
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 6, DECEMBER 2020 1469

Dynamic Distributed Secure Storage
Against Ransomware

Jason Castiglione , Member, IEEE, and Dusko Pavlovic , Member, IEEE

Abstract— In just a few years, ransomware evolved into one of
the most pernicious threats on the web. From hijacking private
disks, the cybercriminals moved to disabling hospital networks,
while the cyberwarriors launched destructive cyberwar exercises
masquerading as ransomware. To match the variety of attacks,
there is also a variety of promising proposals for the mitigation of
the ransomware problem by disrupting the attack cycle at various
points. None of them seems to be eliminating the vulnerability of
static nodes in dynamic networks. We put forward the idea that
ransomware is a symptom of a broader problem of architectural
imbalance in social computation, while the processes are dynamic
and nonlocal, the storage is static and local. We study and discuss
some paths toward dynamic, nonlocal, and secure storage. Fur-
thermore, we provide a toy method for locally encrypting the data
that can provide a balance of high security and encryption speed.

Index Terms— Computer crime, computer security, decoding,
distributed computing, encoding.

I. INTRODUCTION: WHY IS THERE RANSOMWARE?

IN THE recent years, ransomware has emerged as a sig-
nificant threat across all levels of use, from individuals,

hospitals, and banks, to government institutions and organi-
zations [1]–[4]. It continues to spread, since ultimately it is
profitable. The passive storage architecture enables malicious
executables to hijack the locally stored data. Until recently,
the stolen data was siphoned away and monetized on the
black market. Ransomware enabled criminals to profit from
hacking into systems where the data could not be sold to other
criminals. They realized the data had value to the owners.

Why is hijacking local storage and ransoming it to the owner
much easier than attempting to ransom the communication
links? The answer to this question is full of intrigue and goes
back to the design of the Internet. The origin story of the
Internet is motivated by the cold war [5], [6]. The United
States of America and the Union of Soviet Socialist Republics
were in an arms race. They were designing nuclear command
and control systems to insure if one side launched nuclear
ballistic missiles then the other would respond in kind. The
main concern was designing a communications network that
was resilient to nuclear attack so that it may delay the launch

Manuscript received November 7, 2018; revised April 27, 2019; accepted
June 18, 2019. Date of publication July 24, 2019; date of current version
January 13, 2021. This work was supported in part by NSF through the
Scholarship for Service Award under Grant 1650862 and in part by the Air
Force Office of Scientific Research (AFOSR) under Grant FA9550-15-1-0263.
(Corresponding author: Dusko Pavlovic.)

J. Castiglione is with the Department of Electrical Engineering, University
of Hawai’i at Mānoa, Honolulu, HI 96822 USA.

D. Pavlovic is with the Department of Information and Computer Sci-
ences, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA (e-mail:
dusko@hawaii.edu).

Digital Object Identifier 10.1109/TCSS.2019.2924650

of a retaliation strike in case of any erroneous warnings.
P. Baran of RAND Corporation1 studied the problem and,
in multiple reports [7], started architecting a new system
where the switching nodes stored minimal information. The
work at RAND in the 1960s made a paradigm change in the
communications systems so that a large message would be
broken up into smaller ones of a fixed size and be passed
along until it reached its destination.

As mentioned above, the Internet was born of social and
political challenges. It answered the requirement of a robust
communications infrastructure that could survive an all-out
nuclear war. A consequence of designing such a robust
communications network is that criminals now have access
and are able to reach beyond their backyard. We argue that
ransomware and denial of access to data present us with
the next challenge. It is imperative to design a resilient and
secure storage system that can survive local attacks and the
degradation of service.

In this paper, we focus on ransomware [8], [9], which is
a type of digital crime that is essentially theft2 of informa-
tion followed by demanding a ransom from the victim to
regain access. We recommend a paradigm change, akin to
the ARPANET project, with regards to a broadly deployed
network storage system. The intent is to find a solution
which addresses: 1) the financial incentive for ransomware
attacks and 2) the difficulty of securing a system from
an ever-evolving social/technical attack matrix. In addition,
we take into account the restraint that any solution must be
cost-effective.

Thus, we submit that the architecture with: 1) local, single-
copy storage of valuable confidential data and 2) local control
of program executions, often irreversible, is indefensible.
Either 1) needs to be relaxed, so that the confidentiality
requirement can be satisfied by nonlocal, cloud storage. Other-
wise, 2) needs to be relaxed, and the executions of potentially
harmful payloads should be removed from the user’s hands.

The confluence of problems (1) and (2) is due to legacy
and commercial interests. Changing the architecture is much

1“RAND” originally referred to the “Research ANd Development Project,”
established in 1945 by the commander of the United States Air Forces
(USAF), General H. H. Arnold, as a framework for planning the cooperations
between the military and private researchers and developers. The project
evolved into a contract that USAF gave to the Douglas Aircraft Company
in 1946, which spun out into an independent nonprofit organization in 1948.
With many legendary researchers on staff, and even with its name pointing
to the historical roots of the defense-funded research, the RAND Corporation
has played a crucial role in strategic thinking and technologies ever since.

2It is noted that this differs from just illegally accessing and copying
information, in the sense that the information owner is denied access by
ransomware.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2480-9221
https://orcid.org/0000-0002-9855-6861

1470 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 6, DECEMBER 2020

easier and cheaper than defending it. Resolving problem (2)
by restricting what the users can execute has been introduced
effectively and resourcefully when this was needed for digital
rights management (DRM) and for the software IP protections,
as well as when such restrictions provided a foundation for the
market of approved apps. Resolving problem (1) by assuring
the confidentiality of nonlocal (cloud) storage is an interesting
challenge which requires reconciling technical investments
into the solution and the rational confidentiality requirements.

II. WHAT IS RANSOMWARE?

We attempt to define ransomware as an attack strategy and
to place it in the space of other similar attack strategies. The
goal is to classify all possible defense vectors. Security can
be viewed as an adversarial process involving an attacker,
a defender, and an asset. In most cases, the asset is of value
both for the attacker and for the defender, and that provides
the incentives for both. The characteristic property of a ransom
attack is that the asset itself has no direct utility for the
attacker, but only for the defender. Attacker’s interest in the
asset is indirect: his goal is to hijack the asset temporarily and
to sell it back to the defender. In cybersecurity, such ransom
attacks originated from research in cryptovirology [8].

The experience of piracy, from ancient to modern times,
suggests that the hijackings for ransom continue as long as
there are:

1) attack vectors against the defender;
2) safe havens the attacker against retaliation;
3) market to monetize the ransom.

Eliminating 2) the safe havens for the perpetrators of ran-
somware or disrupting 3) their monetization channels requires
large-scale legal operations. We devote attention to 1) the
technical problem of attack vectors. Our intention is to main-
tain the availability of the data by fortifying our system and
replicating the information across multiple servers. We simul-
taneously drive up the cost to attack while lowering the value
of the data to the defender.

The first observation is what truly separates ransomware
from ransom attacks seen prior to the digital age. Julius Caesar
was kidnapped and a ransom was requested around 75 BCE.
There were only one Julius Caesar and no method to clone him
which would have rendered the captured Julius unnecessary.
With regards to the information on a computer, if there is a
copy of the ransomed data available to the defender, then there
will be no need to pay any ransom. Thus, we see the replication
lessens as the value of the ransomed data to the defender.

The second observation is that ransomware infections
occur the same as in the broader class of malware. A user
may receive targeted spam email luring them to click on
a link or download a file which subsequently infects their
computer, e.g., Cryptolocker, Cerber, Jaff, and Sage. There
have also been instances where the malware propagates as
a computer virus or worm using the same attack vectors
like other forms of malware, e.g., Spora, WannaCrypt (also
known as WannaCry), and Petya. Preventing an infiltration
thus boils down to a mixture of the general measures for
intrusion prevention with an emphasis on the social aspect
of informing users to be more security conscious.

Once the infiltration occurs, ransomware can deny access
using multiple strategies. Crypto ransomware, e.g., Cryp-
tolocker, uses encryption to deny the victim access to their
data. The malware will search the victim’s device for the files
matching certain patterns, then locally encrypt the files, and
then will either exfiltrate the key or hide it locally. Locker
ransomware, e.g., CryLocker, denies the victim access to their
computer system. This can happen in multiple ways, e.g.,
resetting user passwords, locking the user interface, disabling
keyboard input, and so on. There are also variants of malware
which appear to be ransomware on the surface, but may
actually delete the data without the ability to recover. They
still demand a ransom, but never allow the victim to regain
access. The common thread of all variants of ransomware is
they locally deny access to resources valuable to the victim.

Immediately, we observe multiple security issues which are
completely social in nature. No matter how secure is a system,
it is not feasible for it to deduce whether every user’s action is
legitimate. In addition, we must also convince a user to adhere
to good security policy, e.g., applying updates as available.
Thus, we see that no matter how effective a firewall may be,
its protections become irrelevant once the malware penetrates
the system.

However, implementing a ransom attack requires a peculiar
interaction protocol: the attacker must announce the hijacking
and require the ransom; and he must be able to securely collect
the ransom. In other words, the attacker must design, propose,
and implement an exchange contract, whereby the defender
should receive the hijacked asset, and the attacker should
receive the ransom. This contract is in principle asymmetric,
in the sense that the defender runs the risk of losing the valu-
able asset, whereas the attacker has a strategic initiative and
often even requires that the defender’s part of the contract is
executed first. Since defender’s valuation of the asset surpasses
the requested ransom, accepting the contract is the rational
choice. Disrupting the establishment of the contract or the
execution of the exchange is thus not a rational strategy for
either player.3

III. RANSOMWARE DEFENSE STRATEGY

The upsurge of attacks within a crime type at a given state
of development of a social system is usually:

not exclusively caused by an invention of a new attack
technique;

but a combined result of technical and economic develop-
ments in the social system as a whole.

If the defenders’ possessions gain value, they must spend
more to defend and maintain possession. Similarly, as the
attackers have more incentive to attack, they will use more
resources to capture the defender’s valuables. Thus, we see
the impetus for change with regard to security can be linked

3The governments often disrupt the execution of the exchange protocol to
deter repeated hijackings. Although the cost of loss for the defender of an
executed hijacking is infinite, the risk is therefore usually unacceptable; unless
the attacker makes a mistake and implements a vulnerable exchange protocol,
the governments trade in the high individual risk of the victims of the present
hijackings against a decrease of the social risk from the future hijackings,
which is purported to occur when a “we-do-not-negotiate” social strategy is
imposed.

CASTIGLIONE AND PAVLOVIC: DDSS AGAINST RANSOMWARE 1471

Fig. 1. Ransomware process.

to technical and economic rationale. In the technical domain,
new attacks on the defender or vulnerabilities in the defense
may be discovered. Otherwise, economic incentives may lead
to increased defenses or the use of previously costly attacks.
Studying only one side of the problem is equivalent to devel-
oping tactics without strategy.

For a particular security problem, this means that the efforts
toward confronting a particular newly emerged family of
attacks through a particular family of defenses, invented for the
purpose, is the familiar strategic mistake, akin to confronting
battling the cavalry frontline of a military expeditionary force,
while ignoring the infantry behind the hill, and the navy behind
the horizon, that is, the tactics without strategy phenomenon.
This leads us to a balanced strategy in deterring crime,
by either making it harder to commit the crime or reduce
the financial incentive for committing a crime. We propose
that applying this mindset to digital crimes will provide new
methods of reducing crime.

The task of defending against ransomware is of particular
interest from the standpoint of social computation, because it
is clear that a solution cannot be found either in the realm
of social interactions alone, where the ransom attacks have
been launched since the early days of mankind, and have
not been eliminated; or in the realm of computation alone,
since a purely technical solution of ransomware could only be
based on a purely technical solution of malware in general.
The problem of ransomware is a typical security problem that
straddles both the social and the computational component of
social computation.

The ransomware protocol is illustrated in Fig. 1 and pro-
vides multiple opportunities for defending from ransomware.
For example, protections from infiltrate vary from firewalls,
spam filters, antivirus, and so on. Two points of concern
with defense at this stage are in regards to social engineering
and the social processes which result in imperfect code.
A significant source of ransomware intrusions can be traced to
emails with either malicious links or attached documents. The
only vulnerability in the system was that the actual user falls
prey to the attack by clicking on a malicious link or document.
This is an example of a level-above attack, i.e., an attack that
is completely legitimate with regards to the functionality of the
computer yet violates the intended operation of the system.

An underlying motivator for this paper is to pursue strategies
that help eliminate the game between attacker and defender,
instead of the endless cycle of increased attacks/defenses.
A prime example of a failed methodology is antivirus soft-
ware which uses a database to lookup known fingerprints of
malware to determine whether a piece of code is malicious.
The attacker in this game simply rewrites the malware to
perform the same function yet appear slightly different. The
antivirus company then eventually receives a report of this new
malware and adds a new signature to their table. We argue
to reconstruct the attack surface, so it is not profitable for
ransomware to attack.

Each stage in the ransomware process shares the same
defense strategy as any intrusion-based cybercrime. The dif-
ference in ransomware is whether the defender will pay the
ransom. Thus, we attempt to quantify what would the defender
pay for security to negate the effects of any ransomware.
We present two strategies to a defender. One attempt to assess
the cost of paying a ransom to regain system access, and the
other proposes a solution based on backing up the associated
computer systems.

The first strategy is to pay the ransom. The average ransom
demand per infection [4] was approximately $544 in 2017.
Although we note, a ransom of about one million dollars was
paid by South Korean Web Hosting Company Nayana for
153 Linux servers infected with an Erebus ransomware variant.
Along with the ransom demand is the business cost associated
with system recovery, which is nominally more expensive than
the actual ransom demand. Furthermore, paying the ransom is
not a guarantee of regaining access to locked systems, as seen
in the Petya infections.

The second strategy is to frequently back up data and
operating system (OS)/program files on distributed servers.
The OS and specific program files will be part of a backup
image stored on distributed servers, not necessarily encrypted.
The sensitive data are encrypted and stored in remote secure
storage facilities. In an attempt to protect from ransomware,
which is an attack on availability, we must be careful not to
expose the system to attacks on confidentiality and integrity.
For replication and remote storage of potentially sensitive
personal data to be an acceptable solution, fast encryption can
address confidentiality.

Given a cyber intrusion where the system is either
locked or data are encrypted, then a full system reset is
performed. Storage estimates at a dedicated cloud provider are
approximately $100 per terabyte per year. Given that backup
storage is recommended regardless of ransomware, one might
consider the cost as part of the business. The remaining asso-
ciated cost is with downtime attributed to discovery, reimaging
hard drives, and decrypting sensitive data.

From a financial perspective, we argue that the second
strategy is advantageous in the long run. Since this is a case
of a repeated game, it might be considered as a minimal cost
to pay a ransom, but in the long term, any ransom paid to
attackers will only further advance their campaign. In this
paper, we address encryption which will take into account
considerations that arise from requiring frequent backups of
a large amount of data.

1472 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 6, DECEMBER 2020

Fig. 2. Dynamic distributed secure storage.

IV. DYNAMIC DISTRIBUTED SECURE STORAGE

Now, we architect multiple components of a system for
dynamic distributed secure storage (DDSS). The main points
of concern are confidentiality, resiliency, and security of the
stored data. Confidentiality will be assured by fast local
encryption, so commercial cloud providers do not have access
to sensitive data. To address the resiliency of data, we ref-
erence recent work on the replication of data over multiple
servers with protection against erasure data. We do not address
the security of cloud enclaves in this paper and, therefore,
reference current overviews of infrastructure security, such
as [10].

The model of DDSS is to securely encrypt the data prior
leaving the local network. In order to encrypt, there will be a
separate device which permanently stores the key and has a
limited interface to the local computer to mitigate ransomware
attacks on the key.4 Data is then sent to cloud providers that
distribute the encrypted data to multiple servers in such a
way, dependent on the desired redundancy, that if up to a
certain percentage of the nodes are compromised, the data can
be restored then redistributed to new nodes. This is depicted
in Fig. 2.

A. Fast and Secure Local Encryption

We consider the following requirements that cannot be
satisfied by any of the current crypto concepts:

1) the encryption should not incur any efficiency cost;
2) speed should not incur any security loss.

The apparent contradiction of these two requirements is
resolved by observing that a third requirement that is normally
imposed on standard cryptosystems can be relaxed for cloud
cryptosystems: the decryption can be significantly slower than
the encryption. The reason is that the encrypted backups only
need to be decrypted when the user needs to revert to an
earlier version, because of an error or accident or because
of a ransomware attack.

We provide a form of encryption that is based on a cryp-
tosystem which achieves perfect secrecy, i.e., the one-time
pad. The one-time pad is chosen for its simplicity and ease of
analysis.

4Access to the key is required for data recovery.

Fig. 3. One-time pad with corresponding Latin square.

B. One-Time Pad and Latin Squares

The one-time pad is first known to be documented by Frank
Miller [11] in the late 1800s. The essence of the cryptosystem
is that one shares a sequence of numbers, i.e., the key, to be
used one time to encrypt a message, as shown in Fig. 3.
The system consists of an alphabet, plaintext, key, ciphertext,
and a table, called a Latin square. The alphabet determines
the symbols used in the plaintext, key, ciphertext, and Latin
square. The plaintext is the message that is desired to be
secretly transmitted. The key is the shared secret between
users, which can be used only one time, so they may secretly
transmit information. The Latin square is a lookup table which
determines how to combine any two elements of the alphabet
and has no repeated symbols in a row or column. As shown
in Fig. 3, 2 and 3 combine to give 4, which is highlighted in
the table. For shorthand moving forward, given a Latin square
as a matrix, say L with entries li, j we represent the lookup as
L(2, 3) = l2,3 = 4. Thus, the column is chosen based on the
plaintext, and the row based on the key.

It is essential in generating the key, such that each symbol is
equally similar so that the system has perfect secrecy. We say
that a cryptosystem has perfect secrecy, if the ciphertext
provides no more information about the plaintext that was
already known. In particular, the cryptosystem has perfect
secrecy if and only if

Prob(Plaintext | Ciphertext) = Prob(Plaintext).

Another question may be asked, suppose the attacker has the
key and ciphertext, but only partial information about which
Latin square was chosen. How well can the attacker guess the
plaintext? This question was posed in [12] and leads us to
multiple cryptosystems with fast encryption, potentially slow
decryption, and high secrecy.

C. One-Time Pad and Deletion-Based Cryptosystem

We now provide a high-level description of the algorithm
as shown in Fig. 4. We now show how to encrypt, as shown
in Algorithm 1, a block of N symbols with an alphabet of
size k, where Pi is for individual plaintext, and �i, j is a k × k
binary matrix which represents the key, and the positions of
the Latin square that will be deleted. Let d denote the number
of zeros in the key, i.e., the number of deletions.

CASTIGLIONE AND PAVLOVIC: DDSS AGAINST RANSOMWARE 1473

Fig. 4. Fast encryption based on one-time pad and deletions.

Prior to encryption, the intended receiver and sender share a
key consisting of a k×k binary matrix. We will see shortly the
ones in this binary matrix will determine what is transmitted
to the sender. Then, the sender randomly generates a k × k
Latin square, say L, with the given alphabet. Methods to uni-
formly generate Latin squares are addressed in [13] and more
recently [14]. In addition, the sender generates N uniformly
random symbols from the alphabet, say, K1, K2, . . . , KN .
Using the previously generated k ×k binary matrix, the sender
transmits the elements in the Latin square, L, where the
associated binary symbol is a 1. Now, the sender uses the
Latin square to calculate L(Ki , Pi), where P1, P2, . . . , PN

represents the plaintext. After which the sender transmits the
concatenation Ki ||L(Ki , Pi).

Then to decrypt, the intended receiver had recorded the
received symbols of the Latin square and places them
in an empty grid using the key, i.e., the binary k × k
matrix. The receiver then uses techniques from Sudoku to
solve for the remaining symbols of the Latin square, such
as Algorithm X from [15]. For the finale, the receiver
simply uses the solved Latin square to calculate the
plaintext.

When transmitting N plaintext from an alphabet of k
elements, the speed of encryption is dependent on the ability
to: 1) uniformly generate a k × k Latin square; 2) uniformly
generate N symbols from the alphabet; and 3) N Latin square
lookups. Generation of the Latin square and N symbols can be
done beforehand. Thus, the complexity is mainly dependent on
the implementation of the Latin square and requires memory of
k2 × log2(k). The complexity of a lookup is constant time and
is hardware dependent. The complexity of decryption requires
solving of a k × k Latin square with missing d symbols.
In using Dancing Links [15], it can be implemented with a
“grid-shaped” linked list with 3n2 + 32d nodes, where each
node has four incoming and outgoing pointers. The Latin
square is elegantly solved by a brute force search that removes
links representing inconsistent dependencies. When it reaches
a dead end, it backtracks to the last choice made and chooses
differently.

Algorithm 1 Encryption Using One-Time Pad With
Deletions

Data: P1, P2, . . . , PN ; �1,1, . . . , �k,k

Result: Transmit
begin

Generate uniformly random K1, K2, . . . , KN in
{1, 2, . . . , k} ;

Generate uniformly random k × k Latin square,
L = (li, j) ;

for i, j ∈ {1, 2, . . . k} do
if �i, j == 1 then

Transmit li, j

end
end
while Pi at input do

Transmit Ki ;
Transmit L(Ki , Pi) ;

end
end

The crucial feature of the problem at hand—that the
decryption is performed only for attack recovery, whereas
the encryption is performed continuously, and must incur no
significant computational expense on the cloud storage—limits
the applicability of the standard complexity on the proposed
framework. While the detailed security analysis is left for
future work, it is immediately clear that increasing the block
size improves the efficiency of the system, at the cost of
security. A straightforward quantitative analysis would allow
the user to determine the system parameters adequate to the
requirements of the application at hand.

D. Resilient Distributed Storage
In recommending distributed storage to all users, the amount

of data being stored throughout networks with limited band-
width increases, new problems to solve arise in how to
accomplish distributed storage in a dynamic environment. Four
main issues arise in this scenario:

1474 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 6, DECEMBER 2020

Fig. 5. Erasure channel with erasure probability of e.

1) How do we add redundancy to the stored data?
2) How do we distribute the data over multiple nodes?
3) How do we recover corrupted data?
4) How do we redistribute the data as servers are removed

and added?
Thus, the questions posed illustrate that the methodology
must adapt as the environment changes. It is not immediately
clear whether the aforementioned problems can be solved
separately. In particular, if one first calculates the required
redundancy and designs an error correction code that achieves
the specification, then would simply spreading the data over
servers as they go online/offline provide the optimal solution?

In [16], they consider how to add redundancy in such a
way that helps to increase the efficiency of redistributing
encoded data as additional servers come online. The model
of adding redundancy is based on error correcting codes for
the erasure channel. A brief overview of considerations in
applying erasure error correcting codes to distributed storage
is provided in [17] and [18]. In [19], they design a new class
of codes and compare them with Reed–Solomon codes. Their
codes are applied to the use case of a Hadoop HDFS, and they
claim a reduction in repair disk I/O and network traffic asso-
ciated with the repairs. Their codes require 14% more storage
than Reed–Solomon codes. Both of the previously mentioned
code designs have benchmarks focused on minimizing I/O and
network traffic associated with the repair. They are interested
in minimizing the effect of correcting errors on the system as a
whole. Below, we provide an example to illustrate the process.

1) Background: When data is stored on a file system, there
may be errors when writing to a disk, or there may be an
external trigger like a power surge which may cause bits
to be erased. The simplest channel model for erased bits is
the erasure channel, as shown in Fig. 5. It is simple in that
sense that it is memoryless and erases the current symbol
independently of its previous actions.

A natural question arises, is it possible to reliably trans-
mit information across this channel? Shannon answered this
question affirmatively in [20] and provided a rate at which one
could reliably transmit information. The capacity of the binary
erasure channel is C = 1 − e. This rate will help us evaluate
how well a particular code performs. The most optimal of
storage schemes for k bits, given an erasure probability of e,
would then have a total storage requirement of approximately
n = (k/(1 − e)) bits.

2) Using a Repeat Code for Distributed Storage: We now
perform a simple analysis of a r -Repeat code, which simply
means we repeat each symbol r times. First, we note the rate
of this code is (1/r) and calculate the probability of an error
as Prob(error) = p(r erasures) = er

Fig. 6. Probability of error versus erasure probability for repetition code.

We can quickly observe for e ≈ 1 the probability of error
is high. This will clearly not be an optimal code which is
illustrated in Fig. 6, although we will use the repetition code
to illustrate the basic concepts of [16].

Suppose we would like to encode a data bit using an r -repeat
code. Then, there will be a total of n = r bits to store. Next,
we distribute the data onto n nodes. If we have a total of
m data bits to encode, then we may use the repeat code to
store m · n data bits on n nodes. If the data server provider
adds a new server for extra redundancy, then we may choose
to transfer the data from the n existing nodes into the new
server. There are multiple strategies we may choose.

3) Broadcast: In the broadcast case, we can have each
existing server send their m bits to the new server, which will
ultimately have m · n bits transferred to the new server. This
method is decentralized and requires no coordination between
servers.

4) Coordination: On the other hand, we may implement a
distributed consensus algorithm, where the individual (honest)
servers each play a game of matching pennies, i.e., draw
random bits, and if they match one player wins, if not then
the other wins. Given n = 2 j , this algorithm will require j
rounds, and the i th round transmits 2i bits. Thus the total bits
transmitted will be m + ∑ j

i=1 2i = m + 2 j −1 = m + n − 1.
This is a little bit of an improvement. It is also possible to
always choose a particular server, and then the overhead is
simply m bits, the ability to select a random server has multiple
benefits, e.g., security and data diversity.

5) Precoordination: Another possibility is to distribute
a priori, a rank m, m × n binary matrix. Then, the i th server
may calculate the i th bit of the product and send it to the
new server. The new server may then recover the m bits. This
requires sending only m bits to the new server and has the
advantage that it requires no coordination.

V. RELATED WORK

Recent studies in defending against ransomware have
focused on detection and prevention. In [21], an extensive
study of 1359 ransomware samples from 2006 to 2014 was
performed. In their analysis, they found multiple similarities
in the activities of the different ransomware families collected.
They provided examples for detection, such as monitoring
abnormal file system activity and certain Windows application
programming interface (API) calls.

CASTIGLIONE AND PAVLOVIC: DDSS AGAINST RANSOMWARE 1475

In [22], crypto ransomware is specifically targeted. They
design a system, PAYBREAK, to detect and securely store
the keys associated with calls to cryptographic primitives on
the host system. They assume the ransomware authors either
dynamically link to system-provided libraries or statically
link to external libraries that provide cryptographic functions.
This allows PAYBREAK to monitor calls to cryptographic
functions and record the keys that the ransomware used to
encrypt the user’s files.

We see the move to network detection of ransomware
in [23], where the focus is on using software-defined network-
ing to actively monitor and react to malicious activity. In one
example, they update a blacklist database with malicious
domains. Their intention is to disrupt the connection between
an infected host and Command and Control center.

An approach with similar intent to this paper is found
in [24]. The focus of their paper is locally duplicating data in
available storage space. They attempt to remove the incentive
for users to pay ransomware by making extra copies of the
information in a local secure file system. The user may then
recover any ransomed data that was deemed important.

VI. CONCLUSION

In conclusion, we have argued for a paradigm change with
DDSS as a solution for all the families of ransomware and
local data compromises. This is not solely a technical solution,
but a strategic decision to lessen the value of ransomed data
to the owner since they may recover it elsewhere. A method
for fast and secure encryption was presented. In addition,
we provide a way to distribute data throughout multiple servers
dynamically, so that as nodes become compromised the data
can redistribute to new nodes.

REFERENCES

[1] Reuters, (2018). Atlanta Officials Reveal Worsening Effects of Cyber
Attack. [Online]. Available: https://preview.tinyurl.com/yd2msqze

[2] The Denver Post. (2018). Ransomware Strikes CDOT for Second Time
Even as Agency Still Recovering from First Samsam Attack. [Online].
Available: https://preview.tinyurl.com/y7zb5tz3

[3] D. Y. Huang et al., “Tracking ransomware end-to-end,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2018, pp. 618–631.

[4] D. O’Brien, “Internet security threat report: Ransomware,” Symantec,
Mountain View, CA, USA, Tech. Rep., 2017.

[5] G. Dyson, Darwin Among the Machines. Boston, MA, USA: Penguin
Books Limited, 2012. [Online]. Available: https://books.google.com/
books?id=NY7GlDGToRIC

[6] RAND. (2009). Paul Baran and the Origins of the Internet. [Online].
Available: https://www.rand.org/about/history/baran.html

[7] P. Baran, “On distributed communications I-XI,” RAND Corp.,
Santa Monica, CA, USA, Tech. Rep., 1964.

[8] A. Young and M. Yung, “Cryptovirology: Extortion-based security
threats and countermeasures,” in Proc. IEEE Symp. Secur. Privacy,
Oakland, CA, USA, May 1996, pp. 129–140. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1947337.1947357

[9] A. L. Young and M. Yung, “Cryptovirology: The birth, neglect, and
explosion of ransomware,” Commun. ACM, vol. 60, no. 7, pp. 24–26,
Jun. 2017. [Online]. Available: http://doi.acm.org/10.1145/3097347

[10] G. Cloud. (2017). Google Infrastructure Security Design Overview.
[Online]. Available: https://cloud.google.com/security/security-design/
resources/google_infrastructure_whitepaper_fa.pdf

[11] F. J. Miller, Telegraphic Code to Insure Privacy and Secrecy in the
Transmission of Telegrams. New York, NY, USA: C. M. Cornwell, 1882.

[12] P. Cameron. (2012). Bluebells. [Online]. Available:
https://cameroncounts.wordpress.com/2012/05/10/bluebells-2/

[13] M. T. Jacobson and P. Matthews, “Generating uniformly distributed
random latin squares,” J. Combinat. Des., vol. 4, no. 6, pp. 405–437,
1996.

[14] R. Fontana, “Random latin squares and Sudoku designs generation,”
Electron. J. Statist., vol. 8, no. 1, pp. 883–893, 2014.

[15] D. E. Knuth, “Dancing links,” 2000, arXiv:cs/0011047. [Online]. Avail-
able: https://arxiv.org/abs/cs/0011047

[16] X. Zhang, Y. Hu, P. P. C. Lee, and P. Zhou, “Toward opti-
mal storage scaling via network coding: From theory to practice,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018,
pp. 1808–1816.

[17] J. S. Plank, “Erasure codes for storage systems,” in Proc. Tutorial
USENIX Conf. File Storage Technol. Berkeley, CA, USA: USENIX,
2005, pp. 44–50.

[18] J. Li and B. Li, “Erasure coding for cloud storage systems: A survey,”
Tsinghua Sci. Technol., vol. 18, no. 3, pp. 259–272, Jun. 2013.

[19] M. Sathiamoorthy et al., “Xoring elephants: Novel erasure
codes for big data,” in Proc. 39th Int. Conf. Very Large Data
Bases, 2013, pp. 325–336. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2488335.2488339

[20] C. E. Shannon, “A mathematical theory of communica-
tion,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423,
Jul./Oct. 1948.

[21] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the gordian knot: A look under the hood of ransomware attacks,” in Proc.
12th Int. Conf. Detection Intrusions Malware, Vulnerability Assessment
(DIMVA), vol. 9148. Berlin, Germany: Springer, 2015, pp. 3–24. doi:
10.1007/978-3-319-20550-2_1.

[22] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak:
Defense against cryptographic ransomware,” in Proc. ACM Asia Conf.
Comput. Commun. Secur. (ASIA CCS), New York, NY, USA, 2017,
pp. 599–611. doi: 10.1145/3052973.3053035.

[23] K. Cabaj and W. Mazurczyk, “Using software-defined networking for
ransomware mitigation: The case of cryptowall,” IEEE Netw., vol. 30,
no. 6, pp. 14–20, Nov./Dec. 2016.

[24] K. P. Subedi, D. R. Budhathoki, B. Chen, and D. Dasgupta,
“RDS3: Ransomware defense strategy by using stealthily spare
space,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2017,
pp. 1–8.

Jason Castiglione (M’15) received the B.S. degree
in physics and mathematics from the University of
Florida, Gainesville, FL, USA, in 2004, and the
M.S. degree in mathematics from the University
of Virginia, Charlottesville, VA, USA, in 2006.
He is currently pursuing the Ph.D. degree in elec-
trical engineering with the University of Hawai’i at
Mānoa, Honolulu, HI, USA.

Dusko Pavlovic (M’95) is Professor of Computer
Science at University of Hawai‘i at Mānoa, where
he is the Director of Adaptive Security and Eco-
nomics Lab (ASECOLab). His research interests
have spanned a broad area of mathematics and
computer science, with an emphasis on security.

http://dx.doi.org/10.1007/978-3-319-20550-2_1
http://dx.doi.org/10.1145/3052973.3053035

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

