact returns near-optimal solutions in
practice. Besides, our efforts on trees will help to designing
heuristics for the k-boosting problem on general graphs, or for
other related problems in the future.
Bidirected trees. A directed graph G is a bidirected tree if
and only if its underlying undirected graph (with directions and
duplicated edges removed) is a tree. For simplicity of notation,
we assume that every two adjacent nodes are connected by two
edges, one in each direction. We also assume that nodes are
activated with probability less than one, because nodes that
will be activated for sure could be identified in linear time
and they could be treated as seeds. Figure 4 shows an example
of a bidirected tree. The existence of bidirected edges brings
challenges to the algorithm design, because the influence may
flow from either direction between a pair of neighboring nodes.

v0

v2v1 v3

S = {v1, v3}
p = 0.1, p′ = 0.19 for all edges

Fig. 4: A bidirected tree with four nodes and six directed
edges.

In the remaining of this section, we first present how
to compute the exact boosted influence spread on bidi-
rected trees, and a greedy algorithm Greedy-Boost based
on it. Then, we present a rounded dynamic programming
DP-Boost, which is a fully polynomial-time approximation

scheme. Greedy-Boost is efficient but does not provide the
approximation guarantee. DP-Boost is more computationally
expensive but guarantees a near-optimal approximation ratio.
We leave all proofs of this section in the appendix.

A. Computing the boosted influence spread

In this part, we first discuss how to compute the boosted
influence spread in a bidirected tree. The computation serves
as a building block for the greedy algorithm that iteratively
selects nodes with the maximum marginal gain of the boosted
influence spread.

We separate the computation into three steps. (1) We refer
to the probability that a node gets activated (i.e., influenced)
as its “activation probability”. For every node u, we compute
the increase of its activation probability when it is inserted
into B. (2) If we regard a node u as the root of the tree, the
remaining nodes could be categorized into multiple “subtrees”,
one for each neighbor of u. For every node u, we compute
intermediate results that help us to determine the increase of
influence spread in each such “subtree” if we insert u into
B. (3) Based on the previous results, we compute σS(B) and
σS(B ∪ {u}) for every node u. If necessary, we are able to
obtain ∆S(B ∪ {u}) from σS(B ∪ {u})− σS(∅).
Notations. We use pBu,v to denote the influence probability of
an edge euv , given that we boost nodes in B. Similarly, let
pbu,v be the influence probability of euv , where b ∈ {0, 1}
indicates whether v is boosted. We use N(u) to denote the
set of neighbors of node u. Given neighboring nodes u and
v, we use Gu\v to denote the subtree of G obtained by first
removing node v and then removing all nodes not connected to
u. To avoid cluttered notation, we slightly abuse the notation
and keep using S and B to denote seed users and boosted
users in Gu\v , although some nodes in S or B may not be in
Gu\v .
Step I: Activation probabilities. For a node u, we define
apB(u) as the activation probability of u when we boost B.
For v ∈ N(u), we define apB(u\v) as the activation probabil-
ity of node u in Gu\v when we boost B. For example, in Fig-
ure 4, suppose B = ∅, we have apB(v0) = 1−(1− p)2

= 0.19
and apB(v0\v1) = p = 0.1. By the above definition, we have
the following lemma.

Lemma 5. Suppose we are given a node u. If u is a seed
node (i.e., u ∈ S), we have apB(u) = 1 and apB(u\v) = 1
for all v ∈ N(u). Otherwise, we have

apB(u) =1−
∏

v∈N(u)

(
1−apB(v\u)·pBv,u

)
, (7)

apB(u\v) =1−
∏

w∈N(u)\{v}

(
1−apB(w\u)·pBw,u

)
,

∀v ∈ N(u), (8)

apB(u\v) =1−
(
1−apB(u\w)

)
·
1−apB(w\u)·pBw,u
1−apB(v\u)·pBv,u

,

∀v, w ∈ N(u), v 6= w. (9)

Algorithm 3 depicts how we compute activation proba-
bilities. Lines 1-4 initialize and compute apB(u\v) for all
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Algorithm 3: Computing Activation Probabilities

1 Initialize apB(u\v) as “not computed” for all u and
v ∈ N(u)

2 foreach u ∈ V do
3 foreach v ∈ N(u) do
4 ComputeAP(u, v) // compute apB(u\v)

5 foreach u ∈ V do
6 if u ∈ S then apB(u)← 1
7 else apB(u)← 1−

∏
v∈N(u)(1− apB(v\u) · pBv,u)

8 Procedure ComputeAP(u, v)
9 if we have not computed apB(u\v) then

10 if u ∈ S then apB(u\v)← 1
11 else if we have not computed apB(u\w) for any

w ∈ N(u)\{v} then
12 foreach w ∈ N(u)\{v} do ComputeAP(w, u)
13 apB(u\v)←1−

∏
w∈N(u)\{v}(1−apB(w\u)pBw,u)

14 else
15 Suppose we have computed apB(u\w) for a

node w ∈ N(u)\{v}
16 ComputeAP(w, u)
17 apB(u\v)← 1−(1−apB(u\w))· 1−apB(w\u)·pBw,u

1−apB(v\u)·pBv,u

neighboring nodes u and v. Lines 5-7 compute apB(u) for
all nodes u. The recursive procedure ComputeAP(u, v) for
computing apB(u\v) works as follows. Line 9 guarantees that
we do not re-compute apB(u\v). Line 10 handles the trivial
case where node u is a seed. Lines 11-13 compute the value of
apB(u\v) using Equation (8). Lines 14-17 compute apB(u\v)
more efficiently using Equation (9), taking advantages of the
known apB(u\w) and apB(v\u). Note that in Line 17, the
value of apB(v\u) must have been computed, because we have
computed apB(u\w), which relies on the value of apB(v\u).
For a node u, given the values of apB(w\u) for all w ∈ N(u),
we can compute apB(u\v) for all v ∈ N(u) in O(|N(u)|).
Then, for a node u, given values of apB(w\u) for all w ∈
N(u), we can compute apB(u) in O(|N(u)|). Therefore, the
time complexity of Algorithm 3 is O(

∑
u |N(u)|) = O(n),

where n is the number of nodes in the bidirected tree.

Step II: More intermediate results. Given that we boost
B, we define gB(u\v) as the “gain” of the influence spread
in Gu\v when we add node u into the current seed set S.
Formally, gB(u\v) is defined as gB(u\v) = σ

Gu\v
S∪{u}(B) −

σ
Gu\v
S (B), where σ

Gu\v
S (B) is the boosted influence spread

in Gu\v when the seed set is S and we boost B. In Figure 4,
we have Gv0\v1

= G\{e01, e10}. Suppose B = ∅, when
we insert v0 into S, the boosted influence spread in Gv0\v1

increases from 1.11 to 2.1, thus gB(v0, v1) = 0.99. We
compute gB(u\v) for all neighboring nodes u and v using
the formulas in the following lemma.

Lemma 6. Suppose we are given a node u. If u is a seed
node (i.e., u ∈ S), we have gB(u\v) = 0. Otherwise, for any

v ∈ N(u), we have

gB(u\v) =
(

1− apB(u\v)
)
·(

1 +
∑

w∈N(u)\{v}

pBu,w · gB(w\u)

1− apB(w\u) · pBw,u

)
. (10)

Moreover, for v, w ∈ N(u) and v 6= w, we have

gB(u\v) =
(
1− apB(u\v)

)
·
( gB(u\w)

1− apB(u\w)

+
pBu,w · gB(w\u)

1− apB(w\u) · pBw,u
−

pBu,v · gB(v\u)

1− apB(v\u) · pBv,u

)
. (11)

Equation (10) shows how to compute gB(u\v) by definition.
Equation (11) provides a faster way to compute gB(u\v),
taking advantages of the previously computed values. Using
similar algorithm in Algorithm 3, we are able to compute
gB(u\v) for all u and v ∈ N(u) in O(n).
Step III: The final computation. Recall that σS(B) is the
expected influence spread upon boosting B, we have σS(B) =∑
v∈V apB(v). The following lemma shows how we compute

σS(B ∪ {u}).

Lemma 7. Suppose we are given a node u. If u is a seed node
or a boosted node (i.e., u ∈ B ∪ S), we have σS(B ∪ {u}) =
σS(B). Otherwise, we have

σS(B ∪ {u}) = σS(B) + ∆apB(u)

+
∑

v∈N(u)

pBu,v ·∆apB(u\v) · gB(v\u), (12)

where ∆apB(u) := apB∪{u}(u) − apB(u) = 1 −∏
v∈N(u)

(
1−apB(v\u) ·p′v,u

)
−apB(u) and ∆apB(u\v) :=

apB∪{u}(u\v) − apB(u\v) = 1 −
∏
w∈N(u)\{v}

(
1 −

apB(w\u) · p′w,u
)
− apB(u\v).

The intuition behind Equation (12) is as follows. Let Vv\u ⊆
V be the set of nodes in Gv\u ⊆ G. When we insert a node u
into B, ∆apB(u) is the increase of the activation probability
of u itself, and pBu,v · ∆apB(u\v) · gB(v\u) is the increase
of the number of influenced nodes in Vv\u. The final step
computes σS(B) and σS(B ∪ {u}) for all nodes u in O(n).
Putting it together. Given a bidirected tree G and a set of
currently boosted nodes B, we are interested in computing
σS(B) and σS(B ∪ {u}) for all nodes u. For all u ∈ V and
v ∈ N(u), we compute apB(u) and apB(u\v) in the first step,
and we compute gB(u\v) in the second step. In the last step,
we finalize the computation of σS(B) and σS(B ∪ {u}) for
all nodes u. Each of the three steps runs in O(n), where n
is the number of nodes. Therefore, the total time complexity
of all three steps is O(n). The above computation also allows
us to compute ∆S(B ∪ {u}) for all u. To do so, we have to
compute ap∅(·) in extra, then we have σS(∅) =

∑
v ap∅(v)

and ∆S(B ∪ {u}) = σS(B ∪ {u})− σS(∅).
Greedy-Boost. Based on the computation of σS(B ∪ {u})
for all nodes u, we have a greedy algorithm Greedy-Boost
to solve the k-boosting problem on bidirected trees. In
Greedy-Boost, we iteratively insert into set B a node u that
maximizes σS(B ∪ {u}), until |B| = k. Greedy-Boost runs
in O(kn).
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B. A Rounded Dynamic Programming

In this subsection, we present a rounded dynamic program-
ming DP-Boost, which is a fully polynomial-time approxima-
tion scheme. DP-Boost requires that the tree has a root node,
any node could be assigned as the root node. Denote the root
node by r. For ease of presentation, in this subsection, we
assume that every node of the tree has at most two children.
We leave details about DP-Boost for general bidirected trees
in the appendix.
Exact dynamic programming. We first define a bottom-up
exact dynamic programming. For notational convenience, we
assume that r has a virtual parent r′ and pr′r = p′r′r = 0.
Given a node v, let VTv be the set of nodes in the subtree of v.
Define g(v, κ, c, f) as the maximum expected boost of nodes
in VTv under the following conditions. (1) Assumption: The
parent of node v is activated with probability f if we remove
all nodes in VTv from G. (2) Requirement: We boost at most
κ nodes in VTv , and node v is activated with probability c if
we remove nodes not in VTv . It is possible that for some node
v, the second condition could never be satisfied (e.g., v is a
seed but c < 1). In that case, we define g(v, κ, c, f) := −∞.

By definition, maxc g(r, k, c, 0) is the maximum boost of
the influence spread upon boosting at most k nodes in the
tree. However, the exact dynamic programming is infeasible
in practice because we may have to calculate g(v, κ, c, f)
for exponentially many choices of c and f . To tackle this
problem, we propose a rounded dynamic programming and
call it DP-Boost.
High level ideas. Let δ ∈ (0, 1) be a rounding parameter.
We use bxcδ to denote the value of x rounded down to the
nearest multiple of δ. We say x is rounded if and only if
it is a multiple of δ. For simplicity, we consider 1 as a
rounded value. The high level idea behind DP-Boost is that we
compute a rounded version of g(v, κ, c, f) only for rounded
values of c and f . Then, the number of calculated entries
would be polynomial in n and 1/δ. Let g′(v, κ, c, f) be the
rounded version of g(v, κ, c, f), DP-Boost guarantees that (1)
g′(v, κ, c, f) ≤ g(v, κ, c, f); (2) g′(v, κ, c, f) gets closer to
g(v, κ, c, f) when δ decreases.

Definition 4 defines DP-Boost. An important remark is that
g′(·) is equivalent to the definition of g(·) if we ignore all the
rounding (i.e., assuming

⌊
x
⌋
δ

= x, ∀x).

Definition 4 (DP-Boost). Let v be a node. Denote the parent
node of v by u.

• Base case. Suppose v is a leaf node. If c 6= I(v ∈ S), let
g′(v, κ, c, f) = −∞; otherwise, let

g′(v, κ, c, f) = max
{

1−(1−c)(1−f · pI(κ>0)
u,v )−ap∅(v), 0

}
.

• Recurrence formula. Suppose v is an internal node. If v is
a seed node, we let g′(v, κ, c, f) = −∞ for c 6= 1, and
otherwise let

g′(v, κ, 1, f) = max
κ=

∑
κvi

∑
i

g′(vi, κvi , cvi , 1).

If v is a non-seed node, we use C ′(v, κ, c, f) to denote the
set of consistent subproblems of g′(v, κ, c, f). Subproblems

(κvi , cvi , fvi ,∀i) are consistent with g′(v, κ, c, f) if they
satisfy the following conditions:

b = κ−
∑
i

κvi ∈ {0, 1}, c=
⌊
1−
∏
i

(
1−cvi · pbvi,v

)⌋
δ
,

fvi=
⌊
1−(1−f · pbu,v)

∏
j 6=i

(
1−cvj · pbvj ,v

)⌋
δ
,∀i.

If C ′(v, κ, c, f) = ∅, let g′(v, κ, c, f) =−∞; otherwise, let

g′(v, κ, c, f) = max
(κvi ,fvi ,cvi ,∀i)
∈C′(v,κ,c,f),
b=k−

∑
i κvi

( ∑
i g
′(vi,κvi ,cvi ,fvi )+

max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
.

Rounding and relaxation. In DP-Boost, we compute
g′(v, κ, c, f) only for rounded c and f . Therefore, when
we search subproblems of g′(v, κ, c, f) for a internal node
v, we may not find any consistent subproblem if we keep
using requirements of c and fvi in the exact dynamic pro-
gramming (e.g., c = 1 −

∏
i(1 − cvi · pbvi,v)). In Defini-

tion 4, we slightly relax the requirements of c and fvi (e.g.,
c =

⌊
1−

∏
i(1− cvi · pbvi,v)

⌋
δ
). Our relaxation guarantees

that g′(v, κ, c, f) is at most g(v, κ, c, f). The rounding and
relaxation together may result in a loss of the boosted influence
spread of the returned boosting set. However, as we shall show
later, the loss is bounded.
Algorithm and complexity. In DP-Boost, we first determine
the rounding parameter δ. We obtain a lower bound LB of
the optimal boost of influence by Greedy-Boost in O(kn).
Define p(k)(u  v) as the probability that node u can influ-
ence node v given that we boost edges with top-k influence
probability along the path. The rounding parameter is then
determined by

δ =
ε ·max(LB, 1)∑

u∈V
∑
v∈V p

(k)(u v)
. (13)

We obtain the denominator of δ via depth-first search starting
from every node, each takes time O(kn). Thus, we can obtain
δ in O(kn + kn2) = O(kn2). With the rounding parameter
δ, DP-Boost computes the values of g′(·) bottom-up. For a
leaf node v, it takes O(k/δ2) to compute entries g′(v, κ, c, f)
for all κ, rounded c and rounded f . For an internal node v,
we enumerate over all combinations of f , b ∈ {0, 1}, and κvi ,
cvi for children vi. For each combination, we can uniquely
determine the values for κ, c and fvi for all children vi,
and update g′(v, κ, c, f) accordingly. For an internal node v,
the number of enumerated combinations is O(k2/δ3), hence
we can compute all k/δ2 entries g′(v, . . .) in O(k2/δ3). The
total complexity of DP-Boost is O(kn2 + n · k2/δ3). In the
worst case, we have O(1/δ) = O(n2/ε). Therefore, the com-
plexity for DP-Boost is O(k2n7/ε3). To conclude, we have
the following theorem about DP-Boost. The approximation
guarantee is proved in the appendix.

Theorem 3. Assuming the optimal boost of influence is at
least one, DP-Boost is a fully-polynomial time approxima-
tion scheme, it returns a (1 − ε)-approximate solution in
O(k2n7/ε3).

Refinements. In the implementation, we compute possible
ranges of c and f for every node, and we only compute
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g(v, k, c, f) for rounded values of c and f within those ranges.
Let cLv (resp. fLv ) be the lower bound of possible values of
cv (resp. fv) for node v. For a node v, we let cLv = 1
if v is a seed, let cLv = 0 if v is a leaf node, and let
cLv =

⌊
1−

∏
i(1− cLvi · pvi,v)

⌋
δ
. otherwise. For the root node

r, we let fLr = 0. For the i-th child vi of node v, let
fLvi =

⌊
1− (1− fLu · puv)

∏
j(1− cLvj · pvj ,v)

⌋
δ
, where u is

the parent of v. The upper bound of values of c and f for
every node is computed assuming all nodes are boosted, via a
method similar to how to we compute the lower bound.
Remarks. In DP-Boost for general bidirected trees, the
bottom-up algorithm for computing g′(v, . . . ) is more com-
plicated. Given that the optimal boost of influence is at least
one, DP-Boost returns a (1 − ε)-approximate solution in
O(k2n9/ε3). If the number of children of every node is upper-
bounded by a constant, DP-Boost runs in O(k2n7/ε3). Please
refer to the appendix for details.

VII. EXPERIMENTS ON GENERAL GRAPHS

We conduct extensive experiments using real social net-
works to test PRR-Boost and PRR-Boost-LB. Experimental
results demonstrate their efficiency and effectiveness, and
show their superiority over intuitive baselines. All experi-
ments were conduct on a Linux machine with an Intel Xeon
E5620@2.4GHz CPU and 30 GB memory. In PRR-Boost and
PRR-Boost-LB, the generation of PRR-graphs and the estima-
tion of objective functions are parallelized with OpenMP and
executed using eight threads.

Table 1: Statistics of datasets and seeds (all directed)

Description Digg Flixster Twitter Flickr

number of nodes (n) 28K 96K 323K 1.45M
number of edges (m) 200K 485K 2.14M 2.15M
average influence probability 0.239 0.228 0.608 0.013
influence of 50 influential seeds 2.5K 20.4K 85.3K 2.3K
influence of 500 random seeds 1.8K 12.5K 61.8K 0.8K

Datasets. We use four real social networks: Flixster [29],
Digg [30], Twitter [31], and Flickr [32]. All dataset have both
directed social connections among its users, and actions of
users with timestamps (e.g., rating movies, voting for stories,
re-tweeting URLs, marking favorite photos). We learn influ-
ence probabilities on edges using a widely accepted method
by Goyal et al. [33]. We remove edges with zero influence
probability and keep the largest weakly connected component.
Table 1 summaries our datasets.
Boosted influence probabilities. To the best of our knowl-
edge, no existing work quantitatively studies how influence
among people changes respect to different kinds of “boost-
ing strategies”. Therefore, we assign the boosted influence
probabilities as follows. For every edge euv with an influence
probability of puv , let the boosted influence probability p′uv be
1− (1− puv)β (β > 1). We refer to β as the boosting param-
eter. Due to the large number of combinations of parameters,
we fix β = 2 unless otherwise specified. Intuitively, β = 2
indicates that every activated neighbor of a boosted node v
has two independent chances to activate v. We also provide
experiments showing the impacts of β.

Seed selection. We select seeds in two ways. (i) We use the
IMM method [8] to select 50 influential nodes. In practice,
the selected seeds typically correspond to highly influential
customers selected with great care. Table 1 summaries the
expected influence spread of selected seeds. (ii) We randomly
select five sets of 500 seeds. The setting maps to the situation
where some users become seeds spontaneously. Table 1 shows
the average expected influence of five sets of selected seeds.

Baselines. As far as we know, no existing algorithm is
applicable to the k-boosting problem. Thus, we compare our
proposed algorithms with several heuristic baselines, as listed
below.

• HighDegreeGlobal: Starting from an empty set B, HighDe-
greeGlobal iteratively adds a node with the highest weighted
degree to B, until k nodes are selected. We use four
definitions of the weighted degree, for a node u /∈ (S ∪B),
they are: (1) the sum of influence probabilities on outgoing
edges (i.e.,

∑
euv

puv); (2) the “discounted” sum of influence
probabilities on outgoing edges (i.e.,

∑
euv,v /∈B puv); (3) the

sum of the boost of influence probabilities on incoming
edges (i.e.,

∑
evu

[p′vu − pvu]); (4) the “discounted” sum
of the boost of influence probabilities on incoming edges
(i.e.,

∑
evu,v /∈B [p′vu − pvu]). Each definition outperforms

others in some experiments. We report the maximum boost
of influence among four solutions as the result.

• HighDegreeLocal: The only difference between HighDe-
greeLocal and HighDegreeGlobal is that, we first consider
nodes close to seeds. We first try to select k nodes among
neighbors of seeds. If there is not enough nodes to select,
we continue to select among nodes that are two-hops away
from seeds, and we repeat until k nodes are selected. We
report the maximum boost of influence among four solutions
selected using four definitions of the weighted degree.

• PageRank: We use the PageRank baseline for influence
maximization problems [4]. When a node u has influence
on v, it implies that node v “votes” for the rank of u. The
transition probability on edge euv is pvu/ρ(u), where ρ(u)
is the summation of influence probabilities on all incoming
edges of u. The restart probability is 0.15. We compute the
PageRank iteratively until two consecutive iteration differ
for at most 10−4 in L1 norm.

• MoreSeeds: We adapt the IMM framework to select k more
seeds with the goal of maximizing the increase of the
expected influence spread. We return the selected k seeds
as the boosted nodes.

We do not compare our algorithms to the greedy algorithm
with Monte-Carlo simulations. Because it is extremely com-
putationally expensive even for the classical influence maxi-
mization [1, 7].

Settings. For PRR-Boost and PRR-Boost-LB, we let ε = 0.5
and ` = 1 so that both algorithms return (1−1/e−ε)· µ(B∗)

∆S(B∗) -
approximate solution with probability at least 1 − 1/n. To
enforce fair comparison, for all algorithms, we evaluate the
boost of influence spread by 20, 000 Monte-Carlo simulations.
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(d) Flickr

Fig. 5: Boost of the influence versus k (influential seeds).

A. Influential seeds

In this part, we report results where the seeds are 50
influential nodes. The setting here maps to the real-world
situation where the initial adopters are highly influential users
selected with great care. We run each experiment five times
and report the average results.
Quality of solution. Figure 5 compares the boost of
the influence spread of solutions returned by different
algorithms. PRR-Boost always return the best solution,
and PRR-Boost-LB returns solutions with slightly lower
but comparable quality. Moreover, both PRR-Boost and
PRR-Boost-LB outperform other baselines. In addition, More-
Seeds returns solutions with the lowest quality. This is because
nodes selected by MoreSeeds are typically in the part of
graph not covered by the existing seeds so that they could
generate larger marginal influence. In contrast, boosting nodes
are typically close to existing seeds to make the boosting result
more effective. Thus, our empirical result further demonstrates
that k-boosting problem differs significantly from the influence
maximization problem.
Running time. Figure 6 shows the running time of PRR-Boost
and PRR-Boost-LB. The running time of both algorithm
increases when k increases. This is mainly because the number
of random PRR-graphs required increases when k increases.
Figure 6 also shows that the running time is in general pro-
portional to the number of nodes and edges for Digg, Flixster
and Twitter, but not for Flickr. This is mainly because of the
significantly smaller average influence probabilities on Flickr
as shown in Table 1, and the accordingly significantly lower
expected cost for generating a random PRR-graph (i.e., EPT )
as we will show shortly in Table 2. In Figure 6, we also label
the speedup of PRR-Boost-LB compared with PRR-Boost.
Together with Figure 5, we can see that PRR-Boost-LB returns
solutions with quality comparable to PRR-Boost but runs
faster. Because our approximation algorithms consistently out-
perform all heuristic methods with no performance guarantee
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Fig. 6: Running time (influential seeds).

in all tested cases, we do not compare the running time of
our algorithms with heuristic methods to avoid cluttering the
results.
Effectiveness of the compression phase. Table 2 shows the
“compression ratio” of PRR-graphs and memory usages of
PRR-Boost and PRR-Boost-LB, demonstrating the impor-
tance of compressing PRR-graphs. The compression ratio is
the ratio between the average number of uncompressed edges
and average number of edges after compression in boostable
PRR-graphs. Besides the total memory usage, we also show
in parenthesis the memory usage for storing boostable PRR-
graphs, which is measured as the additional memory usage
starting from the generation of the first PRR-graph. For
example, for the Digg dataset and k = 100, for boostable PRR-
graphs, the average number of uncompressed edges is 1810.32,
the average number of compressed edges is 2.41, and the
compression ratio is 751.59. Moreover, the total memory usage
of PRR-Boost is 0.07GB with around 0.01GB being used to
storing “boostable” PRR-graphs. The compression ratio is high
in practice for two reasons. First, many nodes visited in the
first phase cannot be reached by seeds. Second, among the
remaining nodes, many of them can be merged into the super-
seed node, and most non-super-seed nodes will be removed
because they are not on any paths to the root node without
going through the super-seed node. The high compression
ratio and the memory used for storing compressed PRR-
graphs show that the compression phase is indispensable. For
PRR-Boost-LB, the memory usage is much lower because
we only store “critical nodes” of boostable PRR-graphs. In
our experiments with β = 2, each boostable PRR-graph
only has a few critical nodes on average, which explains the
low memory usage of PRR-Boost-LB. If one is indifferent
about the slightly difference between the quality of solutions
returned by PRR-Boost-LB and PRR-Boost, we suggest to use
PRR-Boost-LB because of its lower running time and lower
memory usage.
Approximation factors in the Sandwich Approxima-
tion. Recall that the approximate ratio of PRR-Boost and
PRR-Boost-LB depends on the ratio µ(B∗)

∆S(B∗) . The closer to
one the ratio is, the better the approximation guarantee is. With
B∗ being unknown due to the NP-hardness of the problem,
we show the ratio when the boost is relatively large. We
obtain 300 sets of k boosted nodes by replacing a random
number of nodes in Bsa by other non-seed nodes, where Bsa
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Table 2: Memory usage and compression ratio (influential
seeds). Numbers in parentheses are additional memory
usage for boostable PRR-graphs.

k Dataset PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100
Digg 1810.32 / 2.41 = 751.79 0.07 (0.01) 0.06 (0.00)
Flixster 3254.91 / 3.67 = 886.90 0.23 (0.05) 0.19 (0.01)
Twitter 14343.31 / 4.62 = 3104.61 0.74 (0.07) 0.69 (0.02)
Flickr 189.61 / 6.86 = 27.66 0.54 (0.07) 0.48 (0.01)

5000
Digg 1821.21 / 2.41 = 755.06 0.09 (0.03) 0.07 (0.01)
Flixster 3255.42 / 3.67 = 886.07 0.32 (0.14) 0.21 (0.03)
Twitter 14420.47 / 4.61 = 3125.37 0.89 (0.22) 0.73 (0.06)
Flickr 189.08 / 6.84 = 27.64 0.65 (0.18) 0.50 (0.03)
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Fig. 7: Sandwich Approximation: µ(B)
∆S(B) (influential

seeds).

is the solution returned by PRR-Boost. For a given set B, we
use PRR-graphs generated for finding Bsa to estimate µ(B)

∆S(B) .
Figure 7 shows the ratios for generated sets B as a function
of ∆S(B) for varying k. Because we intend to show the ratio
when the boost of influence is large, we do not show points
corresponding to sets whose boost of influence is less than
50% of ∆S(Bsa). For all datasets, the ratio is above 0.94,
0.83 and 0.74 for k = 100, 1000, 5000, respectively. The ratio
is closer to one when k is smaller, and we now explain this.
In practice, most boostable PRR-graphs have “critical nodes”.
When k is small, say 100, PRR-Boost and PRR-Boost-LB
tend to return node sets B so that every node in B is a critical
node in many boostable PRR-graphs. For example, for Twitter,
when k = 100, among PRR-graphs that have critical nodes
and are activated upon boosting Bsa, above 98% of them have
their critical nodes boosted (i.e., in Bsa). Meanwhile, many
root node r of PRR-graphs without critical nodes may stay
inactive. For a given PRR-graph R, if B contains critical nodes
of R or if the root node of R stays inactive upon boosting B,
f−R (B) does not underestimate fR(B). Therefore, when k is
smaller, the ratio of µ(B)

∆S(B) =
E[f−R (B)]

E[fR(B)] tends to be closer to
one. When k increases, we can boost more nodes, and root
nodes of PRR-graphs without critical nodes may be activated,
thus the approximation ratio tends to decrease. For example,
for Twitter, when k increases from 100 to 5000, among PRR-
graphs whose root nodes are activated upon boosting Bsa, the
fraction of them having critical nodes decreases from around
98% to 88%. Accordingly, the ratio of µ(Bsa)/∆S(Bsa)
decreased by around 9% when k increases from 100 to 5000.
Effects of the boosted influence probabilities. In our exper-
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Fig. 8: Effects of the boosting parameter (influential seeds,
k = 1000).
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Fig. 9: Sandwich Approximation with varying boosting
parameter: µ(B)

∆S(B) (influential seeds, k = 1000).

iments, the larger the boosting parameter β is, the larger the
boosted influence probabilities on edges are. Figure 8 shows
the effects of β on the boost of influence and the running time
when k = 1000. For other values of k, the results are similar.
In Figure 8a, the optimal boost increases when β increases.
When β increases, for Flixster and Flickr, PRR-Boost-LB
returns solution with quality comparable to those returned
by PRR-Boost. For Twitter, we consider the slightly de-
generated performance of PRR-Boost-LB acceptable because
PRR-Boost-LB runs significantly faster. Figure 8b shows
the running time for PRR-Boost and PRR-Boost-LB. When
β increases, the running time of PRR-Boost increases ac-
cordingly, but the running time of PRR-Boost-LB remains
almost unchanged. Therefore, compared with PRR-Boost,
PRR-Boost-LB is more scalable to larger boosted influence
probabilities on edges. In fact, when β increases, a random
PRR-graph tends to include more nodes and edges. The run-
ning time of PRR-Boost increases mainly because the cost for
PRR-graph generation increases. However, when β increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. Figure 9
shows the approximation ratio of the sandwich approximation
strategy with varying boosting parameters. We observe that, for
every dataset, when we increase the boosting parameter, the
ratio of µ(B)

∆S(B) for large ∆S(B) remains almost the same. This
suggests that both our proposed algorithms remain effective
when we increase the boosted influence probabilities on edges.
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Fig. 10: Boost of the influence versus k (random seeds).
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Fig. 11: Running time (random seeds).

B. Random seeds

In this part, we select five sets of 500 random nodes as
seeds for each dataset. The setting here maps to the real
situation where some users become seeds spontaneously. All
experiments are conducted on five sets of random seeds, and
we report the average results.
Quality of solution. We select up to 5000 nodes and compare
our algorithms with baselines. From Figure 10, we can draw
conclusions similar to those drawn from Figure 5 where
the seeds are highly influential users. Both PRR-Boost and
PRR-Boost-LB outperform all baselines.
Running time. Figure 11 shows the running time of
PRR-Boost and PRR-Boost-LB, and the speedup of
PRR-Boost-LB compared with PRR-Boost. Figure 11b shows
that PRR-Boost-LB runs up to three times faster than
PRR-Boost. Together with Figure 10, PRR-Boost-LB is in
fact both efficient and effective given randomly selected seeds.
Effectiveness of the compression phase. Table 3 shows
the compression ratio of PRR-Boost, and the memory usage
of both proposed algorithms. Given randomly selected seed
nodes, the compression step of PRR-graphs is also very
effective. Together with Table 2, we can conclude that the
compression phase is an indispensable step for both cases

Table 3: Memory usage and compression ratio (random
seeds).

k Dataset PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100
Digg 3069.15 / 5.61 = 547.28 0.07 (0.01) 0.06 (0.00)
Flixster 3754.43 / 25.83 = 145.37 0.24 (0.06) 0.19 (0.01)
Twitter 16960.51 / 56.35 = 300.96 0.78 (0.11) 0.68 (0.01)
Flickr 701.84 / 18.12 = 38.73 0.56 (0.09) 0.48 (0.01)

5000
Digg 3040.94 / 5.59 = 544.19 0.12 (0.06) 0.07 (0.01)
Flixster 3748.74 / 25.86 = 144.94 0.71 (0.53) 0.21 (0.03)
Twitter 16884.86 / 57.29 = 294.72 1.51 (0.84) 0.72 (0.05)
Flickr 701.37 / 18.10 = 38.75 1.00 (0.53) 0.50 (0.03)

where the seeds are highly influence users or random users.
Approximation factors in the Sandwich Approximation. The
approximate ratio of PRR-Boost and PRR-Boost-LB depends
on the ratio µ(B∗)

∆S(B∗) . We use the same method to generate
different sets of boosted nodes B as in the previous sets of
experiments. Figure 12 shows the ratios for generated sets
B as a function of ∆S(B) for k ∈ {100, 1000, 5000}. For
all four datasets, the ratio is above 0.76, 0.62 and 0.47 for
k = 100, 1000, 5000, respectively. As from Figure 7, the ratio
is closer to one when k is smaller. Compared with Figure 7, we
observe that the ratios in Figure 12 are lower. The main reason
is that, along with many PRR-graphs with critical nodes,
many PRR-graphs without critical nodes are also boosted. For
example, for Twitter, when k = 5000, among PRR-graphs
whose root nodes are activated upon boosting Bsa, around
25% of them do not have critical nodes, and around 3%
of them have critical nodes but their critical nodes are not
in Bsa. Note that, although the approximation guarantee of
our proposed algorithms decreases as k increases, Figure 10
shows that our proposed algorithms still outperform all other
baselines.
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Fig. 12: Sandwich Approximation: µ(B)
∆S(B) (random seeds).

C. Budget allocation between seeding and boosting

In this part, we vary both the number of seeders and
the number of boosted nodes. Under the context of viral
marketing, this corresponds to the situation where a company
can decide both the number of free samples and the number
of coupons they offer. Intuitively, targeting a user as a seeder
(e.g., offering a free product and rewarding for writing positive
opinions) must cost more than boosting a user (e.g., offering
a discount or displaying ads). In the experiments, we assume
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that we can target 100 users as seed nodes with all the budget.
Moreover, we assume that targeting a seeder costs 100 to
800 times as much as boosting a user. For example, suppose
targeting a seeder costs 100 times as much as boosting a
user: we can choose to spend 20% of our budget on targeting
initial adopters (i.e., finding 20 seed users and boosting 8000
users); or, we can spend 80% of the budget on targeting initial
adopters (i.e, finding 80 seeds and boosting 2000 users). We
explore how the expected influence spread changes, when we
decrease the number of seed users and increase the number of
boosted users. Given the budget allocation (i.e., the number
of seeds and the number boosted users), we first identify a
set of influential seeds using the IMM method, then we use
PRR-Boost to select the set of nodes we boost. Finally, we
use 20, 000 Monte-Carlo simulations to estimate the expected
boosted influence spread.
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Fig. 13: Budget allocation between seeding and boosting.

Figure 13 shows the results for Flixster and Flickr. Spending
a mixed budget among initial adopters and boosting users
achieves higher final influence spread than spending all budget
on initial adopters. For example, for cost ratio of 800 between
seeding and boosting, if we choose 80% budget for seeding
and 20% for boosting, we would achieve around 20% and 92%
higher influence spread than pure seeding, for Flixster and
Flickr respectively. Moreover, the best budget mix is different
for different networks and different cost ratio, suggesting the
need for specific tuning and analysis for each case.

VIII. EXPERIMENTS ON BIDIRECTED TREES

We conduct extensive experiments to test the proposed
algorithms on bidirected trees. In our experiments, DP-Boost
can efficiently approximate the k-boosting problem for bidi-
rected trees with thousands of nodes. We also show that
Greedy-Boost returns solutions that are near-optimal. All
experiments were conduct on same environment as in Sec-
tion VII.

We use synthetic bidirected trees to test algorithms for
bidirected trees in Section VI. For every given number of
nodes n, we construct a complete (undirected) binary tree
with n nodes, then we replace each undirected edge by two
directed edges, one in each direction. We assign influence
probabilities {puv}’s on edges according to the Trivalency
model. Moreover, for every edge euv , let p′uv = 1−(1− puv)2.
For every tree, we select 50 seeds using the IMM method.
We compare Greedy-Boost and DP-Boost. The boost of

influence of the returned sets are computed exactly. We run
each experiment five times with randomly assigned influence
probabilities and report the averaged results.
Greedy-Boost versus DP-Boost with varying ε. For
DP-Boost, the value of ε controls the tradeoff between the
accuracy and computational costs. Figure 14 shows results for
DP-Boost with varying ε and Greedy-Boost. For DP-Boost,
when ε increases, the running time decreases dramatically,
but the boost is almost unaffected. Because DP-Boost returns
(1 − ε)-approximate solutions, it provides a benchmark for
the greedy algorithm. Figure 14a shows that the greedy
algorithm Greedy-Boost returns near-optimal solutions in
practice. Moreover, Figure 14b shows Greedy-Boost is orders
of magnitude faster than DP-Boost with ε = 1 where the
theoretical guarantee is in fact lost.
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Fig. 14: The greedy algorithm versus the rounded dynamic
programming on random bidirected trees with 2000 nodes.

Greedy-Boost versus DP-Boost with varying tree sizes. We
set ε = 0.5 for DP-Boost. Figure 15 compares Greedy-Boost
and DP-Boost for trees with varying sizes. Results for smaller
values of k are similar. In Figure 15a, for every k, lines
representing Greedy-Boost and DP-Boost are completely
overlapped, suggesting that Greedy-Boost always return
near-optimal solutions on trees with varying sizes. Figure 15b
demonstrates the efficiency of Greedy-Boost. Both Figure 14
and Figure 15 suggest that Greedy-Boost is very efficient and
it returns near-optimal solutions in practice.
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Fig. 15: The greedy algorithm versus the rounded dynamic
programming on random bidirected trees with varies sizes.

IX. CONCLUSION

In this work, we address a novel k-boosting problem that
asks how to boost the influence spread by offering k users
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incentives so that they are more likely to be influenced
by friends. For the k-boosting problem on general graphs,
we develop efficient approximation algorithms, PRR-Boost
and PRR-Boost-LB, that have data-dependent approximation
factors. Both PRR-Boost and PRR-Boost-LB are delicate
integration of Potentially Reverse Reachable Graphs and the
state-of-the-art techniques for influence maximization prob-
lems. For the k-boosting problem on bidirected trees, we
present an efficient greedy algorithm Greedy-Boost based
on a linear-time exact computation of the boost of influence
spread, and we also present DP-Boost which is shown to be
a fully polynomial-time approximation scheme. We conduct
extensive experiments on real datasets using PRR-Boost and
PRR-Boost-LB. In our experiments, we consider both the case
where the seeds are highly influential users, and the case where
the seeds are randomly selected users. Results demonstrate
the superiority of our proposed algorithms over intuitive
baselines. Compared with PRR-Boost, experimental results
show that PRR-Boost-LB returns solution with comparable
quality but has significantly lower computational costs. On
real social networks, we also explore the scenario where we
are allowed to determine how to spend the limited budget
on both targeting initial adopters and boosting users. Exper-
imental results demonstrate the importance of studying the
problem of targeting initial adopters and boosting users with
a mixed strategy. We also conduct experiments on synthetic
bidirected trees using Greedy-Boost and DP-Boost. Results
show the efficiency and effectiveness of our Greedy-Boost
and DP-Boost. In particular, we show via experiments that
Greedy-Boost is extremely efficient and returns near-optimal
solutions in practice.

The proposed “boosting” problem has several more future
directions. One direction is to design more efficient approx-
imation algorithms or effective heuristics for the k-boosting
problem. This may requires new techniques about how to
tackle the non-submodularity of the objective function. These
new techniques may also be applied to solve other existing
or future questions in the area of influence maximization.
Another direction is to investigate similar problems under
other influence diffusion models, for example the well-known
Linear Threshold (LT) model. We believe the general question
of to how to boost the spread of information is of great
importance and it deserves more attention.
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APPENDIX A
PROOFS

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
Computing ∆S(B) given S and B is #P-hard.

Lemma 8 proves the NP-hardness of the k-boosting prob-
lem, and Lemma 9 shows the #P-hardness of the boost
computation.

Lemma 8. The k-boosting problem is NP-hard.

Proof. We prove Lemma 8 by a reduction from the NP-
complete Set Cover problem [25]. The Set Cover problem is
as follows: Given a ground set X = {e1, e1, . . . , en} and a
collection C of subsets C = {C1, C2, . . . , Cm} of X , we want

s

c2c1 c3

x1 x2 x3 x4 x5 x6

|VC | = |C| = m

|VX | = |X| = n

p = 0.5, p′ = 1

p = p′ = 1

Fig. 16: Illustration of the NP-hardness graph construc-
tion: X = {x1, x2, . . . , x6}, C = {C1, C2, C3}, C1 =
{x1, x2, x3}, C2 = {x2, x3, x4}, C3 = {x4, x5, x6}, with
m = 3, n = 6.

to know whether there exist k subsets in C so that their union
is X . We assume that every element in X is covered by at
least one set in C. We reduce the Set Cover problem to the
k-boosting problem as follows.

Given an arbitrary instance of the Set Cover problem. We
define a corresponding directed tripartite graph G with 1 +
m + n nodes. Figure 16 shows how we construct the graph
G. Node s is a seed node. Node set VC = {c1, c2, . . . , cm}
contains m nodes, where node ci corresponds to the set Ci in
C. Node set VX = {x1, x2, . . . , xn} contains n nodes, where
node xi corresponds to the element ei in X . For every node
ci ∈ VC , there is a directed edge from s to ci with an influence
probability of 0.5 and a boosted influence probability of 1.
Moreover, if a set Ci contains an element ej in X , we add a
directed edge from ci to xj with both the influence probability
and the boosted influence probability on that edge being 1.
Denote the degree of the node xi ∈ VX by dxi . When we do
not boost any nodes in G (i.e., B = ∅), the expected influence
spread of S = {s} in G can be computed as σS(∅) = 1+m+∑
xi∈VX

(
1−0.5dxi

)
. The Set Cover problem is equivalent to

deciding if there is a set B of k boosted nodes in graph G so
that σS(B) = σS(∅) + ∆S(B) = 1 + n+m. Because the Set
Cover problem [25] is NP-complete, the k-boosting problem
is NP-hard.

Lemma 9. Computing ∆S(B) given S and B is #P-hard.

G1

p = 0.5
s t t′

G2

ptt′ = 0.5

p′tt′ = 1

Fig. 17: Illustration of the #P-hardness graph construction.

Proof. We prove Lemma 9 by a reduction from the #P-
complete counting problem of s-t connectedness in a directed
graph [26]. An instance of the s-t connectedness is a directed
graph G1 = (V,E) and two nodes s and t in the graph. The
problem is to count the number of subgraphs of G1 in which
s is connected to t. This problem is equivalent to computing
the probability that s is connected to t when each edge in G1

has an independent probability of 0.5 to be connected, and
another 0.5 to be disconnected.

We reduce this problem to the computation of the boost of
influence spread. Let G2 = (V ∪{t′}, E∪{ett′}) be a directed
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graph. Figure 17 shows the construction of G2. In G2, let
S = {s}, B = {t′}. Moreover, let puv = 0.5 and p′uv =
1 for every edge euv in G2. We compute ∆S(B) for graph
G2. Then, ∆S(B)/(p′tt′ − ptt′) = 2∆S(B) is the probability
that s is connected to t in G1, when each edge in G1 has
an independent probability of 0.5 to be connected. Thus, we
solve the s-t connectedness counting problem. Because the s-
t connectedness problem is #P-complete, the computation of
the boost of influence spread (i.e., ∆S(B)) is #P-hard.

Lemma 4. Given that Inequalities (5)-(6) hold, with a prob-
ability of at least 1 − n−`′ , we have ∆S(Bsa) ≥ (1 − 1/e −
ε) ·OPTµ ≥ (1− 1/e− ε) · µ(B∗).

Proof. Let B be a boost set with k nodes, we say that B is a
bad set if ∆S(B) < (1−1/e−ε) ·OPTµ. To prove Lemma 4,
we first show that each bad boost set with k nodes is returned
by Algorithm 2 with a probability of at most (1− n−`′)/

(
n
k

)
.

Let B be an arbitrary bad set with k nodes, we have

∆S(B) < (1− 1/e− ε) ·OPTµ. (14)

If we return B as the Bsa, we must have ∆̂R(B) > ∆̂R(Bµ).
Therefore, the probability that B is returned is upper bounded
by Pr[∆̂R(B) > ∆̂R(Bµ)]. From Inequality (6) and Inequal-
ity (14), we have

n · µ̂R(Bµ)−∆S(B)

≥(1− 1/e) · (1− ε1) ·OPTµ − (1− 1/e− ε) ·OPTµ
=(ε− (1− 1/e) · ε1) ·OPTµ.

Let ε2 = ε− (1− 1/e) · ε1, we have

Pr[∆̂R(B) > ∆̂R(Bµ)]

≤Pr[∆̂R(B) > µ̂R(Bµ)]

≤Pr[n · ∆̂R(B)−∆S(B) > n · µ̂R(Bµ)−∆S(B)]

≤Pr[n · ∆̂R(B)−∆S(B) > ε2 ·OPTµ].

Let p = ∆S(B)/n, we know p = E[fR(B)] from Lemma 1.
Recall that θ = |R| and ∆̂R(B) =

(∑
R∈R fR(B)

)
/θ. Let

δ =
ε2·OPTµ

np , by Chernoff bound, we have

Pr
[
n · ∆̂R(B)−∆S(B) > ε2 ·OPTµ

]
= Pr

[∑
R∈R

fR(B)− θp > ε2 ·OPTµ
np

· θp

]

≤ exp
(
− δ2

2 + δ
· θp
)

= exp
(
−

ε22 ·OPT 2
µ

2n2p+ ε2 ·OPTµ · n
· θ
)

≤ exp
(
−

ε22·OPT 2
µ

2n(1−1/e−ε)·OPTµ+ε2·OPTµ·n
·θ
)

(by Ineq (14))

≤ exp
(
− (ε− (1− 1/e) · ε1)2 ·OPTµ

n · (2− 2/e)
· θ
)

≤ exp
(
− log

((
n
k

)
· (2n`

′
)
))

(by Ineq (5))

≤n−`
′
/
(
n
k

)
.

Because there are at most
(
n
k

)
bad sets B with k nodes,

by union bound, the probability that Algorithm 2 returns a
bad solution is at most n−`

′
. Because OPTµ ≥ µ(B∗),

the probability that Algorithm 2 returns a solution so that
∆S(Bsa) < (1− 1/e− ε) · µ(B∗) is also at most n−`

′
.

Lemma 5. Suppose we are given a node u. If u is a seed
node (i.e., u ∈ S), we have apB(u) = 1 and apB(u\v) = 1
for all v ∈ N(u). Otherwise, we have

apB(u) =1−
∏

v∈N(u)

(
1−apB(v\u)·pBv,u

)
, (7)

apB(u\v) =1−
∏

w∈N(u)\{v}

(
1−apB(w\u)·pBw,u

)
,

∀v ∈ N(u), (8)

apB(u\v) =1−
(
1−apB(u\w)

)
·
1−apB(w\u)·pBw,u
1−apB(v\u)·pBv,u

,

∀v, w ∈ N(u), v 6= w. (9)

Proof. Suppose we boost the node set B. Equation (7) holds
from the fact that node u does not get influenced if and only if
all its neighbors (i.e., N(u)) fail to influence it. Equation (8)
holds from the fact that node u does not get influenced if and
only if all of its neighbors in Gu\v (i.e., N(u)\{v}) fail to
influence it. Equation (9) is a direct result from Equation (8),
and we have 1−apB(v\u)·pBv,u > 0 because we have assumed
that non-seed nodes are activated with probability less than
one.

Lemma 6. Suppose we are given a node u. If u is a seed
node (i.e., u ∈ S), we have gB(u\v) = 0. Otherwise, for any
v ∈ N(u), we have

gB(u\v) =
(

1− apB(u\v)
)
·(

1 +
∑

w∈N(u)\{v}

pBu,w · gB(w\u)

1− apB(w\u) · pBw,u

)
. (10)

Moreover, for v, w ∈ N(u) and v 6= w, we have

gB(u\v) =
(
1− apB(u\v)

)
·
( gB(u\w)

1− apB(u\w)

+
pBu,w · gB(w\u)

1− apB(w\u) · pBw,u
−

pBu,v · gB(v\u)

1− apB(v\u) · pBv,u

)
. (11)

Proof. In Gu\v , suppose we insert the node u into the seed
set. The activation probability of node u itself increases
from apB(u\v) to 1, increases by 1 − apB(u\v). Let node
w be a neighbor of u in Gu\v . The probability that u
could be activated by nodes other than w increases from
1−

∏
x∈N(u)\{v,w}(1− apB(x\u) · pBx,u) to 1, increases by∏

x∈N(u)\{v,w}

(
1− apB(x\u) · pBx,u

)
=

1− apB(u\v)

1− apB(w\u) · pBw,u
.

In the above equation, we have 1 − apB(w\u) · pBw,u > 0
because we assume that non-seed nodes are activated with
probability less than one. By definition of gB(u\v), we have

gB(u\v) = (1− apB(u\v))

+
∑

w∈N(u)
w 6=v

1− apB(u\v)

1− apB(w\u) · pBw,u
· pBu,w · gB(w\u),



19

and Equation (10) holds. Equation (11) can be derived directly
from Equation (10).

Lemma 7. Suppose we are given a node u. If u is a seed node
or a boosted node (i.e., u ∈ B ∪ S), we have σS(B ∪ {u}) =
σS(B). Otherwise, we have

σS(B ∪ {u}) = σS(B) + ∆apB(u)

+
∑

v∈N(u)

pBu,v ·∆apB(u\v) · gB(v\u), (12)

where ∆apB(u) := apB∪{u}(u) − apB(u) = 1 −∏
v∈N(u)

(
1−apB(v\u) ·p′v,u

)
−apB(u) and ∆apB(u\v) :=

apB∪{u}(u\v) − apB(u\v) = 1 −
∏
w∈N(u)\{v}

(
1 −

apB(w\u) · p′w,u
)
− apB(u\v).

Proof. If u ∈ B or u ∈ S, it is obvious that σS(B ∪ {u}) =
σS(B). Now, consider u ∈ V \(B ∪ S), and we insert node u
into the boost set B. The value of ∆apB(u) is the increase
of the activation probability of node u itself. The value of
∆apB(u\v) is the increase of the activation probabilities of
node u in Gu\v . Suppose v is a neighbor of u. Let Vv\u be the
set of nodes in Gv\u. In graph G, when we insert node u into
B, the expected number of activated nodes in Vv\u increases
by pBu,v ·∆apB(u\v) · gB(v, u). Thus, we have Equation (12)
holds.

Theorem 3. Assuming the optimal boost of influence is at
least one, DP-Boost is a fully-polynomial time approxima-
tion scheme, it returns a (1 − ε)-approximate solution in
O(k2n7/ε3).

The proof of Theorem 3 relies on the following lemma.

Lemma 10. We have a1a2− b1b2 ≤ (a1− b1) + (a2− b2) for
0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1.

Proof. The complexity of DP-Boost has been analyzed in
the paper. Let B∗ be the optimal solution of the k-boosting
problem, and assume ∆S(B∗) ≥ 1. Let B̃ be the solution
returned by DP-Boost. To prove Theorem 3, we only need to
prove that we have

∆S(B̃) ≥ (1− ε)∆S(B∗). (15)

Suppose we boost nodes in B∗. For every node v, let κ∗v =
|B∗ ∩ Tv| be the number of nodes boosted in Tv , let c∗v be
the probability that node v is activated in Tv and let f∗v be
the probability that node v’s parent is activated in G\Tv . If v
is the root node, let f∗v = 0. For every node v, let u be the
parent of v and let vi be the i-th child of v, we have

g(v, κ∗v, c
∗
v, f
∗
v ) =

(∑
vi

g(vi, κ
∗
vi , c

∗
vi , f

∗
vi)
)

+ 1− (1− f∗v · pB
∗

u,v)(1− c∗v)− ap∅(v), (16)

∆S(B∗) =
∑
v∈V

(
1− (1− f∗v · pB

∗

u,v)(1− c∗v)− ap∅(v)
)
.

(17)

Define p∗(x y) as the probability that node x can influence
node y, given that B∗ is boosted. If x = y, we let p∗(x  
y) = 1.

We now assign rounded values c̃v and f̃v for all
node v. The assignment guarantees that for every inter-
nal node v, (κ∗vi , c̃vi , f̃vi ,∀i) is a consistent subproblem of
g′(v, κ∗v, c̃v, f̃v).

We first assign values c̃v for every node v in G. We will
show that for every node v we have

c∗v − c̃v ≤ δ ·
∑
x∈Tv

p∗(x v). (18)

We assign values of c̃ from leaf nodes to the root node.
For a leaf node v, let c̃v =

⌊
c∗v
⌋
δ

and Inequality (18)
holds. For every internal seed node v, let c̃v = 1 and
Inequality (18) holds. For every non-seed internal node v, let
c̃v =

⌊
1−

∏
vi

(1− c̃vi · pB
∗

vi,v)
⌋
δ
, and Inequality (18) can be

verified as follows.

c∗v−c̃v = 1−
∏
vi

(
1−c∗vi · p

B∗

vi,v

)
−
⌊
1−
∏
vi

(
1−c̃vi · pB

∗

vi,v

)⌋
δ

≤δ+
∑
vi

(c∗vi−c̃vi) · p
B∗

vi,v ≤ δ+
∑
vi

(
δ
∑
x∈Tvi

p∗(x vi) · pB
∗

vi,v

)
≤δ

∑
x∈Tv

p∗(x v)

The first inequality holds from Lemma 10, and the second
inequality holds by induction.

Now, we assign values f̃v for every node v from root to
leaf. For every non-root node v, denote its parent by u, we
will show that our assignment satisfies

f∗v − f̃v ≤ δ ·
∑

x∈G\Tv

p∗(x u). (19)

For the root node r, we have f∗r = 0, and we let f̃r = 0. For an
internal seed node v and the i-th child vi of v, let f̃vi = 1 and
Inequality (19) holds for vi because f∗vi = 1. For an internal
non-seed node v and its child vi, denote the parent of v by u,
let f̃vi =

⌊
1− (1− f̃v · pB

∗

u,v)
∏
j 6=i

(
1− c̃vj · pB

∗

vj ,v

)⌋
δ
. Then,

Inequality (19) can be verified as follows.

f∗vi − f̃vi ≤ δ + (f∗v − f̃v) · pB
∗

u,v +
∑
j 6=i

(c∗vj − c̃vj ) · p
B∗

vj ,v

≤ δ + δ ·
∑

x∈G\Tv

p∗(x v) + δ ·
∑
j 6=i

∑
x∈Tvj

p∗(x v)

≤ δ ·
∑

x∈G\Tvi

p∗(x v)

The first inequality holds from Lemma 10, and the second
inequality holds by induction.

For every internal node v, from how we assign the values
of c̃v and f̃v , we can conclude that (κ∗vi , c̃vi , f̃vi ,∀i) is a
consistent subproblem of g′(v, κ∗v, c̃v, f̃v).

Let B̃ be the set of nodes returned by DP-Boost, we have

∆S(B̃) ≥
∑
v∈V

max
{

1− (1− f̃v · pB
∗

u,v)(1− c̃v)− ap∅(v), 0
}
,
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where we use u to denote the parent of v. Moreover, we have

∆S(B∗)−∆S(B̃) ≤
∑
v∈V

(
(f∗v − f̃v) · pB

∗

u,v + (c∗v − c̃v)
)

≤ δ
∑
v∈V

(∑
x∈G\Tv

p∗(x v)+
∑
x∈Tv

p∗(x v)
)

≤ δ
∑
v∈V

∑
x∈V

p∗(x v) ≤ δ
∑
v∈V

∑
x∈V

p(k)(x v).

Finally, recall that the rounding parameter δ of DP-Boost is
δ = ε·max(LB,1)∑

v∈V
∑
x∈V p

(k)(x v)
, where LB is a lower bound of

∆S(B∗). We can conclude that ∆S(B̃) ≥ (1−ε)·∆S(B∗).

APPENDIX B
DP-BOOST FOR GENERAL BIDIRECTED TREES

In this section, we extend DP-Boost in Section VI-B to
tackle the k-boosting problem on general bidirected trees. On
general bidirected trees, there is no restriction of the number
of children of nodes. For the exact dynamic programming,
the description in Section VI-B naturally works for general
bidirected trees. However, the generalization of DP-Boost is
non-trivial and the definition of consistent subproblem is much
more involved. Formally, the general DP-Boost is as follows.

Definition 5 (General DP-Boost). Let v be a node. Denote
the parent node of v by u.
• Base case. Suppose v is a leaf node. If c 6= I(v ∈ S), let
g′(v, κ, c, f) = −∞; otherwise, let

g′(v, κ, c, f) = max
{

1−(1−c)(1−f · pI(κ>0)
u,v )−ap∅(v), 0

}
.

• Recurrence formula. Suppose v is an internal node. If v is
a seed node, we let g′(v, κ, c, f) = −∞ for c 6= 1, and let

g′(v, κ, 1, f) = max
κ=

∑
κvi

∑
i

g′(vi, κvi , cvi , 1).

If v is a non-seed node with d ≥ 1 children. We use
C ′(v, κ, c, f) to denote the set of consistent subproblems
of g′(v, κ, c, f). For 1 ≤ i ≤ d, define

δv(i) =

{
δ
d−2 1 < i < d,

0 otherwise.

Subproblems (κvi , cvi , fvi ,∀i) are consistent with
g′(v, κ, c, f) if they satisfy the following conditions.
– About κ and κvi : κ =

∑
vi
κvi + b where b ∈ {0, 1}.

– About c and cvi : c =
⌊
xd
⌋
δ
, where x0 = 0 and xi =⌊

1− (1− xi−1)(1− cvi · pbvi,v)
⌋
δv(i)

for 1 ≤ i ≤ d.

– About f and fvi : fvi =
⌊
1− (1− xi−1)(1− yi)

⌋
δ

for 1 ≤ i ≤ d, where yd = f · pbu,v and yi =⌊
1− (1− yi+1)(1− cvi+1

· pbvi+1,v)
⌋
δv(i)

for 1 ≤ i ≤ d.

If C ′(v, κ, c, f) = ∅, let g′(v, κ, c, f) =−∞; otherwise, let

g′(v, κ, c, f) = max
(κvi ,fvi ,cvi ,∀i)
∈C′(v,κ,c,f),
b=k−

∑
i κvi

( ∑
i g
′(vi,κvi ,cvi ,fvi )+

max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
.

For a bidirected tree where every node has at most two
children, Definition 5 degenerates to Definition 4. Definition 5

Algorithm 4: General DP-Boost (G,S, k, ε)

1 Bgreedy = Greedy-Boost(G,S, k)

2 δ =
ε·max(∆S(Bgreedy),1)

2
∑
v∈V

∑
x∈V p

(k)(x v)
// rounding parameter

3 for nodes v from leaf to root do // compute g′(. . . )
4 if v is a leaf then Leaf(v)
5 else if v is a seed then InternalSeed(v)
6 else if v has non child then NonseedWithChild(v)
7 else NonseedWithChildren(v)
8 return node set B corresponding to maxc g

′(r, k, c, 0)

defines consistent subproblems of g′(v, κ, c, f), with some
intermediate variables xi and yi. Intuitively, when there is
no rounding, xi is the probability that v is activated in
Tv\(∪j>iTvj ), and yi is the probability that v is activated
in G\(∪j≤iTvj ). To prevent the number of possible values of
xi and yi from growing exponentially with d, we also round
xi and yi for all 1 < i < d.

Algorithm 4 depicts the framework of the general
DP-Boost. First, Lines 1-2 determine the rounding parameter
δ. With the rounding parameter δ, we compute the values of
g′(. . .) bottom-up. There are four subroutines that compute
the values of g′(v, . . .) for different types of nodes. We will
describe each subroutine in detail. For notational convenience,
in the remaining of this section, we use u to denote the parent
of node v when the context is clear.
Leaf(v): Suppose node v is a leaf node, we assign
g′(v, κ, c, f) for all κ, and rounded value of c and f by
Definition 5. There are O(k/δ2) entries, assigning each entry
takes O(1) time. Thus, the complexity of this subroutine is
O(k/δ2).
InternalSeed(v): Suppose node v is a internal seed node
with d children (d ≥ 1). We first initialize g′(v, κ, c, f) = −∞
for all κ and rounded values of c and f . Because v is a seed
node, node v is activated in Tv with probability c = 1 and
we must have fvi = 1 for the i-th child vi of v. However,
the number of assignments of (κvi , cvi , fvi = 1,∀i) can still
grow exponentially with the number of children, because cvi
for each children vi could have up to 1/δ possible values.
To tackle this problem, we define a helper function h(i, κ)
for 1 ≤ i ≤ d and 0 ≤ κ ≤ k. When there is no rounding,
the value of h(i, κ) is the maximum increase of the expected
number of activated nodes in ∪j≤iTvj (i.e., the first i subtrees
of v), given that we boost at most κ nodes in the first i subtrees
of v. Formally, h(i, κ) is defined as follows:

h(i, κ) = max
κ=

∑i
j=1 κj


i∑

j=1

max
cvj

{
g′(vj , κvj , cvj , 1)

} .

Assuming h(0, κ) = 0 for all κ. The value of h(i, κ) for i > 1
can be efficiently computed as follows:

h(i, κ) = max
0≤κvi≤κ

{
h(i− 1, κ− κvi) + max

cvi
g′(vi, κvi , cvi , 1)

}
.

(20)

Algorithm 5 depicts InternalSeed(v). The complexity of
this subroutine is O(d · k · (k + 1/δ)).
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Algorithm 5: InternalSeed(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 Initialize h(i, κ)← 0, for 0 ≤ i ≤ d and 0 ≤ κ ≤ k
3 for i← 1 to d do // d is the number of children of v
4 for κvi ← 0 to k do
5 maxg ← maxcvi g

′(vi, κvi , cvi , 1) // fvi = 1

6 for κ← κvi to k do
7 h(i, κ) =

max
{
h(i, κ), h(i− 1, κ− κvi) + maxg

}
8 forall 0 ≤ κ ≤ k and rounded f do
9 g′(v, κ, 1, f)← h(d, κ) // boost κ nodes among the

first d subtrees

Algorithm 6: NonseedWithChild(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 forall b ∈ {0, 1}, rounded cv1

, f do
3 c←

⌊
cv1
· pbv1,v

⌋
δ
, fv1

←
⌊
f · pbu,v

⌋
δ

4 boostv ← max
{

1− (1− c)(1− f · pbu,v)− ap∅(v), 0
}

5 for κ = b to k do
6 g′(v, κ, c, f)← max

{
g′(v, κ, c, f), g′(v1, κ−

b, cv1
, fv1

) + boostv
}

NonseedWithChild(v): Suppose v is a non-seed node with
one child. We first initialize g′(v, κ, c, f) = −∞ for all κ and
rounded values of c and f . Then, we compute g′(v, κ, c, f)
by Definition 5. Algorithm 6 depicts this subroutine. The
complexity of this subroutine is O(k/δ2).
NonseedWithChildren(v): Suppose node v is a non-
seed node with d ≥ 2 children. Similar to the subrou-
tine InternalSeed(·), we need a helper function. Let
h(b, i, κ, xi, zi) be the helper function, where b ∈ {0, 1},
2 ≤ i ≤ d. Moreover, for h(b, i, κ, xi, zi), we only consider
values of xi and zi that are multiples of δv(i). The helper
function h(b, i, κ, xi, y) is formally defined as follows.

h(b, i,κ, xi, zi) = max

i∑
j=1

g(vj , κvj , cvj , fvj )

s.t. κ =

i∑
j=1

κvj + b, x0 = 0,

xj =
⌊
1−(1−xj−1)(1−cvj · pbvj ,v)

⌋
δv(j)

(1 ≤ j ≤ i),

yi = zi · pbu,v if i = d and yi = zi otherwise

yj =
⌊
1−(1−yj+1)(1−cvj+1 · pbvj+1,v)

⌋
δv(j)

(1 ≤ j < i)

fvj =
⌊
1−(1−xj−1)(1−yj)

⌋
δ

(1 ≤ j ≤ i)

When there is no rounding, h(b, i, κ, x, y) is the maximum
boost of first i subtrees of v given that (1) b indicates whether
we boost node v; (2) κ− b nodes are boosted in ∪j≤iTvj ; (3)

x is the probability that v is activated in Tv\(∪j>iTvj ); and
(4) y is the probability that v is activated in G\(∪j≤iTvj ).
Comparing the above definition of the helper function to
Definition 5, we know

g′(v, κ, c, f) = max
0≤b≤I(κ>0)

(
h(b,d,κ−b,c,f)

+ max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
For the boundary case where i = 2, the helper function is
computed by its definition. When 2 < i ≤ d, the helper
function is computed efficiently as follows.

h(b, i,κ, xi, zi) = max
(
h(b,i−1,κ−κvi ,xi−1,zi−1)

+g′(vi,κvi ,cvi ,fvi )

)
s.t. 0 ≤ κvi ≤ κ, xi =

⌊
1− (1− xi−1)(1− cvi · pbvi,v)

⌋
δv(i)

yi = zi · pbu,v if i = d and yi = zi otherwise

zi−1 =
⌊
1− (1− cvi · pbvi,v)(1− yi)

⌋
δv(i−1)

fvi =
⌊
1− (1− xi−1)(1− yi)

⌋
δ

Algorithm 7 depicts this subroutine. The complexity of ini-
tializing g′(v, . . . ) is O(k/δ2). The complexity of Lines 4-18
is O(d · k2 · 1

δ ·
(
d−2
δ

)2
) = O(k2d3/δ3). The complexity

of Lines 19-21 is O(k/δ2). Therefore, the complexity of
Algorithm 7 is O(k2d3/δ3).
Complexity of the general DP-Boost: In the general
DP-Boost, we first determine the rounding parameter δ. The
time complexity is O(kn2), as in Section VI-B. With the
rounding parameter, we compute the values of g′(·) bottom-up.
The most expensive subroutine is the NonseedWithChildren
subroutine, which runs in O(k2d3/δ3). Therefore, the total
complexity of the general DP-Boost is O(k2/δ3 ·

∑
v d

3
v),

where dv is the number of children of node v. In the
worst case, we have O(1/δ) = O(n2/ε) and O(

∑
v dv

3) =
O(n3). Therefore, the complexity for the general DP-Boost
is O(k2n9/ε3). For the special case where the number of
children for every node is bounded by a constant (e.g., two),
we have O(

∑
v d

3
v) = O(n) and the complexity of the general

DP-Boost is O(k2n7/ε3). To conclude, we have the following
theorem.

Theorem 4. Assuming the optimal boost of influence is at
least one, the general DP-Boost is a fully-polynomial time
approximation scheme, it returns a (1− ε)-approximate solu-
tion in O(k2n9/ε3). For bidirected trees where the number of
children of nodes is upper bounded by a constant, the general
DP-Boost runs in O(k2n7/ε3).

We have analyzed the complexity of the general DP-Boost.
To prove Theorem 4, we only need to prove the following
lemma about the approximation ratio.

Lemma 11. Let B∗ be the optimal solution of the k-boosting
problem, and assume ∆S(B∗) ≥ 1. Let B̃ be the solution
returned by the general DP-Boost, we have

∆S(B̃) ≥ (1− ε)∆S(B∗). (21)

Proving Lemma 11 relies on the following lemma, which
can be proved by induction. Lemma 12 is also a direct
corollary of Lemma 4 in [15].
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Algorithm 7: NonseedWithChildren(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 for b← 0 to 1 do
3 Initialize h(b, i, κ, xi, zi)← 0, ∀i, κ, xi, zi
4 forall rounded cv1

, cv2
, z2 do // boundary case

5 x2 ←
⌊
1− (1− cv1

· pbv1,v)(1− cv2
· pbv2,v)

⌋
δv(2)

6 if d = 2 then y2 ← z2 · pbu,v else y2 ← z2

7 fv1
←
⌊
1− (1− cv2

· pbv2,v)(1− y2)
⌋
δ
,

fv2
←
⌊
1− (1− cv1

· pbv1,v)(1− y2)
⌋
δ

8 forall κv1
+ κv2

+ b ≤ k do
9 κ← κv1

+ κv2
+ b

10 h(b, 2, κ, x2, z2)←
max

{
h(b, 2, κ, x2, z2), g′(v1, κv1

, cv1
, fv1

) +
g′(v2, κv2 , cv2 , fv2)

}
11 for i = 3 to d do // helper function for 2 < i ≤ d
12 forall rounded xi−1, cvi , zi ∈ [0, 1] do
13 xi ←

⌊
1− (1− xi−1)(1− cvi · pbvi,v)

⌋
δv(i)

14 if i = d then yi ← zi · pbu,v else yi ← zi

15 zi−1 ←
⌊
1− (1− cvi · pbvi,v)(1− yi)

⌋
δv(i−1)

16 fvi ←
⌊
1− (1− xi−1)(1− yi)

⌋
δ

17 forall κ and 0 ≤ κvi ≤ κ do
18 h(b, i, κ, xi, zi)←

max
{
h(b, i, κ, xi, zi), h(b, i− 1, κ−

κvi , xi−1, zi−1) + g′(vi, κvi , cvi , fvi)
}

19 forall b ≤ κ ≤ k and rounded c, f do // g′(v, . . .)
20 boostv ← {1− (1− c)(1− f · pbu,v)− ap∅(v), 0}
21 g′(v, κ, c, f)←

max
{
g′(v, κ, c, f), h(b, d, κ, c, f) + boostv

}

Lemma 12. For any a1, . . . , an and b1, . . . , bn, where 0 ≤
ai ≤ 1, 0 ≤ bi ≤ 1, we have

∏n
i=1 ai−

∏n
i=1 bi ≤

∑n
i=1(ai−

bi).

Now, we prove Lemma 11.

Proof. Let B∗ be the optimal solution for the k-boosting
problem. Suppose we boost nodes in B∗, for every node v,
let κ∗v = |B ∩ Tv| be the number of nodes boosted in Tv , let
c∗v be the probability that node v is activated in Tv , and let f∗v
be the probability that node v’s parent is activated in G\Tv .
For the root node r, let f∗r = 0. For every node v, denote its
parent by u, we have

g(v, κ∗v, c
∗
v, f
∗
v ) =

(∑
vi

g(vi, κ
∗
vi , c

∗
vi , f

∗
vi)
)

+ 1−(1−f∗v · pB
∗

u,v)(1−c∗v)−ap∅(v), (22)

∆S(B∗) =
∑
v∈V

(
1−(1−f∗v · pB

∗

u,v)(1−c∗v)−ap∅(v)
)
. (23)

Define p∗(x y) as the probability that node x can influence
node y when we boost nodes in B∗. If x = y, define p∗(x 
y) = 1.

Now, we assign rounded values c̃v and f̃v for all
node v. The assignment guarantees that for every inter-
nal node v, (κ∗vi , c̃vi , f̃vi ,∀i) is a consistent subproblem of
g′(v, κ∗v, c̃v, f̃v).

We first assign values c̃v for every node v in G. For every
node v, we will show that our assignment of c̃v satisfies

c∗v − c̃v ≤ 2δ ·
∑
x∈Tv

p∗(x v). (24)

We assign values of c̃ from leaf nodes to the root node. For
every leaf node v, let c̃v =

⌊
c∗v
⌋
δ
, then Inequality (24) holds.

For an internal seed node v, let c̃v = 1, then Inequality (24)
holds because c∗v = 1. For an internal non-seed node v with
d children, we compute c̃v as follows. First, let x̃0 = 0 and
compute and x̃i =

⌊
1− (1− x̃i−1)(1− c̃vi · pB

∗

vi,v)
⌋
δv(i)

for

1 ≤ i ≤ d. Then, let c̃v =
⌊
x̃d
⌋
δ
. Inequality (24) can be

verified as follows. Define x∗0 = 0 and x∗i = 1 −
∏i
j=1(1 −

c∗vj · p
B∗

vj ,v) for 1 ≤ i ≤ d. We have x∗0 = x̃0. Moreover, for
1 ≤ i ≤ d, we have

x∗i − x̃i ≤ (x∗i−1 − x̃i−1) + (c∗vi − c̃vi) · p
B∗

vi,v + δv(i)

≤
i∑

j=1

(c∗vj − c̃vj ) · p
B∗

vj ,v +

i∑
j=1

δv(j).

The first inequality holds from Lemma 12, and the second
inequality holds by induction. Then, the difference between
c∗v and c̃v can be bounded as follows.

c∗v − c̃v = x∗d −
⌊
x̃d
⌋
δ
≤

d∑
i=1

(c∗vi − c̃vi) · p
B∗

vi,v +

d∑
i=2

δv(i) + δ

≤ 2δ ·
∑
vi

·
( ∑
x∈Tvi

p∗(x vi) · pB
∗

vi,v

)
+ 2δ

≤ 2δ ·
∑
x∈Tv

p∗(x v)

Now, we assign values f̃v for every node v from root to
leaf. For every non-root node v, denote its parent by u, we
will show that our assignment satisfies

f∗v − f̃v ≤ 2δ ·
∑

x∈G\Tv

p∗(x u). (25)

For the root node r, we have f∗r = 0, and we let f̃r = 0.
Suppose v is an internal seed node, for every child vi, let
f̃vi = 1 and Inequality (25) holds for vi because f∗vi =
1. Now, suppose v is an internal non-seed node with d
children, and denote the parent of v by u. We compute
f̃vi for child vi as follows. First, let ỹd = f̃v · pB

∗

u,v and

ỹi =
⌊
1− (1− c̃vi+1

· pB∗vi+1,v)(1− ỹi+1)
⌋
δv(i)

for 1 ≤ i < d.

Then, let f̃vi =
⌊
1− (1− x̃i−1)(1− ỹi)

⌋
δ

for 1 ≤ i ≤ d.
Inequality (25) can be verified as follows. Define y∗d = f̃v ·pB

∗

u,v

and y∗i = 1 − (1 − c̃vi+1
· pB∗vi+1,v)(1 − y

∗
i+1) for 1 ≤ i < d.
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For i = d, we have y∗i − ỹi = (f∗v − f̃v) · pB
∗

u,v . For 1 ≤ i < d,
the difference between y∗i and ỹi can be bounded as follows.

y∗i − ỹi ≤ (c∗vi+1
− c̃vi+1

) · pB
∗

vi+1,v + (y∗i+1 − ỹi+1) + δv(i)

≤ (f∗v − f̃v) · pB
∗

u,v +

d∑
j=i+1

(c∗vj − c̃vj ) · p
B∗

vj ,v +

d∑
j=i

δv(i).

The first inequality holds from Lemma 12, and the second
inequality holds by induction. Then, for 1 ≤ i ≤ d, the
difference between f∗vi and f̃vi can be bounded as follows.

f∗vi − f̃vi ≤
(

1− (1− x∗i−1)(1− y∗i )
)
− f̃vi

≤ (x∗i−1 − x̃i−1) + (y∗i − ỹi) + δ

≤ (f∗v − f̃v) · pB
∗

u,v +
∑
j 6=i

(c∗vj − c̃vj ) · p
B∗

vj ,v +
∑
j 6=i

δv(i) + δ

≤ 2δ ·
∑

x∈G\Tv

p∗(x v) + 2δ ·
∑
j 6=i

∑
x∈Tvj

p∗(x v) + 2δ

≤ 2δ ·
∑

x∈G\Tvi

p∗(x v)

For every internal node v, from how we assign the values
of c̃v and f̃v , we can conclude that (κ∗vi , c̃vi , f̃vi ,∀i) is a
consistent subproblem of g′(v, κ∗v, c̃v, f̃v).

Let B̃ be the set of nodes returned by the general DP-Boost,
we have

∆S(B̃) ≥
∑
v∈V

max
{

1− (1− f̃v · pB
∗

u,v)(1− c̃v)− ap∅(v), 0
}
,

where we use u to denote the parent of v. Moreover, we have

∆S(B∗)−∆S(B̃) ≤
∑
v∈V

(
(f∗v − f̃v) · pB

∗

u,v + (c∗v − c̃v)
)

≤ 2δ ·
∑
v∈V

( ∑
x∈G\Tv

p∗(x v) +
∑
x∈Tv

p∗(x v)
)

≤ 2δ ·
∑
v∈V

∑
x∈V

p(k)(x v).

Finally, recall that the rounding parameter δ is δ =
ε·max(LB,1)

2
∑
v∈V

∑
x∈V p

(k)(x v)
, where LB is a lower bound of

∆S(B∗), we can conclude that ∆S(B̃) ≥ (1−ε)·∆S(B∗).

Refinements. In the implementation of the general DP-Boost,
we also apply the refinements that we have discussed in Sec-
tion VI-B. Recall that in NonseedWithChildren(v) that com-
putes g′(v, . . .) for a non-seed internal node v with multiple
children, we have to compute a helper function h(b, i, κ, x, z).
In our implementation of NonseedWithChildren(v), we also
compute lower and upper bounds for the values of x and z for
h(b, i, κ, x, z). The lower bound is computed assuming that we
do not boost any node. The upper bound is computed assuming
that all nodes are boosted.
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