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Abstract—Identification of influential users in online social net-
works allows to facilitate efficient information diffusion to a large
part of the network, thus benefiting diverse applications including
viral marketing, disease control and news dissemination. Existing
methods have mainly relied on the network structure only for
the detection of influential users. In this paper, we enrich this
approach by proposing a fast, efficient and unsupervised algo-
rithm SmartInf to detect a set of influential users by identifying
anchor nodes from temporal sequence of retweets in Twitter
cascades. Such anchor nodes provide important signatures of
tweet diffusion across multiple diffusion localities and hence
act as precursors for detection of influential nodes1. The set
of influential nodes identified by SmartInf have the capacity to
expose the tweet to a large and diverse population, when targeted
as seeds thereby maximizing the influence spread. Experimental
evaluation on empirical datasets from Twitter show the supe-
riority of SmartInf over state-of-the-art baselines in terms of
infecting larger population; further, our evaluation shows that
SmartInf is scalable to large-scale networks and is robust to
missing data. Finally, we investigate the key factors behind the
improved performance of SmartInf by testing our algorithm
on a synthetic network using synthetic cascades simulated on
this network. Our results reveal the effectiveness of SmartInf in
identifying a diverse set of influential users that facilitate faster
diffusion of tweets to a larger population.

Index Terms—SmartInf, inter-retweet time intervals, anchor
nodes, cascades

I. INTRODUCTION

Micro-blogging platforms such as Twitter and Sina Weibo
have become widely popular for the creation and dissemina-
tion of real-time information in the form of breaking news,
personal updates and spontaneous ideas [1], [2]. For instance,
Twitter serves as an effective medium for real-time posts about
earthquakes, epidemic outbreaks or spreading awareness in
many situations, like the Arab-Spring movement in 2011 [3]
or the U.S. presidential elections in 2016 [4]. In recent years,
interest of the research community has increasingly focused
on whether diffusion can be maximized by seeding a piece
of information with certain special individuals, often called
influential users [5]–[7]. These influential users may play a
significant role in the diffusion process, favoring a larger
spread of the information. Such users should have an indirect
impact in shaping the behavior or actions of a large number

1We use the terms ‘influential nodes’ and ‘influential users’ interchangeably.

of other users due to their activity as well as position in the
network. Once identified, these users, who typically represent
a very small fraction of the network, may be targeted directly
for efficient information spread.

Existing literature on identifying influential users in a social
network have mainly concentrated on using the knowledge
of the underlying network topology [8]–[11]. Few attempts
have been made to quantify the influence of users in Twitter
by proposing different influence measures as well as using
various centrality measures [8], [12]–[15]. Further, some re-
cent state-of-the-art methods have combined diverse structural
information by performing k-core or K-truss decomposition
of the graph for identifying influential nodes with better
spreading behavior [16]–[18]. In addition, some works have
relied on computing pairwise influence among users to rank
influential nodes [19], [20] as well as detecting structural holes
playing key influential roles in diffusing information over the
network [12], [21], [22]. A brief review of the state-of-the-art
has been provided in Sec. II.

However, to the best of our knowledge, the state-of-the-
art literature mostly overlooked the broad heterogeneity of
users in terms of their temporal patterns, while identifying the
influential nodes. A user that occupies a highly central position
in the network may remain (i) inactive (passive) in posting
retweets or (ii) mostly participates in non-popular cascades.
Hence this user, despite of her favorable structural position,
may not be a highly influential node. On the other hand,
overall activity (say (re)tweet) rate, even for a structurally
central user, does not reflect her true role in diffusing tweets
in popular cascades. Hence, the methods relying purely on
the network structure & mean user activity are blind to these
aspects, thereby may fail in their purpose by highly ranking
some ineffective users who are very unlikely to reinforce the
spreading process. Moreover, state-of-the-art methods [13],
[14], [23] relying on network topology need to directly com-
pute the influence of each node to identify & rank the influen-
tial users; this requires complete information of the network
topology, which is typically difficult and expensive to obtain
for large-scale social networks. Notably, the dependency on the
complete follower network significantly affects the scalability
of the aforementioned algorithms.

In Twitter, after each retweet event, a new set of users gets
exposed to the content. Notably, this diffusion process in the
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underlying follower network is not uniform, rather the cascade
evolves in bursts. In this context, we introduce the concept of
diffusion locality associated to a cascade as a connected set of
exposed users which slowly grows with each retweet activity.
Precisely, after each retweet event, if the set of newly exposed
users is not too large, it is absorbed by the current diffusion
locality. However, if the tweet gets exposed to a large new
population, the cascade propagates to a new diffusion locality
associated to it. The transition of a cascade across multiple
localities is facilitated by retweets caused by the anchor nodes.

Our empirical study reveals that inter-retweet time intervals
exhibit a signature of tweet diffusion from one locality to
another. Once posted, a tweet initially gains popularity &
gets frequently retweeted within its locality; this results in
low inter-retweet intervals. However, saturation of a tweet
within a diffusion locality makes its content redundant for the
population in that locality and subsequently slows down the
tweet diffusion process; this results in a surge in the inter-
retweet intervals. In this scenario, a retweet caused by the an-
chor node may diffuse the post to a new population (locality),
where this tweet again gains popularity, which gets reflected
by retweets in quick succession inside the new locality; this
results in a drop in inter-retweet intervals. We empirically
show the co-occurrence between first peaks in the inter-retweet
intervals and migration of the cascade to a new diffusion
locality. Hence, identifying the anchor nodes, who play a
key role in diffusing the post from one locality to another,
may be an important step to locate the influential nodes.
Additionally, influential nodes with overlapping followers fail
to diffuse the cascade to a large new population. Hence, utmost
care needs to be taken to recommend those influential nodes
which have capacity to reach a diverse population. Our paper
takes an important step towards this direction. The objective
of this work is to propose an algorithm leveraging on both
the temporal retweet sequence of cascades and on the local
structural information to identify the set of influential users in
the network. This approach has the benefits of not requiring the
knowledge of the full topological structure of the network on
one hand while taking into account the heteregeneous activity
among users on the other hand in a non-trivial way.

In this paper, after a brief review of the relevant litera-
ture (Sec. II), we introduce the studied Twitter datasets. We
represent the retweet sequence of a cascade as inter-retweet
time intervals from the retweet timestamps associated with
each cascade (Sec. III). In Sec. IV, we propose a scalable
unsupervised algorithm SmartInf to detect the influential nodes
in a social network. The proposed methodology relies on the
peaks observed from the inter-retweet intervals of the cascades,
which designate the diffusion of the post from one locality to
another, thus capturing the broad heterogeneity across users.
Our methodology consists of two major phases. First, we
establish the ranked list of influential nodes only from the
temporal retweet sequence of cascades, which is easy to obtain
& process. This phase makes our algorithm scalable. Next,
we refine this list to diversify the population exposed through
these influential nodes. In Sec. V, we present the experimental
setup to evaluate the proposed algorithm SmartInf. First we
present the competing algorithms for identifying the influential

users in a social network. For performance evaluation, (a)
we introduce the quality metrics of the influential nodes, and
(b) we develop an epidemic simulation setup to measure the
volume of population exposed to a tweet originated from
the influential nodes. In Sec. VI, we show that on both the
yardsticks, the quality of influential nodes detected by the
proposed SmartInf method outperforms the state-of-the-art
baseline algorithms. We also demonstrate the scalability as
well as robustness of SmartInf to missing data compared
to the baseline algorithms. Further, we dissect SmartInf to
highlight that the detected influential nodes exposes the tweet
to a new and diverse population. In Sec. VII, we delve
deep to investigate the key factors behind this performance
improvement. First we develop a simple simulation setup
to generate synthetic cascades on the follower network. We
execute the proposed SmartInf algorithm to demonstrate its
efficiency in identifying anchor nodes with high retweet rate
and facilitating quick diffusion of tweets in a diverse locality.

II. RELATED WORKS

There has been a significant body of work in the state-of-
the-art literature that have addressed the problem of identifying
influential nodes on a social network. First, we provide a brief
survey on these endeavors. Next, we discuss few attempts that
have been made in the gamut of modeling and predicting the
popularity of Twitter cascades in terms of retweet count. Fi-
nally, we survey works that rely on inter-retweet time intervals
of retweet cascades exhibiting distinct temporal patterns to
classify users and cascades.

A. Identification of influential users

Identification of influential users has been an important
problem in the domain of social networks that has attracted
widespread research interest over the years. There have been
several endeavors to identify influential users in the network
from the underlying topological structure. For instance, few
works have quantified user influence in Twitter by proposing
different influence measures [13] or using various centrality
measures [14]. Some works have identified influential nodes
based on their network roles [8], [12]. In addition, Huang et
al. [23] have identified influencers in a temporal social network
taking into account the network dynamics while Xia et al. [9]
have proposed an approach to find influential users with a
specific set of characteristics based on advertisers’ preference.
Few works have quantified influence between user pairs using
available propagation traces from historical data or association
rules learning to find the most influential users [24].

Another line of research focuses on combining several
influence measures capturing diverse structural information
to rank influential nodes. For instance, Malliaros et al. [17]
have proposed the K-truss decomposition of a graph based on
triangle-based extension of k-core decomposition method [16]
to identify influential users while Jianqiang et al. [25] have
identified influential users in a network by combining user
influence based on contribution of tweets as well as their net-
work position based on centrality measures. Further, Madoto et
al. [10] have identified super spreader nodes by ranking users
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TABLE I: Details of schematic datasets

Dataset #Tweets #Retweets #Cascades #Users Maximum
cascade size

IPL 2018 3884 197210 3884 2.5× 104 99
15-M 2626 5649951 2626 8.7× 104 119424

Lady Gaga 1238135 6329596 1238135 1.6× 105 14130

through combining eight different centrality measures using
modified Borda count aggregation. Finally, Sheikhahmadi et
al. [18] have combined degree, core number of a node as well
as weighted diversity in the core number of friends to identify
influential nodes.

There have also been a few works in literature that focus
on detecting structural holes [21], [22] acting as bridges that
connect separated parts of a social network and thus can be
highly influential in propagating information. Sela et al. [26]
have proposed a method targeting distinct parts of the network
when desynchronized seeding is allowed. All these endeavors
have relied on solely using the topological structure to identify
influential users in a network. However, to the best of our
knowledge, existing works have overlooked the potential of
inter-retweet intervals in a cascade that may provide important
signatures to identify a better set of influential nodes in a
network, when combined with structural information.

B. Modeling cascade popularity

Predicting cascade popularity that corresponds to estimating
the final cascade size is a well-studied problem in state-of-
the-art literature. For instance, Cheng et al. [27] have studied
a sample of large photo reshare cascades on Facebook to
predict their future growth. Taxidou et al. [28] have modeled
information diffusion in realtime over the social network by
analyzing cascades with incomplete information. Pramanik et
al. [29] have investigated the role of mentions in modeling
tweet popularity while Cheng et al. [30] have characterized
the recurrence of large popular cascades on Facebook. Weng
et al. [31] have revealed that the initial diversity of a cascade
across several network communities is a good predictor for
future popularity, whereas Zhang et al. [32] have exploited
ego networks to predict the behavior of users. In addition,
some works have also built on the theory of self-exciting point
processes [33], [34] to develop statistical models to predict
tweet popularity. In short, all the aforementioned works have
used different types of features and models to estimate cascade
popularity.

C. Modeling temporal retweet patterns of cascades

Distinct temporal patterns present in the inter-retweet inter-
vals of a cascade have been exploited to distinguish different
user categories [35] as well as to identify different categories
of retweeting activity on Twitter [36]. In addition, Bhowmick
et al. [37] have leveraged on inter-retweet intervals to detect
cascade diffusion across multiple localities of the network.
However, all these works have overlooked the potential of
using pattern of inter-retweet intervals in a cascade to identify
users playing key roles in diffusing information to different
parts of the network; such users may serve as an indicator for
identifying the influential nodes of a network.

TABLE II: Details of comprehensive datasets

Dataset #Tweets #Retweets #Cascades #Users Maximum
cascade size

Algeria 65268 17269 5730 1.6× 104 980
Egypt 671417 188090 67539 7.6× 106 432
Nepal 26424 521938 26424 2.9× 105 23864

III. DATASET AND PROBLEM STATEMENT

A. Dataset

In this paper, we rely on two types of public datasets; we
call the first one as schematic dataset which mostly contain
the collection of tweets posted during famous events such as
15-M Movement and IPL 2018 in addition to tweets posted by
celebrities such as Lady Gaga. Table I depicts the collection
of tweets posted during these events2, which constitutes the
schematic dataset. We leverage on the schematic dataset in or-
der to conduct data study and the respective analysis. Precisely,
the schematic dataset contains the tweet/retweet ID, ID of the
user who posted the tweet/retweet and timestamp of posting
the corresponding tweet/retweet. In addition, a retweeted post
contains the ID of the original tweet that provides a link to
the original tweet, which allows us to identify all the retweet
events belonging to the same cascade. Notably, the follower
network information is not available in schematic datasets.

In addition, we collect the comprehensive dataset in order to
perform the in-depth data analysis and the evaluation of pro-
posed SmartInf algorithm. This dataset contains the collection
of tweets (tweet IDs) and users who posted them during the
Arab-Spring movement3 (Algeria and Egypt datasets) [38] and
the 2015 Nepal earthquake4. Similar to schematic dataset, we
crawled the tweet content with respective tweet/retweet ID,
profile of the user who posted the tweet/retweet, timestamp
of posting the corresponding tweet/retweet and ID of original
tweet for a retweeted post. This allows us to identify all retweet
events belonging to the same cascade. In addition, we have
also crawled from Twitter the corresponding follower network
of participating users who tweeted/retweeted in some cascade.
Salient features of these datasets are summarized in Table II.
Even though the comprehensive datasets are relatively small in
size, they have the typical advantage of providing information
of (re)tweet diffusion and the underlying social (follower)
network, which makes them rich and expensive to collect.

B. Notations and representations

We represent each cascade in the dataset as a sorted
sequence of retweet events based on their time of posting.
For a cascade C of size nC originated by user uC0 at time
tC0 , we have the time series of retweets ordered based on
timestamps denoted by (tC0 , t

C
1 , , . . . , t

C
nC

) with the corre-
sponding list of retweeting users (uC0 , u

C
1 , , . . . , u

C
nC

). Here
rCi denotes the ith retweet of the cascade C which has been
posted by user uCi at time tCi . Given this time series, we
define the sequence of inter-retweet time intervals denoted by

2http://www.cnergres.iitkgp.ac.in/blog/2019/03/08/twitter-cascade-dataset/
3http://www.cnergres.iitkgp.ac.in/blog/2018/02/28/

arab-spring-twitter-dataset/
4http://crisisnlp.qcri.org/lrec2016/content/2015 nepal eq.html

http://www.cnergres.iitkgp.ac.in/blog/2019/03/08/twitter-cascade-dataset/
http://www.cnergres.iitkgp.ac.in/blog/2018/02/28/arab-spring-twitter-dataset/
http://www.cnergres.iitkgp.ac.in/blog/2018/02/28/arab-spring-twitter-dataset/
http://crisisnlp.qcri.org/lrec2016/content/2015_nepal_eq.html
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TC = (TC0 , T
C
1 , . . . , T

C
nC−1) for the cascade C as the time

interval between two consecutive retweets in C such that the
ith inter-retweet time interval is computed as TCi = tCi+1−tCi .
Additionally, the reaction time µi of a user uCi retweeting at tCi
in C may be defined as the time interval between receiving the
tweet from her friend (say uCj at time tCj < tCi ) and retweeting
it; hence, µi = tCi − tCj .

The Twitter follower network can be represented as a
directed graph G = (U,E) where U = {u1, u2, . . . , uN} is
the set of users and E = {(ui, uj) : ui, uj ∈ U} is the set of
directed links from ui to uj denoting the who-follows-whom
relationship between users. F (u) denotes the set of followers
of a user u ∈ U .

C. Construction of cascades and follower network

In order to construct the cascades, we first extract the
tweet/retweet ID, ID of the user who posted the tweet/retweet
and the timestamp of posting, from the collected schematic
and comprehensive datasets. Next, we distinguish a post as
tweet or retweet based on the original tweet ID field of the
post. If the original tweet ID field shows −1, the post is
designated as a tweet, otherwise it is a retweet. In case of a
retweet, the original tweet ID field of the post links it with the
original tweet. Subsequently, we extract all retweets belonging
to the same tweet rC0 and construct the cascade C formed by
that tweet. Next, we sort all retweet events rCi belonging to a
cascade C in increasing order of their timestamps tCi to form
the temporal sequence of retweets for a cascade C. The users
uCi posting retweets in the cascade C forms the sequence of
users participating in cascade C. Finally, we preprocess the
dataset by filtering out all small-sized cascades with number
of retweets < 10.

In order to create the underlying follower network from
the comprehensive dataset, we crawl the list of followers of
each participating user who posted a tweet/retweet. Given the
follower set F (u) of a user u, we form a directed link from
every follower to the user u. We repeat this process of forming
directed links for every participating user in a cascade across
all cascades in the dataset. Finally, we obtain the complete
follower network G for that dataset.

D. Problem statement

In this paper, our primary objective is to identify a ranked
list of influential users S in a social network G from temporal
retweet sequence TC of cascades, which can spread the
information to a large population in G. Given the sequence
of inter-retweet time intervals TC and corresponding list of
retweeting users (uC0 , u

C
1 , , . . . , u

C
nC

) for a cascade C, as well
as follower network G, our goal is to identify a ranked seed
set S ⊆ U of size β, such that the mean exposed population
V (S ) is maximized at the end of the diffusion process, when
S is targeted as a seed set. Mathematically, our problem
can be formulated as identifying the ranked influencer set
S such that for top-k influencers S k ⊆ S , ∀k, we obtain
max(V (S k)).

(a) Type I cascade (b) Type II cascade

Fig. 1: Pattern of inter-retweet intervals for Type I & Type II cascades based on presence
or absence of peaks in intermediate phase for Algeria dataset

IV. SMARTINF: METHODOLOGY FOR IDENTIFICATION OF
INFLUENTIAL NODES

In this section, we propose SmartInf (stands for Smart Influ-
encer), a fast, unsupervised algorithm to identify the influential
nodes in a social network. First, we establish the key intuition
behind the proposed methodology from the empirical data.
Leveraging on this intuition, we develop SmartInf 5 which has
the following two phases. First, we constitute the ranked set
of influential nodes only from the temporal retweet sequence
TC . Next, we refine this set to diversify the population exposed
through these influential nodes.

A. Key intuition: Influential node & cascade retweet sequence
TC

In the following, we illustrate the role played by the
temporal sequence of retweets in identifying influential nodes.

Observing peaks in TC: We start with the rigorous analysis
of the inter-retweet intervals TC of cascades C observed in
the schematic and comprehensive datasets, shown in Tables I
and II respectively. Close inspection of TC reveals that there
exists a peak in TC for some of the cascades, designating
a significantly large inter-retweet time interval between two
consecutive retweet events. Depending on the phase of occur-
rence of the first peak in TC , we classify cascades into the
following two types [37] (see Fig. 1 for illustration):
Type I cascades: Characterized by the occurrence of its first
peak at the intermediate phase (early peak) of their sequence
of inter-retweet time intervals TC , much before the occurrence
of its last retweets (see Fig. 1(a)).
Type II cascades: Characterized by the absence of a peak at
the intermediate phase of TC . The first peak occurs when the
last few retweet events take place (late peak), towards the end
of the cascade diffusion (see Fig. 1(b)).

Table III shows the fraction of Type I and Type II cascades
observed across various datasets. From this table, we observe
that datasets such as Algeria, Egypt, 15-M and IPL 2018
have majority of cascades classified as Type I. On the other
hand, the Nepal and Lady Gaga datasets have < 40% of
Type I cascades. However, both these datasets consists of
large number of cascades implying that the number of Type I
cascades for them is quite substantial even though majority of
cascades are classified as Type II.

Formation of Type I and Type II cascades: Intuitively,
the dynamics of Type I and Type II cascades may be explained

5https://github.com/ayan-0305/SmartInf/

https://github.com/ayan-0305/SmartInf/
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(I) (II) (III)

(I)

(II)
(III)

(1) (2) (3) (4)

(a) Dynamics of Type I cascades. First, the seed tweets (I, in green). When
the tweet saturates a locality (retweeting nodes shown in black in II), the
inter-retweet intervals increase (II). When it gets exposed to a new locality
through an anchor node (in red), a new wave of diffusion occurs in the second
locality, resulting in a fall of the inter-retweet intervals (III).

(I)(II)

(III)

(1) (2) (3) (4)

(I) (II) (III)

(b) Dynamics of Type II cascades. First, the seed tweets (I, in green). When
the tweet gets exposed to a new locality before saturating the current locality
through the node (in red), the inter-retweet intervals remain low (II). When
most retweet events have occurred from users in both localities (retweeting
nodes shown in black), it results in a rise of the inter-retweet intervals (III).

Fig. 2: Dynamics behind Type I and Type II cascades. Below each phase of the cascade diffusion process, the time series of the cascade is displayed, where each stroke on the
timeline corresponds to a retweet. The corresponding sequence of inter-retweet intervals is displayed in (4).

TABLE III: Fraction of Type I and Type II cascades

Dataset Type I % Type II % Dataset Type I % Type II %
Algeria 80 20 IPL 2018 58 42
Egypt 61 39 Lady Gaga 37 63
Nepal 38 62 15-M 56 44

through the diffusion of tweets across multiple localities.
Fig 2(a) demonstrates the diffusion of a Type I cascade and
its corresponding inter-retweet intervals. Once posted, a tweet
initially gains popularity & is frequently retweeted by different
users within its locality. Hence, the interval between two
consecutive retweet events is initially low, as retweets may
occur in close succession from users in that locality (see
Fig. 2(a)(1)). However, as the locality gets saturated with the
redundant tweet content, the post rarely gets retweeted in that
locality, which in turn increases the inter-retweet intervals.
Hence, the saturation in the diffusion locality [37] is reflected
by the surge in inter-retweet time intervals. In this scenario,
a retweet caused by the anchor node may diffuse the post
to a new diffusion locality (Fig. 2(a)(2)). The exposure of
the new piece of information in this second locality triggers
frequent retweets, dropping the inter-retweet time intervals
(Fig. 2(a)(3)). In this type of diffusion process, the pattern
of inter-retweet time intervals correspond to that of a Type I
cascade. The early peak and drop in case of Type I cascades
denote a saturation followed by the migration of the tweet to
multiple diffusion localities (Fig. 2(a)(4)). On the contrary, in
case of a Type II cascade, the tweet migrates to the second
diffusion locality, even before saturating the first locality (see
Fig. 2(b) for illustration). Hence, no peak and drop pattern
appear in the corresponding sequence of inter-retweet time
intervals for Type II cascades (Fig. 2(b)(4)).

Peaks as an indicator of influential nodes: Empirically,
we observe that the first peak in Type I cascades reflects the
sudden exposure of the tweet to a new diffusion locality. We
define a user u in the network as an exposed user with respect
to a cascade C if u is a follower of at least one retweeting user
in cascade C. Let MC denote the entire exposed population for
the cascade C while MC

i is the set of exposed users after ith

retweet rCi . The ratio PCi =
|MC

i |
|MC | corresponds to the fraction

of users in MC who have been exposed to C after rCi ; thus,
PC = (PC1 , . . . , P

C
n ) is the sequence of cumulative fraction

of users exposed after each retweet. We illustrate a typical

Type I cascade in Fig. 3(a), where the black line denotes
the sequence of inter-retweet time intervals TC of cascade
C and the dotted blue line denotes the respective sequence of
cumulative fraction of users PC exposed to the tweet after
every retweet event i. Notably, in Fig. 3(a), there exists a
sudden rise in the exposed population PC close to the first
peak in the corresponding sequence of inter-retweet intervals
TC . We call this sudden rise a flush, indicating a sudden
exposure of the cascade to a whole new population (diffusion
locality) after retweet by a specific user uCp , called the anchor
node for the cascade C. Interestingly, first peaks and flushes
tend to co-occur together in all Type I cascades (see Fig. 3(b)
and 3(c)), within a short time shift. Fig. 3(b) and 3(c) show the
high correlation between phase of occurrence of the first peak
and corresponding flush across all Type I cascades in Algeria
and Egypt datasets respectively while the correlation is low
for Type II cascades as first peaks of Type II cascades are not
accompanied by any flush; this co-occurrence is specific to
Type I cascades. In our dataset, we observe this co-occurrence
for 82% of Type I cascades in Algeria (71% for Egypt), when
allowing a maximal shift of three retweet events.

B. Phase 1: Detection of influential nodes from sequence of
inter-retweet time intervals TC

Leveraging on the aforesaid observations, we propose the
SmartInf algorithm to detect influential nodes from retweet
sequence of a cascade as follows:

Step 1: Peak detection: We apply a simple outlier detection
technique [39] on the distribution (lognormal) obtained from
the sequence of inter-retweet intervals TC to detect peaks for
cascade C. Let µTC and σTC denote the mean and standard
deviation of the distribution obtained from the sequence TC .
We classify an interval TCi as a peak if TCi > µTC +2∗σTC .
The usage of this threshold ensures the handling of noise
in interval data when detecting peaks that could be due to
the large variance of the distributions in play. Moreover, we
apply the similar outlier detection technique to detect potential
flushes from the distribution of cumulative fraction of exposed
users PC in a cascade C.

Step 2: Identifying potential influencers: From the
sequence of retweets in a Type I cascade C, we identify the
potential influential nodes IC as follows. Consider the first
peak in cascade C where user uCp retweeting at time tCp causes
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(a) Co-occurrence of first peak in inter-retweet
time intervals and flush in cumulative exposed
population for a typical Type I cascade in Algeria
dataset.

(b) Co-occurrence of flushes and peaks appear
for Type I cascades in Algeria dataset

(c) Co-occurrence of flushes and peaks appear
for Type I cascades in Egypt dataset

Fig. 3: Co-occurrence of flush effect and first peaks observed for Type I Cascades only across Algeria and Egypt datasets

Algorithm 1 Ranking influential nodes to obtain T
1: procedure RANKED LIST OF INFLUENCERS T
2: Input: Inter-retweet time intervals TC for all Type I

cascades C ∈ T, set of all users U in the follower network
Output: Ranked list of influencers T = (u1, . . . , uα)

3: for all u ∈ U do
4: Set f(u) = 0 . f(u) denotes

frequency of appearance of user u in activation period δ
across all Type I cascades T

5: end for
6: Set t = ∅
7: for C ∈ T do
8: tCp , t

C
q = PeakDet(TC). Apply outlier detection

as described in Step 1 of Sec. IV-B
9: Set IC = ∅

10: for all uCi ∈ C do
11: if tCp ≤ tCi ≤ tCq then . Denotes uCi retweets

within activation period δC = tCq − tCp
12: Set IC = IC ∪ uCi
13: Set f(uCi ) = f(uCi ) + 1
14: end if
15: end for
16: Set t = t ∪ IC
17: end for
18: Sort t in non-increasing order of f(u) to obtain the

ranking T = (u1, . . . , uα) such that f(u1) ≥ f(u2) ≥
. . . ≥ f(uα)

19: end procedure

the rise, and the user uCq retweeting at tCq causes the fall in the
sequence of inter-retweet intervals TC . Since the first peak is
usually accompanied by a flush in the cumulative fraction of
exposed users PC , we claim that the anchor nodes, escalating
the diffusion, are present in the interval δC = tCq − tCp . We
designate the activation period δC of cascade C as the time
interval between the first rise and the subsequent fall observed
in TC , and the users retweeting within this interval are denoted
as the potential influential nodes IC . Notably, δC may vary
across the cascades C. Considering all the Type I cascades T
in the dataset, we obtain the set of potential influential nodes

t of size α as t =
⋃
C∈T I

C . While constructing the set t,
we keep track of the frequency of appearance of each user
u ∈ t in IC .

Step 3: Ranked list of influencers T : The idea behind
Step 2 is to identify the set of users IC , truly responsible
for the migration of a Type I cascade C to a new diffusion
locality, as they retweet within the activation window δC .
However, few sporadic users, who do not play any role in
the migration of the cascade, may also appear in IC and
therefore get unfairly favoured. However, the presence of such
sporadic users in IC is quite irregular across different cascades
C; nevertheless, the truly influential users are likely to be
consistently present in IC , since they retweet more often
around the peak of Type I cascades. Hence, in Step 3, we rank
the set of users t according to their frequency of appearance
in IC ; as a result, truly influential users should be ranked
high. This procedure will filter out the unfairly favoured users,
who sporadically appear in IC , placing them at the bottom
of the ranked list T . Hence, in this phase, we obtain the
preliminary ranked list of influential nodes T by only relying
on the temporal sequence of retweets. This phase is completely
follower network agnostic.

C. Phase 2: Constructing the final ranked influencer list S
from T

In the second phase, we exploit the available follower
information F (u) of node u ∈ T to refine the preliminary
ranked list of influential nodes T . Precisely, we refine the
ranked influencer list T to obtain S of size β ≤ α to
concentrate on the set of influential nodes with capacity to
reach a diverse population. The purpose of this refinement
phase is to eliminate those influential users from T who have
high follower overlap with other users in T , resulting in the
refined set S in which users have minimum follower overlap.

To obtain S , we implement a variation of the set cover
problem [40] that aims to cover all elements of a universal
set using a minimum number of subsets. In our context, the
problem consists of checking whether every node, chosen in
order of their position in the ranked list T allows the content
to be exposed to some new users. Following the influencers
in order of the ranked list T at each step, we incrementally
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populate the list S by checking whether the corresponding
influencer u in T newly exposes the content to atleast one of
its followers (hence confirming that not all the followers of u
were already exposed to the content by previous influencers in
S ). This ensures that influential nodes in the refined list S of
size β cover a diverse population in the network. Algorithm 2
describes the exact procedure to obtain S denoting influential
nodes recommended by SmartInf.

D. Computational complexity

In case of SmartInf, the detection of peaks as well as
the identification of potential influential users belonging to
the set t have the complexity O(|T|) where T is the set
of Type I cascades. Algorithm 1 computes the frequency
of appearance of users in t. For each cascade C ∈ T,
it updates the frequency of appearance for the νC users
retweeting during the activation window δC . Thus, the time
required for updating this frequency across all cascades in T
is νC |T| ∼ O(|T|). Further, sorting the users in t to obtain T
has the complexity O(α logα) ∼ O(N logN) since |T | = α
and α ≤ N . Thus, the total time complexity of Algorithm 1 is
O(|T|)+O(N logN). In Algorithm 2, we check whether each
user in the ranked list T exposes any new follower with the
complexity O(α) ∼ O(N). So, the overall time complexity of
SmartInf is O(|T|) +O(N logN).

V. EXPERIMENTAL SETUP

In this section, we first introduce the state-of-the-art baseline
algorithms for finding influential users in a network. Next,
we describe the implementation details and the procedure
for evaluating the performance of the proposed SmartInf
algorithm against the various baseline algorithms.

A. Baseline algorithms

We implement the following competing algorithms for iden-
tifying the set of influential users in a network:

1) MCDWE score: This method [18] combines the core
number of a node, its degree and its neighbours’ diver-
sity based on k-shell decomposition to rank users.

2) K-truss decomposition: This [17] is a triangle-based
extension of the k-core decomposition of graphs that
extracts a denser subgraph compared to k-core [16]; it
is structurally closer to a clique achieving faster and
wider epidemic spreading.

3) MCDWE-Activity: This is a hybrid method that com-
bines activity rate and structural information based on
MCDWE scores [18] of users. In this method, we
simply compute the product of frequency of retweets
and MCDWE scores of all users; we then sort users in
decreasing order of this product to get the ranking.

4) SmartInf-Temp: This is a variation of our proposed
SmartInf algorithm. SmartInf-Temp implements only the
phase 1 of SmartInf algorithm (Algorithm 1) and gen-
erates the ranked list of influential nodes T . Thus, this
method obtains a list of influential nodes purely from
temporal retweet sequence TC of Type I cascades.

Algorithm 2 Refining ranked list T to obtain S

1: procedure REFINED LIST OF INFLUENCERS S
2: Input: Follower network G = (U,E) and ranked list of

influencers T = (u1, . . . , uα)
3: Output: Refined list of influencers S = (u1, . . . , uβ)
4: Set S = ∅, Exposed = ∅, ind = 0
5: F (ui) ← set of followers of user ui
6: while ind < |T | and |Exposed| < |U | do
7: ind = ind+ 1
8: if |{uind ∪ F (uind)} \ Exposed| > 1 then
9: S = S ∪ uind . Insert uind into S if it

exposes any new follower
10: Exposed = Exposed ∪ {uind ∪ F (uind)}
11: end if
12: end while
13: end procedure

B. Evaluation procedure

We evaluate the quality of influential users, obtained from
SmartInf as well as the competing algorithms, from the
following three perspectives. First, we introduce a suite of
metrics which measures the quality of the influential nodes
from multiple perspectives. We normalize the value of a metric
for a user u by the corresponding size of the cascades in
which u retweeted. Higher metric value indicates stronger
influence. Secondly, we consider the set of influential nodes
as seeds of the network and conduct numerical simulations
following standard epidemic models to compute the volume
of final infected population. Seed nodes, resulting in higher
infected population indicate better influential nodes. We im-
plement SmartInf as well as the baseline algorithms in Python
programming language. We execute these algorithms as well
as perform their evaluation on Ubuntu 16.04.5 LTS server
machine with 2.20 GHz CPU processing speed, 128 GB
memory and the kernel used is Linux 4.4.0-141-generic.

1) Classical metrics to compute node influence:: We con-
sider the standard centrality metrics such as (a) Pagerank
centrality (PR) [41], (b) Eigenvector centrality (EV) [42]
and (c) Betweenness centrality (BW) [43] to evaluate the
performance of the influential nodes recommended by Smart-
Inf algorithm. The aforesaid metrics essentially capture the
structural centrality of the influential nodes.

2) Twitter specific metrics to compute node influence: (a)
Gain in retweet count (Ru): This metric measures the impact
of retweets of a given user (say u) on the final size of the
cascade [43], [44]. Consider a cascade C of size nC where kthC
retweet has been posted by the user uCk . This metric assumes
that each of the nC −kC new retweets occurring after the kthC
retweet is equally contributed by the first kC users. Hence,
the gain in size of the cascade C due to the retweet posted
by user uCk is defined as nC−kC

kC
. Finally, the Gain in retweet

count Ru for the user u is computed as the average gain over
all the cascades (Nu) in which u participates

Ru =
1

|Nu|
∑
C∈Nu

nC − kC
kCnC

(1)
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TABLE IV: Mean score of the influence metrics for sets of top-k influential nodes taking k = 10, 20, 50 on Algeria dataset

Number of seeds k=10 k=20 k=50
Algorithm Ru Iu Eu Hu Ru Iu Eu Hu Ru Iu Eu Hu

SmartInf 0.480 0.054 0.350 0.036 0.470 0.036 0.400 0.030 0.450 0.017 0.360 0.010
SmartInf-Temp 0.450 0.041 0.330 0.040 0.420 0.066 0.320 0.050 0.420 0.036 0.280 0.040

MCDWE 0.080 0.003 0.090 0.002 0.090 0.004 0.070 0.003 0.060 0.002 0.050 0.002
K-truss 0.226 0.030 0.100 0.006 0.230 0.010 0.120 0.005 0.190 0.006 0.110 0.003

MCDWE-Activity 0.360 0.037 0.280 0.028 0.310 0.028 0.150 0.014 0.220 0.013 0.100 0.006

TABLE V: Mean score of the influence metrics for sets of top-k influential nodes taking k = 10, 20, 50 on Egypt dataset

Number of seeds k=10 k=20 k=50
Algorithm Ru Iu Eu Hu Ru Iu Eu Hu Ru Iu Eu Hu

SmartInf 0.405 0.210 0.300 0.092 0.340 0.040 0.310 0.010 0.350 0.020 0.300 0.010
SmartInf-Temp 0.318 0.058 0.261 0.006 0.310 0.200 0.260 0.080 0.390 0.150 0.270 0.060

MCDWE 0.064 0.002 0.006 0.002 0.040 0.001 0.010 0.001 0.020 0.009 0.010 0.004
K-truss 0.122 0.005 0.060 0.004 0.110 0.003 0.050 0.002 0.120 0.004 0.040 0.001

MCDWE-Activity 0.167 0.009 0.022 0.012 0.160 0.007 0.080 0.004 0.150 0.010 0.070 0.005

TABLE VI: Mean score of the influence metrics for sets of top-k influential nodes taking k = 10, 20, 50 on Nepal dataset

Number of seeds k=10 k=20 k=50
Algorithm Ru Iu Eu Hu Ru Iu Eu Hu Ru Iu Eu Hu

SmartInf 0.340 0.030 0.200 0.020 0.270 0.030 0.180 0.020 0.250 0.020 0.160 0.020
SmartInf-Temp 0.220 0.020 0.140 0.010 0.230 0.030 0.140 0.020 0.230 0.030 0.140 0.020

MCDWE 0.170 0.0009 0.150 0.0004 0.150 0.006 0.120 0.004 0.160 0.006 0.140 0.004
K-truss 0.210 0.006 0.130 0.004 0.180 0.008 0.110 0.005 0.190 0.007 0.120 0.004

MCDWE-Activity 0.200 0.015 0.140 0.013 0.210 0.016 0.140 0.010 0.200 0.018 0.140 0.014

TABLE VII: Comparison of mean score of the classical centrality metrics for top-10
influential nodes recommended by SmartInf and randomly selected top-10 nodes

Algorithm PR (10−5) EV (10−5) BW (10−5)
SmartInf (Algeria) 53.9 600 100
Random (Algeria) 0.583 10 0.0001
SmartInf (Egypt) 1.96 78.6 9.83
Random (Egypt) 0.0002 0.000002 0.00003
SmartInf (Nepal) 8.9 40 4000
Random (Nepal) 0.031 0.0188 20

where nC is the size of a cascade C in which u retweeted
as the kCth user. Thus, this metric, which is agnostic to the
underlying follower network structure, favors users retweeting
in the early stage of large cascades, compared to the users
(a) involved in small cascades, or (b) participating in the
later stage of the large cascades. These favoured users act as
precursors of the popularity of the tweet; hence, they should
be preferentially targeted for viral diffusion.

(b) Gain in exposed user count (Eu): This metric measures
the volume of newly exposed population aC , who retweeted
the content in the cascade C only due to retweet posted by a
specific user (say u) [43], [44]. The exposure to the content
may be caused directly or indirectly via the follower links of
u. The Gain in exposed user count Eu for user u over all the
cascades (Nu) in which u participated can be expressed as

Eu =
1

|Nu|
∑
C∈Nu

aC
kCnC

(2)

where aC denotes volume of population who got newly ex-
posed by u (the kthC retweeting user in C) as well as retweeted
in cascade C. This metric scores high for those influential
users, who tend to be responsible for the first exposure of the
tweet to many of the retweeting users in a cascade.

(c) Active gain in retweet count and exposed user count
(Iu and Hu): These metrics take the activity (retweet) rate

Pu of user u into consideration and combine Pu along with
the aforesaid two metrics Ru and Eu respectively. Precisely,
we define

Iu = Pu.Ru (3)
Hu = Pu.Eu (4)

where the retweet rate Pu is estimated empirically from the
cascades in which u participated. In principle, these metrics
score high for the users who are more likely to retweet the
tweet content as well as whose gains Ru and Eu are high.

3) Epidemic simulation to measure node influence: We
implement the standard susceptible-infected (SI) model of
epidemic simulation [45] to evaluate the quality of a set of
influential nodes in the network. In this simulation, initially
all the nodes in the network are in susceptible (S) state. A
susceptible (S) node can change its state to infected (I) by
(re)tweeting the initial post. We consider the recommended set
of influential nodes as seeds of the network. First, we infect the
seed nodes; here, this transition of the seeds from susceptible
(S) to infected state (I) indicates tweeting the initial post.
Once a susceptible node in the network becomes infected,
its followers, who are in susceptible state, get exposed to
the post, and in the next step may change their state to
infected by retweeting the post. This process continues until
no new susceptible node in the network can be infected.
Each susceptible follower node u gets a single chance to
change its state to infected, depending on its probability to get
infected βu (since we discard the re-exposure phenomenon).
The infection probability βu varies across the users u ∈ U
in the network, and is computed empirically as the fraction
of cascades in which u retweeted, against all cascades where
she got exposed to the tweet. The average volume of the final
infected population over 1000 realizations denote the quality
of the recommended list of influential nodes (seeds).
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Fig. 4: Spreading power for vaying number of top-k influential nodes on empirical
networks detected by different methods (errorbars indicate 2 standard deviations)

VI. EVALUATION ON EMPIRICAL DATA

In this section, we evaluate the performance of SmartInf on
the empirical follower network & the cascades obtained from
the comprehensive dataset (Algeria, Egypt & Nepal datasets).
Next, we provide some insightful observations highlighting the
benefits of influential nodes obtained using SmartInf. Finally,
we demonstrate the scalability of SmartInf as well as show its
robustness in the presence of missing data.

A. Evaluation based on classical centrality metrics
We compute the average scores of the three classical cen-

trality metrics PR, EV and BW, introduced in Sec. V-B1 for
the top-10 influential users recommended by SmartInf vis-
a-vis 10 randomly chosen users of the respective datasets.
Here we stochastically select the 10 users, repeat the exper-
iment for 500 iterations and compute the average centrality
scores. From Table VII, we observe that the top-10 influential
nodes identified by SmartInf exhibit higher centrality scores
compared to the randomly selected nodes, consistently across
Algeria, Egypt and Nepal datasets. This implies that although
SmartInf does not explicitly filter the nodes with highest
centrality scores, however, the influential users recommended
by SmartInf exhibit decently high centrality scores.

Subsequently, we investigate if the nodes with top centrality
score get recommended by SmartInf. In Table VIII, we show
a comparison between average scores for top-10 users ranked
based on the classical centrality metrics vis-a-vis average
centrality scores of the top-10 influential users recommended
by SmartInf. In this table, we observe that for all three classical
centrality metrics, the average centrality scores of the top-
10 SmartInf recommended users are lower than the average
scores of top-10 users ranked based on the respective centrality
metrics. This implies that the nodes with the highest centrality
scores are not always recommended by SmartInf. Close inves-
tigation reveals that such structurally central nodes may remain
(i) inactive in posting retweets or (ii) mostly participate in non-
popular cascades. Hence, those central nodes may not play a
key role in migration of the cascade to a different diffusion
locality. Consequently, although they possess a structurally
favourable position in the follower network, they are not
recommended by SmartInf.

B. Evaluation based on Twitter specific influence metrics
We obtain the top-k recommended influential nodes S k

from SmartInf as well as from the baseline algorithms. For

TABLE VIII: Comparison of mean score of the classical centrality metrics for top-10
influential nodes recommended by SmartInf and top-10 nodes with highest centrality
scores

Measure PR (10−5) EV (10−5) BW (10−5)
Dataset SmartInf Top-PR SmartInf Top-EV SmartInf Top-BW
Algeria 53.9 100 600 6000 100 640
Egypt 1.96 50 78.6 900 9.83 120
Nepal 8.9 40 40 620 400 1200

each recommendation algorithm, we compute the average
score of the metrics proposed in Sec. V-B2 for the identified
top-k (for k = 10, 20, 50) influential nodes. In Tables IV
and V, we observe that both the Gain in retweet count Ru
and Gain in exposed user count Eu attain highest average
scores for top-k influential nodes S k identified by SmartInf
(and the variation SmartInf-Temp) across both Algeria and
Egypt datasets respectively. This indicates that influential users
detected by SmartInf and SmartInf-Temp mostly retweet in
the early part of large cascades, as well as responsible for
exposing the tweet to a large fraction of retweeting users,
compared to the influential nodes identified by the baselines.
Side by side, in case of SmartInf and SmartInf-Temp, the
high retweet rate of the recommended influential nodes results
in high active gain in retweet count (Iu) and exposed user
count (Hu). Since the baseline algorithms (MCDWE and K-
truss) mostly rely on network structure, the average scores of
Ru and Eu are low, as influential nodes identified by such
methods either retweet in small cascades or towards the later
part of large cascades. Moreover, some of these influential
nodes do not even participate in retweeting activity. Hence, the
values of Iu and Hu are very poor for the baselines. Notably,
MCDWE-Activity performs better than MCDWE and K-truss
across all the metrics since it combines retweet rate of users
with structural information. However, it performs worse than
SmartInf and SmartInf-Temp since corresponding influential
nodes with high retweet rate in case of MCDWE-Activity do
not retweet early in large cascades and expose the tweet to a
limited fraction of retweeting users.

C. Evaluation based on epidemic simulation

Considering the recommended influential nodes as seeds, we
conduct the epidemic simulation as described in Section V-B3,
to obtain the final infected population. In Fig. 4(a) and 4(b),
we show the average volume of final infected population over
1000 realizations for varying number (top-k) of seed nodes
S k in Algeria and Egypt datasets respectively. We observe
that the seed nodes corresponding to SmartInf achieves the
largest infected population, compared to the baselines. This
result demonstrates the spreading capacity of the influential
nodes identified by the proposed SmartInf algorithm. As we
increase the number of seed nodes (k), we observe that the
final volume of infected population increases quite steadily
for SmartInf. On the other hand, for baselines, the volume
of infected population increases slowly for smaller values of
k and then saturates for larger k, signifying that there is
increasing overlap in the infected population when the number
of seeds (k) increases. We can also observe the improvement in
performance of SmartInf over its variation SmartInf-Temp; this
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Fig. 5: Impact of refining factor on performance and robustness of SmartInf

depicts the significance of the refinement phase that minimizes
the overlap in population infected by different seeds, thus
reaching out to a diverse audience.

D. Dissecting SmartInf

In this section, we investigate the factors responsible for the
superior performance of SmartInf over the baseline algorithms.
For this purpose, we evaluate the quality of influential nodes
obtained using SmartInf from different aspects.

(a) Exposing the new diffusion locality: First, we show
that influential nodes S detected by SmartInf exposes the
tweet to a new diffusion locality, compared to baselines,
when they retweet in a cascade. This establishes the role
of detected influential nodes as anchor nodes introduced in
Sec. IV. In order to compute the newly exposed population
FN (uCi ) for an influential node uCi (retweeting at time tCi )
in cascade C, we discount all the followers

⋃
(F (uCj )) of

preceding users uCj retweeting at time tCj < tCi , from the
follower set of uCi denoted as F (uCi ). The remaining users
FN (uCi ) = F (uCi )\

⋃
(F (uCj )) constitute the newly exposed

population of uCi . Subsequently, we compute the mean volume
of newly exposed population for the influential node across all
the cascades where she retweets. In Figs. 6(a) and 6(b), we plot
the cumulative distribution of this mean newly exposed popu-
lation for influential nodes obtained using SmartInf as well as
the baselines in Algeria and Egypt datasets respectively. We
observe that a significant fraction (38% for Algeria and 28%
for Egypt) of top-k influential nodes S k for SmartInf (for
k = 50) have a very high volume of newly exposed population
(> 0.4) compared to the baselines. This shows that SmartInf
efficiently detects those influential nodes (following Sec. IV-B)
from retweet sequence TC , who are responsible for exposing
the cascade to a new diffusion locality.

(b) Exposing diverse population: Next, we show that in
SmartInf, refinement of the ranked influencer list T to obtain
S indeed enables spreading tweet to a diverse population.
In order to demonstrate that, we plot the average pairwise
overlap among the top-k influencers obtained from SmartInf-
Temp (T ) and SmartInf (S ) respectively, for 2 ≤ k ≤ β as
shown in Fig. 6(c) for Algeria dataset (Fig. 6(d) shows the

same for Egypt dataset). In both the datasets, we observe that
this mutual overlap is much higher in case of SmartInf-Temp,
compared to SmartInf, which enables the refined influencer list
to reach a diverse population.

Further, we introduce the refining factor ρ (0 ≤ ρ ≤ 1)
which indicates the extent to which the ranked list T is refined.
Precisely, we apply Algorithm 2 on SmartInf-Temp only upto a
certain fraction (ρ) of nodes in T , following the ranking order.
We plot the average pairwise overlap among top-k influential
nodes for different values of ρ in Figs. 6(d) and 5(b) for
Algeria and Egypt datasets respectively; we observe that the
average pairwise overlap decreases with ρ, which is consistent
over different values of k across both datasets.

(c) Properties of the influencers: Here we investigate
several key features of the detected top-k influential nodes
S k using SmartInf compared to baselines as shown in Fig. 8
(for k = 50). We observe that SmartInf identifies influential
nodes with higher retweet rate compared to the baselines
MCDWE and K-truss, however lower than MCDWE-Activity
which explicitly takes retweet frequency into consideration. In
a similar vein, we observe that influential nodes of SmartInf
having decent follower count, higher than MCDWE-Activity
(though lower than MCDWE and K-truss which primarily
relies on identifying high degree nodes belonging to core
of the network). Nevertheless, SmartInf influencers expose
the post to a new diffusion locality, computed as the newly
exposed population after the retweet, as compared to baselines.
Last, we observe that the mean reaction time is also lowest
for the influencers of SmartInf. Notably, the influential nodes
S identified by SmartInf achieves the aforesaid properties,
without explicitly considering the topological structure as well
as retweeting behavior of users.

(d) Efficiency of the top influencers: Finally, we measure
the efficiency of SmartInf in terms of the (i) retweet influence,
which indicates the average retweet count for all messages
posted by the recommended influential nodes [13] and (ii)
infected population, obtained from the epidemic simulation
(as described in Section V-B3) considering the recommended
influential nodes as seeds. We consider three classes of rec-
ommended influencers obtained from SmartInf – (1) top score
(top-10 ranked users), (2) moderate score (median-10 ranked
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Fig. 6: Key insights for superior performance of SmartInf

TABLE IX: Total execution time (in seconds)

Dataset SmartInf MCDWE K-truss MCDWE-Activity
Algeria 8.95 802.77 2328.65 803.05
Egypt 198 5732.42 11427.55 7507.32
Nepal 10.7 1036.2 713.19 1036.7

users) and (3) low score (bottom-10 ranked users) influencers
respectively. We normalize the values of retweet influence
and infected population by that of the top score influencers
respectively. In Figure 9, we observe that the top ranked
influencers recommended by SmartInf obtain high retweet
influence and infected population compared to influencers with
moderate or low SmartInf scores, which depicts the efficiency
of SmartInf in correctly ranking the truly influential users at
the top compared to the other nodes.

E. Scalability

We show that the proposed SmartInf algorithm is scalable in
terms of execution time compared to state-of-the-art baseline
methods. In Table IX, we report the total execution time of
SmartInf as well as the baselines, across Algeria, Egypt and
Nepal datasets. We observe that the running time of SmartInf
is much lower compared to baselines, which is consistent with
the time complexity computed in Sec. IV-D; on average, it
achieves the speedup of 70 − 100 times over the competing
algorithms. Essentially, SmartInf does not require to directly
measure the influence of each node in the whole network,
which can be costly, in order to rank influential nodes.

F. Robustness of SmartInf

Finally, we investigate the robustness of the influential nodes
S obtained from SmartInf against the volume of available
cascades. In Fig. 5(c), we compute Spearman rank correla-
tion [46] between the top-k influential nodes (for k = 50),
identified by SmartInf from the complete dataset and the
corresponding set of influential nodes when a certain fraction
of Type I cascades are removed from the data6. We observe
that the rank correlation is high (0.34) even on removal of 50%
of Type I cascades in Algeria dataset, depicting the robustness
of SmartInf even in the face of missing data.

6The principle of SmartInf relies on the Type 1 cascades.

VII. EVALUATION ON SYNTHETIC DATA

In this section, we delve deep and dissect the performance
of the proposed SmartInf algorithm on a simple simulation
setup. This setup reduces the complexity of the empirical data
and allows us to focus only on the relevant dynamics. First, we
construct a simple synthetic follower network containing only
two diffusion localities and then simulate synthetic cascades
on top of it. This synthetic setup helps us to demonstrate the
key factors behind the performance improvement of SmartInf,
as observed from the empirical data.

A. Development of synthetic setup

(a) Synthetic follower network: We construct a synthetic
network based on the stochastic block model [47] with two
blocks. Such a simple network exhibits a natural partition of
nodes through its blocks, which inherently correspond to two
different diffusion localities. We construct a directed network
composed of two Erdos-Renyi (E-R) [48] sub-networks E1

and E2 with parameters (n1, n2, p1, p2, q) where ni and pi
denote the size and density of the block Ei, whereas q is the
inter-block density. We designate m links connecting the two
blocks as bridges, and their extremities as bridge nodes. We set
m ≈ n1n2q where n1n2q � min(n21p1, n

2
2p2) [48], ensuring

the natural partition of the network into two localities between
which diffusion of tweets may occur. In our simulation, we
fix the parameter values as n1 = 1000, n2 = 1000, p1 = 0.2,
p2 = 0.3 and q = 5 ∗ 10−5 such that m ≈ n1n2q = 50.

(b) Synthetic cascades: Following Sec. V-B3, we generate
the synthetic cascades using standard susceptible-infected (SI)
model [45], where initially all the nodes are in susceptible
(S) state. We initiate a cascade D from a random node uD0
and switch its state to infected (I), considering uD0 tweeted
the initial post at time tD0 . We assume that users exposed to
the tweet may get only one chance to retweet with probability
γu. Hence, the followers of uD0 who got exposed to the post,
get infected (with probability γu) by retweeting the post. The
retweet time instance tDi of user uDi can be computed from the
reaction time µi. Empirical analysis reveals that reaction time
depends on whether both uDi and uDj (user who exposed the
cascade D to uDi ) belong to (a) the same block or (b) different
blocks. Accordingly, we assign the reaction time distribution
µident if both uDi and uDj belong to the same block and
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Fig. 7: Evidence of co-occurrence of flushes and peaks for Type I cascades in synthetic data
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µdiff if uDi and uDj belong to different blocks respectively.
In Fig. 7(a), empirical complementary cumulative distribution
functions (ccdf) on the Algeria dataset µident and µdiff show
that the distribution µdiff for inter-block retweets is broader
and heavy tailed (with a larger mean), compared to µident
which favors a faster spread of the tweet inside a diffusion
locality (similar to [49]). Hence, while forming the synthetic
cascade D, we generate the reaction time µi of a retweeting
user uDi from the suitable reaction time distributions (µident
and µdiff for intra-block and inter-block respectively), and
subsequently compute the retweet time instance tDi . Finally
for cascade D, we obtain the sequence of inter-retweet time

intervals denoted by TD = (TD0 , T
D
1 , . . . , T

D
nD−1). We sum-

marize the details of the synthetic data in Table X.

TABLE X: Details of synthetic data

#Tweets #Retweets #Cascades #Users Maximum Mean
cascade size cascade size

10000 3.2× 106 10000 2000 476 327.51

(c) Constructing synthetic Type I & Type II cascades:
In Fig. 7(b), we decide on the number of bridging links m
for which maximum number of Type I cascades emerge and
also verify whether the temporal peaks in Type I cascades
co-occur with the flush of tweets to a new block, similar to
Fig. 3(a). Precisely, we claim that a flush occurs if at least
95% of the retweeting users before the peak belong to first
block, whereas atleast 80% of the retweeting users after the
peak belong to second block. Notably, a small m restricts the
tweet from diffusing to the second block; on the other hand,
a large m quickly allows the tweet to diffuse to the second
block, without even saturating the first block (as observed in
Type II cascades). We observe that keeping the correct number
of bridging links m (say, m = 50) allows diffusion of tweets
from one block to another, while generating enough number of
Type I cascades which initially saturate the first block before
such a migration. As an evidence, Fig. 7(b) confirms that Type
I synthetic cascades indeed reflect the co-occurrence of first
peak and flush for 80% of such cascades for m = 50, similar
to what we revealed in Sec. IV on empirical data. In this line,
Fig. 7(c) shows the discrimination observed between the Type
I and Type II synthetic cascades; in case of Type I, a large
volume of retweets before the peak occur in the first block,
whereas the same occurs in the second block after the peak.

B. Experimental observations
We rely on the synthetic dataset to investigate the factors

behind the superior performance of the proposed SmartInf
algorithm. For SmartInf, we observe that a majority of bridge
nodes emerge in the set of top-k influential nodes S k

(see Fig. 10(a)), without explicit utilisation of the structural
information. The bridge nodes play an important role for
diffusing a cascade across multiple localities. On the other
hand, the percentage of bridge nodes are low among the top-
k influential nodes detected by the baselines; the reason is
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Fig. 10: Properties of influential nodes identified by SmartInf compared to baselines on synthetic network
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that influential nodes identified by baselines (MCDWE and
K-truss) belong to the core of the network (occupying central
positions within a diffusion locality of the network) and hence
are effective in diffusing a cascade only within its own locality.
Moreover, Fig. 10(b) shows that influential nodes identified
by SmartInf exhibit high frequency of retweets near peaks
of Type I synthetic cascades compared to baselines, which
shows their utility in terms of quickly diffusing the tweet in the
second block (locality). Additionally, apart from the retweet
rate, reaction time (µ) also plays an important role in faster
diffusion of tweets to a new locality. We concentrate on the
bridging nodes which appears in the set of top-k influential
nodes. During simulation setup, we assign a reaction time µu
to the bridging node u from the (inter-block reaction time)
distribution µdiff with mean 〈µdiff 〉. Now we define the
reaction factor su for node u as su = µu

〈µdiff 〉 . The smaller
reaction factor su of u indicates the faster migration of the
tweet to the second block. Detecting and ranking such faster
propagators at the top of the list may characterize the high
quality of influential nodes. In Fig. 11, we show that for the
proposed SmartInf algorithm, the ranking of the influential
nodes in S is highly correlated (correlation coefficient is 0.76)
with their reaction factor su, compared to baseline algorithms.
Hence, SmartInf is able to detect this key feature enabling
faster spread, where the baselines fundamentally fail to do so.

Finally, we show that SmartInf recommends a diverse set
of influential nodes compared to baselines. We compute mean
follower overlap over all user pairs in the detected set of
influential nodes. Further, we consider the induced subgraph

formed by the set of influential nodes and compute link density
of this subgraph; high density indicates low diversity across
the set of influential nodes. We observe that both link density
(see Fig. 10(c)) and mean follower overlap (see Fig. 10(d))
are low for SmartInf compared to all baselines. Hence, this
high diversity in the set of top-k influential nodes S k obtained
using SmartInf indicates that such users are capable of directly
exposing the tweet to a larger part of the network.

VIII. CONCLUSION AND FUTURE WORK

This paper addresses the important problem of identifying
a set of influential users in a social network by leveraging on
temporal sequence of retweets in Twitter cascades. To this end,
we present SmartInf, an unsupervised algorithm leveraging
on anchor nodes whose retweets can expose the cascade to
a large new population. The ranked list of influential nodes
obtained from temporal retweet sequences is then refined
to ensure that a diverse population can be reached through
influential nodes identified by SmartInf. We have demonstrated
through extensive experiments on multiple empirical datasets
from Twitter that SmartInf achieves significant performance
boost over recent state-of-the-art baselines both in terms of
proposed influence metrics as well as volume of infected
population using epidemic simulation. Further, we have shown
that influential users detected by SmartInf are responsible for
faster tweet diffusion to a new locality and also facilitate
spreading of tweets to a diverse population in addition to
having high retweet rate. We have demonstrated that SmartInf
is robust to missing data and scales linearly with size of
the network achieving 30 − 60 times speedup in execution
time compared to baselines. Finally, we have investigated
the factors behind the superior performance of SmartInf on
a simple synthetic network through simulation of synthetic
cascades on this network. Our experiments have revealed that
SmartInf can detect such influential nodes which play bridging
roles in the network connecting multiple localities as well as
enable faster spread of information. All these results point to
the fact that our proposed SmartInf algorithm provides a set
of influential users that can quickly spread the message to a
large and diverse population in the network.

Our present work has multiple future research directions.
First, one may be curious to investigate whether SmartInf
recommended influential nodes vary significantly across the
different topics (such as politics, sports, entertainment etc.)
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in Twitter posts. Second, it may be elegant to automatically
learn the activation window (δC) to identify the potential
influential nodes, leveraging on the features extracted from
inter-retweet intervals. Third, it is important to conduct nu-
merical simulations on synthetic cascades with rich & realistic
structural properties, which may provide deeper insights on the
efficiency of SmartInf. Fourth, in the current endeavour, we
have completely overlooked the role of Type II cascades in
influential node detection. It would be an interesting research
direction to exploit the Type II cascades in order to refine the
list of influencers obtained from SmartInf.
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