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Abstract—In this paper, we perform a large-scale study of the
Twitter follower network, involving around 0.42 million users
who justify drug abuse, to characterize the spreading of drug
abuse tweets across the network. Our observations reveal the
existence of a very large giant component involving 99% of these
users with dense local connectivity that facilitates the spreading
of such messages. We further identify active cascades over the
network and observe that cascades of drug abuse tweets get
spread over a long distance through the engagement of several
closely connected groups of users. Moreover, our observations
also reveal a collective phenomenon, involving a large set of active
fringe nodes (with a small number of follower and following)
along with a small set of well-connected non-fringe nodes that
work together towards such spread, thus potentially complicating
the process of arresting such cascades. Further, we discovered
that the engagement of the users with respect to certain drugs
like Vicodin, Percocet and OxyContin, that were observed to be
most mentioned in Twitter, is instantaneous. On the other hand
for drugs like Lortab, that found lesser mentions, the engagement
probability becomes high with increasing exposure to such tweets,
thereby indicating that drug abusers engaged on Twitter remain
vulnerable to adopting newer drugs, aggravating the problem
further.

Index Terms—Social computing, Twitter, Information retrieval,
Biomedical informatics

I. INTRODUCTION

THE enormous popularity of social media like Twitter

makes it suitable as an advertisement platform for pro-

moting drug-abuse. Keeping in view the spread and impact of

drug-abuse (there is an estimated count of 190, 000 premature

drug-related deaths 1), and the limitations of traditional “pre-

scription drug monitoring programs”(PDMPs) in understating

the severity of this issue [1] there is a need to have a

deeper understanding of how social media is playing a role

in promoting the drug menace.

We focus our attention on the Twitter platform, that is

one of the key media used to spread information related to

drugs. Several background works exist that have highlighted

the role of Twitter in the sale of illicit drugs [2] and the

promotion of drug-abuse [3]. Possible surveillance strategies

for identifying such retailers and drug-abusers have also been

well explored [4]. However, an important aspect that needs

to be carefully investigated is the networked effect of Twitter

that may amplify the spread of drug-abuse tweets among users.

Preliminary studies of Twitter users in [5] reveal the existence

1https://www.cdc.gov/nchs/data/health policy/monthly-drug-overdose-
death-estimates.pdf

of drug-related social circles (densely connected neighbor set

of a user) around certain active users who tweet frequently,

mentioning the different effects that specific drugs produce.

Although it is not completely clear whether such active circles

can influence non drug-abusers towards abuse, however, from

concepts like the “uses and gratification theory” and “Health

Communication Media Choice” (HCMC) model [6], it can be

argued that such discussions that glorify drug-abuse are likely

to engage users who justify drug-abuse in further deliberations

to satisfy their communication needs. Consequently, cascades

of user engagement, if formed through such discussions, would

volume up as social advertisements that would downplay

the ill effects of drug-abuse and may influence vulnerable

users towards such practice. In this paper, we discover and

characterize such cascades over the Twitter follower network,

where users participate in discussions that treat drug-abuse

positively.

To identify these cascades, we propose a technique that

uncovers around 0.42 million unique users who were engaged

in either self-reporting or promoting prescription drug-abuse

through tweets. The enormity of this number reflects the huge

role being played by social media in promoting prescription

drug-abuse on Twitter. However, the dynamics of these cas-

cades are mainly driven by the users’ engagement behavior,

as well as the underlying structure of the follower network.

Hence in our study, we follow a principled approach by first

investigating the underlying follower network of these unique

users and subsequently the characteristics of these users in

terms of their engagement behavior and positional importance

in the network, before finally studying the key features of

the cascades. The follower relation among these users is used

to create a network with directed edges. Investigation reveals

that this network is almost entirely connected with around

91.37% of the nodes being in the largest strongly connected

component. We also observe very high reciprocity of the

links in the network. All these network properties indicate

the network structure is amenable to the large-scale spread of

information. The spread, however, depends on the activeness

of the users (frequency of engagement) as well as their position

in the network. We assessed the activeness of the users and

found that around one-fourth of the users are active. Moreover,

the reach of these active nodes is considerable, as they cover

a substantial part of the network.

From the detailed study of the nature of the network and

its participating users, it is clear that a structure susceptible

to facilitate the formation of cascades exist. We discover
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around 50, 409 cascades, some of them with sizes reaching

to thousands and extending over several hops. The network

study of such cascades reveals high structural virality, i.e.

the cascades are not driven by a single important node,

which in turn makes them difficult to control. Further, the

network among the nodes participating in each cascade exhibit

significantly high clustering coefficient and reciprocity in

their follower relationships. All these observations provide a

strong evidence that drug-abuse tweets traverse through several

groups of closely connected users. Moreover, the study of

the characteristics of these users reveals equally important

contributions, irrespective of their position and activeness,

in the spreading process. The phenomenon indicates that

organic collaboration among a large set of nodes is largely

responsible for the emergence of a cascade; thus it may be

difficult to control the cascades by eliminating a few targeted

nodes. Finally, guided by the metrics associated with social

contagion processes [7] (discussed in detail later), we find

that users engage (through tweets or retweets) differently

when exposed to drug-abuse tweets with different drug names.

On exposure to tweets with highly mentioned drug names

like Vicodin, Percocet and OxyContin, the engagement is

instantaneous, whereas for less popular drugs like Lortab the

chances of engagement increase with increasing exposure to

such mentions. This signifies that drug-abusers engaged on

Twitter remain at risk of adopting newer drug types to which

they are continually exposed through Twitter discussions.
The rest of the paper is organized as follows. In the next

section, we highlight the related works. In section III, we de-

scribe the detailed dataset used in our work. In this section, we

explain the data collection process as well as the classification

method to identify the drug-abuse tweets. In section IV, we

describe the follower network formation method and further

detail its network characteristics. We subsequently discuss

the user characteristics in section V. The details about the

spreading pattern of the tweets across the follower network

are outlined in section VI. Finally, we summarize our findings

in section VII.

II. RELATED WORK

A plethora of recent work uses social media to gather

information and in turn, provide solutions to various issues

related to health. For example, social media has played an

vital role in providing rich information for inferring mental

health conditions (especially depression [8], mood instabil-

ities [9], suicidal risks [10] and the effects of psychiatric

medication [11]), as well as lifestyle-related conditions like

overeating, alcoholism and smoking [12]. Technological ap-

proaches are being leveraged for addressing critical issues like

the early prediction of such diseases [8], increased support

and service engagement [13] and a decrease in the duration

of untreated disorders [14]. These works provide a direction

to the critical issues, concerning the psychological problems

(including the drug-abuse problem), that require immediate

attention.
Recently, prescription drug-abuse is receiving increasing

attention due to its significant spread and the casualties in-

volved [15], [16]. Majority of these work are directed towards

identifying content on social media that reveal drug-abuse

behavior of the users. Such techniques include both supervised

classification [17]–[20] as well as unsupervised methods [15],

[21] for identifying drug-abuse tweets from the tweet stream.

Complementary to the problem of drug-abuse detection, works

based on identifying alternative opioid recovery treatments on

social media also exist [22]. Such data can be leveraged to gain

insights about the microscopic behavior of the corresponding

users and their role in spreading drug-abuse tweets in the

network, although only a few works have attempted to do

so [2], [5]. One of the primary goals of this paper is to work

towards these objectives.

In [5], the authors pointed out the influence of neighbors

(network effect) on the participation of users in discussions

related to drug-abuse. They observed the presence of social

circles in which active users (users who frequently discuss the

abuse of specific drugs on Twitter) are likely to be surrounded

by users who also participate in similar discussions, exhibiting

a high content correlation among them. While this work

provides preliminary insights about the tweeting behavior

among these participating users, revealing the existence of a

possible group phenomenon; to the best of our knowledge,

no other work has attempted to take a closer look into the

spread of drug-abuse discussions on social media platforms.

However, the study of the propagation of different tweet

content to understand human behavior has been a focus area

across various topical domains. One of the earlier works on

information flow on Twitter [23] showed the presence of a

few elite users in Twitter who generate a majority of the

content that is consumed by ordinary users. Several other

works have also investigated the user characteristics and the

role of influential users in information propagation across

social networks [24], [25]. Subsequent empirical works have

examined several other factors like the underlying network

of the users [26]–[28], the user characteristics [29]–[31] the

role of content [32], [33] and even the role of the underlying

diffusion protocols [34] in such propagation. Selected works

have investigated the effects of both users and content in

information propagation [35], [36]. Since the dynamics of

information propagation across networks vary with topics and

content, this motivates the need to investigate the spreading

behavior in the context of drug-abuse tweets by inspecting the

cascades of user engagement, the role of the network and the

user characteristics in the spreading process.

Spreading of various social behaviors has been investigated

in several works, like the cessation of smoking [37], online

sharing [38], and political controversies [7]. These works high-

light the importance of collective dynamics, often modeled

through a complex contagion phenomenon, in the spreading

of social behavior. As these works can eventually help in

controlling viral spread when such propagation is not desired

(like in case of drug-abuse tweets), there is a need to look

into the generation of drug-abuse tweets through the prism of

such models. As there is still a wide gap in understanding the

characteristics of the social network through which such drug-

abuse tweets spread and the role of the users that influence

spreading of drug-abuse content, we believe this paper would

contribute in filling this gap. In the next section, we describe
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TABLE I: List of generic and brand names of prescription

opioids medically used to treat pain2.

Generic names Brand names

oxycodone OxyContin, Percodan, Percocet
hydrocodone Vicodin, Lortab, Lorcet
diphenoxylate Lomotil

morphine Kadian, Avinza, MS Contin
codeine -
fentanyl Duragesic

propoxyphene Darvon
hydromorphone Dilaudid

meperidine Demerol
methadone -

the dataset used for this study.

III. DATASET

In this section, we provide a detailed description of the

Twitter dataset along with the data collection methodology and

the preprocessing techniques used. We subsequently describe

the classification technique used to identify tweets that are

promoting or reporting prescription drug-abuse. In line with

the literature [5], the corresponding users engaged in such

tweets are henceforth termed as drug-abusers. Based on the

follower relation among these drug-abusers, a network is

created. The steps followed to form the network is pictorially

represented in figure 1.

A. Data Collection

The data collection steps can be briefly described as follows:

1) We prepared a set of drugs names (see table I) that have

been marked and listed for abusive use in the past by the

National Institute on Drug Abuse (NIDA)2. The generic

and brand names of these drugs were used as search

keywords for collecting the drug-related tweets using the

web-based crawler, “Get Old Tweets”. This provided all

the searchable tweets from January 2012 to July 2017

containing the drug names.

2) As only limited information about the tweets was being

provided by the web-based crawler, we used the “tweet

id” of the returned tweets to further query and extract

the complete meta-data using the Twitter API3.

3) As retweets could not be retrieved using this web-based

crawler, they were obtained using a different Twitter

API4.

4) Finally, non-English tweets were identified using

LangID5 and discarded.

Using this approach, we collected more than 2 million drug-

related tweets. However, we observed that this collected tweet

set included both kinds of tweets: those promoting drugs or

reporting drug-abuse as well as those spreading awareness

or rehabilitation and treatment information, that we term as

non-abuse tweets. Hence, we applied several machine learning

techniques to identify drug-abuse tweets, which is detailed in

the next section.

2https://teens.drugabuse.gov/drug-facts/prescription-pain-medications-
opioids

3https://api.twitter.com/1.1/statuses/show.json
4https://api.twitter.com/1.1/statuses/retweets/:id.json
5https://github.com/saffsd/langid.py

B. Classification of Drug-Abuse Tweets

TABLE II: Performance of binary classification of prescription

drug-abuse tweets. 10-fold cross-validation is used to measure

the F1 score of the two classes (Drug-Abuse and No-Abuse)

and the overall accuracy of the classifier.

Classifier DA F1 NA F1 Accuracy

N-grams as features and handcrafted features
Naive Bayes 0.752 0.701 72.87%
SVM 0.787 0.759 77.42%
Random Forest 0.842 0.794 82.12%
Logistic Regression 0.701 0.694 69.75%
AdaBoost 0.740 0.613 68.91%
XGBoost 0.776 0.694 74.13%
Bagging 0.770 0.752 76.14%
Voting 0.786 0.758 77.23%

Sentence embeddings and handcrafted features
Naive Bayes 0.758 0.735 74.71%
SVM 0.857 0.846 85.16%
Random Forest 0.814 0.806 81.03%
Logistic Regression 0.811 0.803 80.70%
AdaBoost 0.782 0.770 77.61%
XGBoost 0.817 0.810 81.34%
Bagging 0.795 0.780 78.85%
Voting 0.843 0.832 83.83%

Deep learning with word embeddings
LSTM 0.807 0.812 81.03%
RNN 0.819 0.820 81.99%
RCNN [39] 0.805 0.812 80.90%
TextCNN [40] 0.830 0.837 83.38%

One of the important requirements in identifying the drug-

abusers is to classify the tweets based on whether they promote

(or self-report) prescription drug-abuse or not. As a signif-

icant proportion of the tweets are meant towards increasing

awareness against drug-abuse, we need to filter out tweets

that promote or self-report drug-abuse from the rest of the

tweets. Taking a cue from the works related to the automatic

identification of prescription drug-abuse tweets [16], [17],

[41], [42], we investigated several supervised classification

based approaches to filter out drug-abuse tweets from the set

of tweets collected using keyword search. We proceeded with

text classification as follows:

Data Annotation: : We manually annotated 8, 400 tweets,

containing 14 different themes (see table III) that where

identified through an exhaustive manual investigation made

by 3 annotators on 20, 000 tweets from the collected dataset.

These 20, 000 were selected randomly from the collected data.

We subsequently, selected 600 unique tweets, randomly, from

each theme for annotation to create a balanced annotated

training set of 8, 400 tweets. Each tweet was subsequently

labeled as ’Drug-Abuse (DA)’ or ’Non-Abuse (NA)’ by 3
annotators and inter-annotator disagreements were solved by

majority voting. The 14 themes from table III can be grouped

into DA or NA categories with each group having 7 themes.

Hence the resulting dataset used for measuring classification

performance is balanced and has equal number of drug-abuse

and non-abuse tweets (i.e. 4, 200 tweets per category).

Feature Selection: : We use three different feature sets for

binary classification, based on the classifier, as follows:

1) A combination of bi-gram vector and handcrafted fea-

tures, proposed in [16].



4

Tweets
matching 
keywords

Fig. 1: Steps of follower network formation.

TABLE III: Example of the variety of tweets that match our keywords. The keywords (listed in table I) that are used to search

prescription drug-abuse tweets are highlighted. All the tweets in this table are paraphrased to maintain the anonymity of the

users.

Drug-Abuse Examples Non-Abuse Examples

Category Tweet Category Tweet

Addiction I was an addict, a complete addict! I was consuming more
than <NUMBER> mg of Morphine and OxyContin each
day.

Metaphor / Sarcasm /

Jokes

What you call Alabama Shakes we call that OxyContin

withdrawal in the state of Ohio.

I am officially addicted to Vicodin... I need help. My grandmother was telling about how much she money
could earn by selling her Percocet on the streets. lmfao.

Co-ingestion Washing Demerol down my throat with some vodka. I
sense that I have officially failed at life.

Awareness Left over Vicodin: Flush or Trash? Link to FDA for Safe
Medication Disposal. <URL>. A useful homepage link
for patients?

Vicodin with Weed = a long sleep. The CDC says <NUMBER> people died this year from
prescription opioid overdose. #Percocet

Alternate modes of in-

gestion

I’m sitting on a large leather chair railing a ton of
Dilaudid.

Rehabilitation Vicodin Rehab in Florida, Florida Center for Recovery
<URL>.

I’m about to snort some of the OxyContin off my table
#YOLO

Behind the Dependence on OxyContin and Transition to
Heroin @ Trusted Heroin Rehab <URL>

Recreation Have I at any point referenced how much I recreationally
enjoy Vicodin?

Pop-culture

references

OxyContin, Xanax bars, Percocet and Lortab / Valiums,
Morphine patches, ecstasy / It’s all up for grabs

Having a Vicodin party at my place, who wants to join?
#insomnia

Don’t shoot, you can’t fight a viking on Vicodin. Can you?

Selling I’m amassing all my remaining Vicodin and Percocet

from my previous two medical procedures and selling
them as soon as I get back to the burgh

News Washington city devastated by OxyContin addiction sues
Purdue Pharma — claiming drugmaker put profits over
citizens <URL>

Giving out Percocet, $<NUMBER> a pill... Get your
hands on them while they last!!

Heroin makes lethal comeback after OxyContin becomes
more difficult to crush - Alaska Dispatch <URL>

Ingestion One of the metrits is that I get to pop Vicodin like breath
mints. So that’s always a good thing.

Medical treatment Consumed a Vicodin to get rid of the pain in my mouth
only to throw out everything a few hours after my surgery.

High as a kite after taking that Vicodin. Surgery went well, and i’m happy that it’s over. Its time
to take some Vicodin!!

Illegal online pharma-

cies

Order High quality OxyContin Online, <NUMBER>%
discount. No Prescription Required <URL>

Pain Sadly, the Percocet isn’t helping me with my knee pain.
I may need to explore something different.

Did someone say Percocet? Buy Percocet Online
<URL>

My knee is in great pain. I need to take a Percocet for
the pain.

2) A combination of semantic sentence embedding,

Sent2Vec [43], and handcrafted features.

3) Word embeddings using GloVe.

Compared to the n-gram based feature generation approach

proposed in [16] that generates a large set of features (around

11, 000), the feature set generated by Sent2Vec is much

smaller (around 700). The handcrafted features used in lit-

erature to classify drug-abuse tweets include the presence

and count of (a) specific abuse-indicating keywords that may

indicate frequent overdoses, co-ingestion, alternative motives

and routes of drug admission [5], [44], and (b) keywords rep-

resenting drug-related slang and colloquial words6. Each word

in GloVe embedding was represented using a 100 dimension

vector.

Classification: : We use 10-fold cross-validation to report

classification results. In each iteration of the 10-fold, tweets in

the training set and test set were sampled randomly, ensuring

an equal proportion of drug-abuse and non-abuse tweets in

both the sets. This was done using the “Stratified K-Folds

cross-validator” library of scikit learn, which ensured that

the percentage of samples from each class were preserved in

6https://www.noslang.com/drugs/dictionary.php
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training and testing set during each fold. In each fold, the

sampling for the test set and training set was done with 1 : 9
ratio, ensuring that the tweets from the test sets of previous

iterations are not repeated in the latest test set.

We used several machine learning as well as deep neural

network based methods for classification. The machine learn-

ing models included Naive Bayes, SVM, Random Forest, Lo-

gistic Regression as well as Ensemble learning techniques like

AdaBoost, XGBoost, Bagging and Voting. Decision Stump

was used as the base classifier for AdaBoost and Bagging,

while SVM, Logistic Regression and Naive Bayes classifiers

were used as the base classifiers in Voting ensemble where

the majority of the label predicted by the three classifiers was

considered as the label. These models were trained on two

different feature sets as, mentioned in (1) and (2). The deep

learning models used include LSTM, RNN, RCNN [39] as

well as TextCNN [40] and were trained on word embeddings

mentioned in (3).

While LSTM and RNN are commonly used deep learning

techniques for text classification, RCNN tries to improve

upon them by incorporating contextual information in the

recurrent structure. In contrast to the recurrent deep learning

architectures, TextCNN adapts CNN for sentence classifica-

tion, making it relatively faster to train and requires little

hyperparameter tuning. All the deep learning models were

trained with GloVe embeddings as inputs, where each word

was represented by a 100 dimension vector. The LSTM model

was parameterized with a dropout of 20% and recurrent-

dropout of 20%. We used bidirectional GRU as the recurrent

layer in RNN model and its output was max-pooled and

average-pooled. The concatenation of the max-pooled and

average-pooled vectors was given as inputs to the dense layer

for classification. The RCNN model was parameterized to

generate 100 dimensional (left and right) context vectors.

In the TextCNN model, the kernel-size of the 3 (parallel)

convolution layers were 2, 3 and 5 respectively. Each of its

convolution layers had 128 filters. The output of the three

convolution layers were max-pooled, concatenated and given

as input to the dense layer. Table IV gives a summary of the

important parameters for these DL models.

TABLE IV: Description of the model parameters.

Parameter Value (Remarks)

LSTM

Dropout 0.2
Recurrent Dropout 0.2

RNN

Recurrent Layer
Type = Bidirectional GRU (Outputs of

this layer were max-pooled and
average-pooled.)

Dense Layer
Input = Concatenation of

Average-pool and Max-Pool layers
RCNN

Left Context dim = 100
Right Context dim = 100

TextCNN

# Parallel CNN layers 3
CNN Layer 1 Kernel size = 2 , Filters = 128
CNN Layer 2 Kernel size = 3 , Filters = 128
CNN Layer 3 Kernel size = 5 , Filters = 128

Observations: : Table II compares the 10-fold cross-

validation accuracy (applied on the 8, 400 annotated tweets)

of different Machine Learning (ML) and Deep Learning (DL)

classifiers in identifying the abuse and non-abuse tweets.

While DL classifiers generally perform better than ML clas-

sifiers, we observe that SVM trained with a combination of

sentence embeddings and hand-crafted features outperformed

all the classifiers. Based on the classification performance of

SVM, it was used for further classification of 2.2 million

tweets.
Although the accuracy of our approach in identifying the

drug-abuse tweets is significantly high, however, we inves-

tigated some of the reasons for misclassification. From fig-

ure 2(a) it is evident that the correctly classified drug-abuse

(DA) tweets prominently contain drug-abuse related slang

terms (like oxycotton, hillbilly, percs, etc.) and keywords

hinting at co-ingestion (like alcohol, beer, etc.), while correctly

classified non-abuse (NA) tweets as seen in figure 2(c) have

relatively low slang terms and co-ingestion keywords but

higher mentions of motive keywords (like surgery or stress)

and side-effects (like insomnia or migraine). While it is

difficult to determine the exact reason for misclassification, but

based on the evidence it is highly likely that NA tweets might

be misclassified as DA (figure 2(b)) due to the presence of

slang terms and co-ingestion keywords. On the other hand NA

tweets might be misclassified as DA tweets due the relatively

higher presence of motive terms and keywords hinting at side-

effects.

Out of the 2.2 million tweets, the classifier identified around

0.77 million tweets (36% of total tweets), of 420, 502 unique

users, as prescription drug-abuse tweets. We subsequently

used the Botometer [45] API 7 to identify and remove the

bot accounts. This service assigns each user a bot score

corresponding to the likelihood of that account being a bot.

The score is calculated based on a set of 1, 150 features using

account metadata, content, network and temporal information.

Using a threshold score of 0.5 [45], [46], 185 users were

labeled as bots and their corresponding tweets were discarded.

For ethical concerns, we follow a rigid anonymization

mechanism based on guidelines mentioned in [47]. The tweet

and user identities were replaced by virtual identifiers. The

corresponding user mentions in the tweets were also replaced

by the corresponding virtual identifier. The timestamps of the

tweets were also suitably replaced by relative values. All the

tweets provided as examples in this paper were paraphrased

and the URLs were also replaced by placeholders.

The observations thus highlight the enormity of the scale

of the drug-abusers active in the social network and the

tremendous threat they can pose in spreading of the drug-

abuse menace. However, there are a few limitations of the

dataset that we outline next.

C. Limitations of the Dataset

The dataset considered for this study contains information

about the users, their followers and the users they follow

on Twitter, in addition to each user’s prescription drug-abuse

7https://botometer.iuni.iu.edu/
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(d) False Negatives

Fig. 2: Average normalized count of prominent keywords of

(a) correctly classified DA tweets, (b) NA tweets classified

as DA, (c) correctly classified NA tweets and (d) DA

tweets classified as NA. ML classifiers trained on sentence

embeddings and DL classifiers trained on word embeddings

were considered.

tweets. The web-scraping API retrieves original tweets only,

i.e., it does not contain retweets. Hence the Twitter API8 was

used to collect retweets of drug-abuse tweets. A limitation of

this API is that it only retrieves 100 most recent retweets of

the tweet. As a result, we couldn’t retrieve complete retweet

information of 170 tweets which had more than 100 retweets.

Another limitation of this dataset is that it does not contain

information about the time when a user followed someone else.

As a result, the network created from this dataset is considered

as a static network and the dynamicity of the edges could not

be considered.

D. Qualitative Analysis of the Tweets

We performed a qualitative analysis of the 2.2 million

tweets that were collected in the dataset. Table III provides

representative examples of both drug-abuse and non-abuse

tweets. Majority of the non-abuse tweets, (that contain drug-

abuse keywords, but do not promote or report drug-abuse) can

be related to spreading awareness and rehabilitation, news or

be related to reporting effectiveness or side-effects of drugs

used during medical treatments. Finally, a small fraction of

tweets contained references to pop culture in the form of song

lyrics about drug addiction and recovery or prescription drug-

abuse references in movies or television shows.

As part of the study of the cascades of drug-abuse messages,

we initially investigated the underlying follower network of the

8https://api.twitter.com/1.1/statuses/retweets/:id.json
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Fig. 3: (a) represents CCDF of the follower count and

following count of the users and (b) represents CCDF of

the number of tweets of users in the network.

drug-abusers along with their engagement characteristics, both

of which are major drivers of these cascades. We next describe

the process of creating the follower network and describe some

of its characteristics that play major roles in the spread of the

contents.

IV. THE FOLLOWER NETWORK

As the network provides the underlying framework for the

spread of the drug-abuse tweets, we observe some of its

essential properties and highlight their significance. However,

we first briefly outline the steps of the formation of the

network.

A. Network Formation

We used the user information and their corresponding tweets

(or retweets) to create the follower network of these users. For

each of the 420, 317 unique users (denoted as U ) identified

from the 0.77 million abuse tweets and retweets, we used the

Twitter API9,10 to identify the follower relation between a user

and the remaining unique users. The resulting network is a

directed graph represented as G = 〈V,E〉, where V is the

set of nodes represented by the users in U and E is the set

of directed edges between the node pairs. A directed edge is

created from node j to i (denoted as eij) if user ui is followed

by uj .

We next observe the properties of the network and investi-

gate the possible support it can provide in spreading of drug-

abuse tweets.

B. Characterizing the network

We highlight some of the significant network properties

(summarized in table V) that would impact the spreading of

drug-abuse tweets.

9https://api.twitter.com/1.1/followers/list.json
10https://api.twitter.com/1.1/friends/list.json
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TABLE V: Statistics of the follower network.

Network Property Value

Number of nodes 420, 317
Number of links 17, 639, 370
Average (in/out) degree 41.97
In-degree exponent 1.41
Out-degree exponent 1.38
Number of connected components 237
Giant component size 419, 700
Clustering coefficient 0.1516
Reciprocity 0.6291

TABLE VI: Distribution of the users across different Bowtie

components.

Component Count Percentage

LSCC 384, 027 91.37
IN 29, 578 7.04
OUT 4, 467 1.06
Tendrils 1, 224 0.29

Basic Statistics: We observed that there exists a large net-

work consisting of approximately 0.42 million unique users,

with 17 million links between them. The number of followers

(in-degree) and followings (out-degree) of the nodes in this

network follow power-law distributions with exponents 1.41
and 1.38, respectively. Figure 3(a), shows the complementary

cumulative distribution (CCDF) of the number of followers

and followings within the network. The in-degree exponent

indicates that a significant fraction of drug-abusers have a very

high number of followers (47% of users have more than 10
followers and 6.6%, i.e. 28, 077 users, have more than 100
followers in the network), suggesting the possibility of a sig-

nificant spread of the drug-abuse tweets if suitable connections

exist among the nodes across the network. Consequently, we

observed three major structural properties of this network —

the connectedness among the nodes, the average clustering

coefficient and the reciprocity of the links — all of which play

an important role in the spread of tweets and can subsequently

impact the user engagement.

Connectedness: To observe the connectedness of the net-

work, we looked at the number of connected components,

i.e., subgraphs where all the nodes within it are connected

through a path and have no additional connections to any other

nodes outside the supergraph. We observe that although there

are 237 connected components in the network, however the

largest (giant) component comprises of 99.85% of the total

nodes (around 419, 700 nodes), indicating that the network

is almost entirely connected. The second and the third largest

connected components have 62 and 20 nodes respectively, and

there exist several smaller components with an average size of

around 2. Further, if we model the (giant component) network

as a BowTie structure [48] it is found that around 91% of the

nodes (refer table VI) fall in the largest connected component

(LSCC) or the core of the structure with much fewer nodes in

the IN and OUT components. A large core, apart from being

resilient to targeted attacks, also implies the possibility of

faster diffusion of drug-abuse tweets over a significant fraction

of the network [49].

Clustering Coefficient: This undirected network exhibits

a high average clustering coefficient of around 0.15 that

is significantly higher than observed in the actual Twitter

network (0.096) [50]. Although a high clustering coefficient

has generally been considered as an impediment to large-scale

diffusion across the networks [51], however, it needs to be

investigated how the high clustering coefficient impacts the

cascade properties in the drug-abuse networks.

Reciprocity: Our investigation further reveals the existence

of very high reciprocity (63% of total links) in the network.

This value is significantly higher than the reciprocity value of

around 22% observed in the Twitter follower network studied

in [52]. Previous studies have indicated that the existence

of high reciprocal links not only affects the coverage of the

spread of messages in social networks but also enhances the

speed of the diffusion [53].

We later investigate the impact of these structural properties

of the network on the cascades. However, these statistics point

towards the existence of an underlying network platform that

is amenable to the spread of the drug-abuse tweets through

active engagement of a set of users. Hence we next attempt

to characterize the users in the network by their engagement

pattern.

V. CHARACTERIZING USERS IN THE NETWORK

In information diffusion, users playing dominant roles in

the spreading processes have often been identified based on

the importance of their contents, their positional significance

in the network and their engagement time. In this section,

we focus on the engagement time along with the positional

significance to characterize the users and deal with the contents

separately in the later section. While the engagement time or

activeness of the users can contribute to the speed of diffusion,

the positional importance can help in increasing the breadth or

depth of the cascades [54]. We initially provide measures for

both activeness and positional importance and subsequently

characterize the users based on both these parameters.

A. Activeness of User

All users are not equally active in tweeting about pre-

scription drug-abuse. Figure 3(b) shows the complementary

cumulative distribution of the number of tweets of the users.

The figure highlights that there exists a significant fraction of

users with a vast number of tweets, with 4, 286 users with more

than 10 tweets and 134 users with more than 100 tweets. We

consider a user as an active user if one tweets more with low

latency (a gap between two consecutive tweets). The latency

between two tweets is calculated based on the creation time

of each tweet made available by the Twitter API. To avoid

any confusion, we re-emphasize that Twitter does not provide

the time when a user starts following someone. Thus the

activeness score of user i, denoted as φi is defined as follows:

φi =











|Ti|
li

, if |Ti| > 1

0, otherwise

(1)

where, Ti = {t1, t2, . . . , tn} is the set of sorted timestamps

of the corresponding tweets of user i, |Ti| is the total number
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TABLE VII: Categorizing user of the network based on their

activity.

Users category Number of users

Highly active users 4, 436
Moderately active users 95, 281
Inactive users 320, 600

of tweets by user i, and li is average latency between two

consecutive tweets of user i that can be defined as follows:

li =
1

|Ti| − 1





|Ti|−1
∑

k=1

(tk+1 − tk)



 =
1

|Ti| − 1

(

t|Ti| − t1
)

(2)
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Fig. 4: (a) represents the CCDF of users’ activity score as per

equation 1, (b) represents CCDF of the Authority and Hub

score of the users calculated using HITS algorithm.

The distribution of activity score as shown in figure 4(a) is

a heavy-tailed power-law distribution. To categorize the users

based on the activity score, we used the Head/Tail breaks

algorithm [55] to cluster the distribution into 2 parts. Users

with φi > 1.4 × 10−3 (i.e. the tail) were classified as highly

active users. The remaining users were further classified into

2 categories, moderately active (0 < φi ≤ 1.4 × 10−3) and

inactive (φi = 0). Table VII shows the number of users

belonging to each category according to activity score.

B. Positional Importance

The position of a user in the network can determine her

reachability (ability to reach a broad set of users through her

tweets) as well as her accessibility (ability to receive tweets

from a large number of users). To capture both these charac-

teristics simultaneously, we calculated the hub and authority

score of each user in the network. Authority score of a node is

high if it is followed by nodes with high hub score, whereas

the hub score of a node would be high if it follows nodes

with high authority scores. Thus, while authorities can act as

good information spreaders because of their followers, hubs

can act as information collectors obtaining diverse information

from different authorities. We use the HITS algorithm [56] to

calculate authority and hub score of each user.

Figure 4(b) shows the CCDF of the hub and authority

scores. We labeled the users as high authority user if its

authority score is above 6 × 10−6 (obtained using Head/tail

breaks algorithm [55]) and the rest of the users are labeled

as low authority users. Those users having hub score above

4 × 10−6 using the same algorithm are labeled as high hub

user, and the rest of the users are labeled as low hub users.

We categorized the users into four role types based on

authority and hub scores: a) information seeking – who have

high hub and low authority scores, b) information sharing –

who have high authority and low hub scores, c) leaders – who

have high hub as well as high authority scores and d) fringe

– who have low hub and low authority scores.

In table IX, we observed that around 95% of the total users

are fringe nodes who have few followers as well as very few

followings. On the other hand, the total number of users in

each of the remaining three categories is only 1 − 2%. The

users in the three remaining categories represent the influential

section of users in the network who have the capability to

spread drug-abuse tweets across a large section of the network.

Thus it is necessary to investigate the contribution made by

each of these user types in the spread of drug-abuse tweets;

hence we next correlate the activity score of the users with

their hub and authority scores to explore their potential in

spreading drug-abuse tweets.

C. Characterizing Highly Active Users

Initially, we took a closer look at the active users and

observed their role types. The first row in table VIII shows the

number of active users in each of the role categories. As can be

observed, more than 96% of the highly active users are fringe

nodes. This indicates that even though fringe nodes hold less

positional importance but a significant fraction of the active

engagements in generating drug-abuse contents is made by

them. Thus to investigate the fraction of users getting exposed

to the drug-abuse tweets generated by these active users, we

further observed the reach of the active nodes at different hops.

As shown in table VIII, the active nodes by themselves can

reach only 23% of the network in the first-hop but manage

to reach 89% of the network in the second-hop. Thus, the

reachability of the first-hop neighbors provides the active users

the potential to reach the bulk of the nodes in the network.

On taking a look at the properties of the first-hop neighbors,

we find that around 13% of these nodes have either a high

hub or authority score i.e. they are non-fringe users, including

more than 9% leaders who have both high hub and authority

scores. Roughly 0.21 million or 77% of the users in the

second-hop follow at least one non-fringe user in the first-

hop, highlighting the importance of the connectivity of non-

fringe nodes. Interestingly, we also observed that 81% of the

first-hop neighbors follow one or more active fringe nodes,

indicating that even though individually the active fringe nodes

are not structurally important but collectively they can reach

a significant number of users in the first-hop.

Thus a major takeaway from these observations is that

although most of the active users are positionally fringe,

however, due to the positional importance of their first-hop

neighbors, drug-abuse discussions initiated by these nodes

can potentially reach a significant population of users in the

network. We next observe the actual cascades and investigate
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TABLE VIII: Reach of highly active users at each hop. Hop 0 shows the distribution of highly active users by their role in

the network followed by the distribution of users roles at each subsequent hop.

Hops Info.Sharing Leaders Info. Seeking Fringe #users reached % of network covered

0 4 88 47 4, 297 4, 436 1.05%
1 374 8, 828 2, 741 79, 985 96, 364 22.93%
2 407 3, 251 2, 191 272, 548 374, 761 89.16%
3 12 0 0 37, 155 411, 928 98.00%
4 0 0 0 2, 256 414, 184 98.54%
5 0 0 0 130 414, 314 98.57%

TABLE IX: Properties of different user roles.

User Role #Users
Mean Mean

in degree out degree

Fringe 402, 348 24.97 27.87
Info. seeking 4, 979 72.48 133.06
Leaders 12, 167 467.51 466.09
Info. sharing 823 1877.20 110.32

the role of the underlying network along with the key players

and the tweet contents in the spreading process.

VI. CASCADES AND SPREAD

To measure the extent of the spread and influence of

tweets, we investigate the cascades formed through drug-abuse

discussions. We discovered the key players along with the

pattern of user engagement responsible for the formation of

the cascades. Here user engagement refers to both generation

of new drug-abuse tweets as well as re-tweets by the users.

Subsequently, the dynamics of spread with respect to the

drug names are investigated, keeping in mind the complex

contagion phenomenon that is typical to the spread of social

behavior.

A. Measuring Cascades

We initially describe the experimental procedure to identify

the cascades followed by the measures of various properties

of the cascades.

Dataset Preparation: The cascades might be formed when

users directly retweet a drug-abuse tweet or create a fresh

content based on one that has appeared in their timeline.

While retweets can directly be linked to a cascade, determining

whether a new drug-abuse tweet has been made based on

the previously received tweet (and hence should be a part of

the cascade) is difficult. Possibilities exist that the user might

have been influenced by certain external sources and not the

drug-abuse tweet she has received before tweeting. However,

ignoring such tweets entirely as not being part of the cascades

can lead to a severe undermining of the veracity of the cascade

problem. Hence to reduce the chances of such coincidental

errors, following assertions were made: a) a tweet T was

added to the cascade if at least one previous tweet from the

cascade appeared on the user’s timeline within a short period,

∆, prior to the sending of T and b) we consider only large

cascades for analysis so as to ensure that a significant fraction

of the spread does not suffer from such error. The value of

∆ was chosen as nine days based on the study in [57], where

it is shown that the mean of the attention decay time (time

between peak attention and 75% of attention) of the tweets
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(b) Structural Virality.

Fig. 5: (a) represents CCDF of the cascade size (a) represents

the relation between cascade size and mean structural virality

(Wiener index) for each bin.

is around 217 hours. The process of identifying cascades is

formally defined below.

The drug-abuse tweets in the dataset are initially sorted

based on their time of generation. For each tweet, the cor-

responding creator is identified and is included as the initial

node in the cascade graph G = 〈V,E〉. A user, v, following

the initiator i is added as a node to the cascade graph if

it has either re-tweeted or created a new drug-abuse tweet

within nine days of the appearance of the parent tweet in her

timeline. A directed link is created from node i to the follower

v, indicating that engagement of node v has possibly been

influenced by i. This process is further recursively repeated

for the followers of the newly added users in G. By following

this process, we extracted around 50, 409 cascades of different

lengths. We focus on the large cascades as they mainly reflect

the threat posed by social media in the spread of drug-abuse

tweets. To study the characteristics of the large cascades, we

considered cascades of length ≥ 20 for our investigations. The

choice of this value is not a principled one but is based on

our observation that users with different characteristics play a

consistent role across cascades beyond the length of 20. We

next investigate the key structural properties of these large

cascades.

Structural Properties of the Cascades: The distribution of

the cascade sizes provides an idea about the scale of user

engagement. As shown in figure 5(a), the distribution of

the cascade sizes follows a power-law with an exponent of

2.06. The maximum cascade size observed is 23, 164, which

indicates large cascades of user engagement may be formed

due to the spread of drug-abuse tweets.

We also observed the structural virality of these cascades,

as defined in [58]. The structural virality has been measured

using the Wiener index that is given by the average shortest

path length (davg) between any pair of nodes in the cascade
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Fig. 6: Properties of cascade nodes in network subgraph. (a)

shows the average shortest path and diameter of the cascade

nodes in network subgraph and, (b) shows the average

reciprocity and clustering coefficient.

graph. A lower value of davg (near to 2) indicates a hub-

like structure where a single powerful node causes the entire

cascade, whereas larger values indicate viral diffusion through

branches involving multiple propagating nodes. Figure 5(b)

shows the distribution of the structural virality observed in the

follower network. As can be observed, the structural virality

steadily increases with increasing cascade size. This indicates

that multiple nodes play an important role in the cascades.

1) Subgraph Properties of the Cascade Nodes: To study the

network structure of the nodes involved in the large cascades,

for each cascade we constructed a network subgraph that

comprises of the nodes of the corresponding cascade. As

shown in figure 6(a), the average path length between the

nodes in the subgraph vary from 2.51 to 21.66, whereas the

corresponding average diameter ranges from 5.74 to 64.75
with respect to the subgraph sizes. These values indicate

that these cascades reach far beyond the immediate neighbor

nodes. It is also observed that the mean reciprocity and

clustering coefficient of these subgraphs are significantly high

(figure 6(b)). The mean reciprocity values with respect to the

subgraph sizes vary between 0.57 and 0.81, whereas the mean

clustering coefficients range between 0.17 and 0.31. A high

average clustering coefficient and reciprocity of the cascade

nodes provide strong evidence that the cascades spread along

the follower chain through groups of closely connected nodes.

We next focus on the users to identify the key players

involved in the spread of the drug-abuse tweets.

B. Key Players in Spreading

We investigated the key players in the cascades considering

both the activeness as well as the positional importance of

the users. Since a large fraction of the users in the network

is largely inactive, we initially observed the activeness of the

users in the cascade. We observed that for cascades involving

more than 20 users, around 50 − 60% of the users are one

time engagers who had contributed only one drug-abuse tweet

but helped in keeping the cascade alive. This reveals the

importance of these inactive users who contribute to increasing

the length of the cascades.
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Fig. 7: (a) represents CCDF of activity score and the inset

in (a) represents CCDF of the #followers of the high hub and

authority score users. (b) gives the probability distribution

of users in each category and the probability distribution of

receiving a drug-abuse tweet from each user category. Non-

Fringe category represents the combined probabilities of info.

sharing, leaders and info. seeking users.

We next observe the role of the fringe and non-fringe nodes

in the spreading process. Although it has been observed that

the non-fringe active nodes are significantly less in number

(refer table VIII) as compared to the fringe ones, however,

it is observed that around 30% of the drug-abuse tweets (as

seen in figure 7(b)) in the timeline of a random user are

generated by a non-fringe node, even though they constitute

only 5% of the nodes in the network. A closer look at table IX

reveals that in-degree of non-fringe nodes are 17 times higher

(computed using weighted average) compared to in-degree of

fringe nodes. So the probability that a node follows a non-

fringe node is comparable with the probability that the node

follows a fringe node. Hence, as the fraction of fringe and non-

fringe nodes followed by a random user is comparable, the

contents generated by both these node types in the timeline of

a random user is also comparable. This indicates that both the

non-fringe as well as the fringe nodes are similarly responsible

in the spread of these drug-abuse tweets.

C. Role of Neighbors in Spreading

We next focus our attention on the influence of neighbors

in the spreading of user engagement. For this experiment,

cascades of size > 20 were considered. Table X compares

the properties of these cascades initiated by fringe nodes

and non-fringe nodes. It is evident that cascades initiated by

non-fringe nodes have a greater size on average with more

nodes (aggregates for all cascades) in its first and second-hop.

Irrespective of the type of the initiator, the presence of non-

fringe nodes in the first-hop play an important role in inducting

nodes in the second-hop of the cascades. This phenomenon is

evident from cascades initiated by fringe nodes where only 5%
of first-hop nodes belong to the non-fringe category but bring

in 45% of the nodes in the second-hop. It is also observed that

the maximum width of the cascades initiated by fringe nodes

occurs at more depth as compared to the ones generated by

their counterparts. This further indicates that these cascades
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TABLE X: Comparison of the properties of cascades initiated by fringe and non-fringe nodes. The category of users involved

play an important role in determining the properties of the cascade they belong to.

Cascade Property
Cascades initiated by fringe nodes Cascades initiated by non-fringe nodes

Value σ Percent Value σ Percent

#cascades initiated 487 - 71.72% 192 - 28.28%
Avg. cascade size 177.78 1237.27 - 106.67 458.51 -
Avg. structural virality (d) 2.63 3.95 - 1.97 1.44 -
Max depth of cascade 313 - - 84 - -
Avg. depth of cascades 10.72 22.59 - 6.83 8.41 -
Avg. depth at which max. width
was observed in cascade

5.95 14.84 - 3.02 4.61 -

Avg. #first hop nodes in cascade 5.05 8.75 - 28.05 37.29 -
Avg. #first hop non-fringe nodes 0.27 0.53 5.36% 1.44 1.59 5.14%
Avg. #first hop fringe nodes 4.77 8.79 94.64% 26.60 37.11 94.86%
Avg. #second hop nodes 8.14 22.68 - 7.87 11.08 -
Avg. #second hop nodes with non-
fringe node as parent

3.64 22.03 44.77% 3.39 9.25 43.07%

Avg. #second hop nodes with
fringe node as parent

4.49 7.52 55.23% 4.48 6.70 56.93%
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Fig. 8: Average exposure curve for drug names. p(k) is the fraction of the network users who tweet about a particular drug-

name directly after their kth exposure to it, given that they had not tweeted about it previously. The inset in figures (b), (c)

and (d) shows the behavior of structural virality near the peaks at k = 1.
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Fig. 9: Stickiness and persistence score measures for drug

names as defined in [7].

survive a few initial hops with the help of other fringe nodes

only to peak later with the help of certain non-fringe ones,

thus revealing an organic collaboration of the non-fringe as

well as fringe nodes in the spreading process.

Thus we discover that all category of users, fringe and non-

fringe as well as active and non-active, contribute significantly

to generating the cascades, highlighting a sizeable collective

phenomenon. We next investigate the engagement behavior of

users based on the contents (drug names) to discover whether

Twitter serves as a more effective spreading media for certain

types of drugs.

D. Stickiness and Persistence

Information diffusion concerning different content types

has been studied using measures like stickiness and persis-

tence [7], [38]. We use these measures to investigate the

engagement behavior of the users with respect to the drug

names. We investigate how repeated exposure to drug-abuse

tweets with specific drug names influences the probability of

adopting a similar engagement behavior. A user is considered

to be k-exposed if there are k users, whom the current user

follows, who have tweeted about drug-abuse. We use an

ordinal time estimate measure for deriving the exposure curve

p(k), whereby, we calculate the number of users (I(k)) who

generate their first drug-abuse tweet (an indication of adoption)

after being k-exposed but before being (k+ 1)-exposed. This

value is subsequently compared with the total number of k-

exposed users (E(k)). The exposure curve is represented as

p(k) = I(k)
E(k) . The stickiness is measured by the maximum

value of p(k) for all observed values of k and the persistence

F (p) is represented by the ratio of the area under the exposure

curve and the minimum area of the rectangle covering the

exposure curve entirely. F (p) provides a measure of the rate of

decay in the adoption probability with an increasing number of

exposures after it has reached the peak. A value of F (p) near to

1 indicates that repeated exposure to drug-abuse tweets would

be required before the user herself starts engaging, indicating

the presence of a complex contagion phenomenon.

Observations: We obtained the value of p(k) for each

drug type present in our dataset. Figure 8 shows the average
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exposure curves for all the data and four major drug-names

(determined based on #exposures). We observe in figure 9(a)

Vicodin and Percocet, that were found to be mentioned in

a significantly large number of tweets, have relatively much

higher stickiness value (0.0699 and 0.0691, respectively) com-

pared to the other drugs. In both the cases, peaks are found at

k = 1, indicating that users mostly engage themselves about

these tweets after a single exposure only. A similar trend was

observed for OxyContin, with a peak at k = 0. This high value

of stickiness is observed for these abused drugs due to their

high popularity on Twitter. In contrast, Lortab has a relatively

higher persistence of 0.24 as seen in figure 9(b), hinting that

repeated exposures continue to have marginal effects on user

engagement.

To explain the exceptionally high stickiness values for

Vicodin (figure 8(b)) and Percocet (figure 8(c)) at k = 1,

we looked into the tweets containing these drug names. We

observed that a significantly large number of tweets mention-

ing Vicodin and Percocet are related to the sale of these drugs

(around 40, 618 and 38, 910 respectively). Since these tweets

are generated independently, without being exposed, we see

high values of p(k) at k = 0 and 1 for Vicodin and Percocet.

Further, since these drugs are popular among the drug-abusers,

repeated exposures to tweets related to these drugs do not lead

to any significant effect on user engagement, thus lowering the

persistence. Users who are willing to discuss about these drugs

rapidly engage themselves after one or two exposures. On the

other hand, engagement for drugs, that are less popular over

Twitter, shows high persistence. This could be possibly due to

the fact that these drugs being less popular on Twitter, with

increasing exposures the interest of the users about these drugs

increases and hence the probability of engagement remains

high with the number of exposures.

VII. CONCLUSION

This paper provides a detailed analysis of the Twitter

follower network involving around 0.42 million users that are

involved in the promotion of prescription drug-abuse using the

Twitter platform and generating more than 50,000 cascades.

We believe that this is a first major work involving such a large

scale of data that details the spreading of drug-abuse messages

over Twitter. Analyzing the follower network of drug-abusers

reveals a heavy core structure with high local connectivity

among themselves, thereby providing various alternate channel

of communication among the users. Investigations on the cas-

cades of drug-abuse tweets helped us to discover certain major

findings. It was discovered that the drug-abuse tweets spread

over long paths across the Twitter follower network through

groups of closely connected users in the network. It was

also observed that a significant percentage of cascades being

initiated and driven by users with low positional importance

(with low count of followers as well as its followings), that

we term as fringe nodes in the network. The spread over

those cascades has been observed to be a result of a collective

phenomenon involving both the important as well as the fringe

nodes, indicating a resilience to targeted elimination of few

nodes. A diffusion model capturing these dynamics would

be helpful in predicting drug related cascades. Considering

the limited scope of this paper, we would like to develop

such models as a possible extension of the current work.

Finally, observations suggest that drug-abusers on Twitter

have much higher risk of adopting newer drugs as increasing

exposure of them enhances the probability of adoption. These

findings necessitates a deeper and more detailed study of the

abuse patterns and user behavior to control the spread of this

menace.
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