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Detecting Outlier Patterns with Query-based
Artificially Generated Searching Conditions

Shuo Yu, Feng Xia, Senior Member, IEEE, Yuchen Sun, Tao Tang, Xiaoran Yan, Member, IEEE,
and Ivan Lee, Senior Member, IEEE

Abstract—In the age of social computing, finding interesting
network patterns or motifs is significant and critical for various
areas such as decision intelligence, intrusion detection, medi-
cal diagnosis, social network analysis, fake news identification,
national security, etc. However, sub-graph matching remains
a computationally challenging problem, let alone identifying
special motifs among them. This is especially the case in large
heterogeneous real-world networks. In this work, we propose an
efficient solution for discovering and ranking human behavior
patterns based on network motifs by exploring a user’s query in
an intelligent way. Our method takes advantage of the semantics
provided by a user’s query, which in turn provides the mathemat-
ical constraint that is crucial for faster detection. We propose an
approach to generate query conditions based on the user’s query.
In particular, we use meta paths between nodes to define target
patterns as well as their similarities, leading to efficient motif
discovery and ranking at the same time. The proposed method
is examined on a real-world academic network, using different
similarity measures between the nodes. The experiment result
demonstrates that our method can identify interesting motifs,
and is robust to the choice of similarity measures.

Index Terms—human behaviour, outlier detection, social com-
puting, heterogeneous network, motif

I. INTRODUCTION

NETWORKS have been extensively utilized to study the
interactions among entities in many fields like social

computing. In particular, heterogeneous information networks
can model complex, large-scale data sets by introducing multi-
ple node and edge types, leading to more detailed and realistic
applications in the real world [1], [2], [3]. Heterogeneous
edges can be used to capture relationships among different
types of nodes, and edge weights are used to evaluate the
strengths of relationships. For example, Figure 1 shows a bib-
liographic network consisting of authors, papers, and venues.
In this heterogeneous information network, paper authorship,
paper citations, and venue publication relationships are cap-
tured at the same time. Additional co-authorship edges can
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Fig. 1: An example of a bibliographic network.

be added to capture collaborative/social relationships between
authors, and the collaborative strength can be evaluated by
collaboration times [4].

In the recent past, lots of effort has been placed into
the study of heterogeneous information networks and various
relationships among entities. Finding unexpected events and
detecting outliers from normal patterns have always been
an interesting topic in various disciplines [5], [6]. It can
reveal hidden patterns, which may also guide policymakers
to make better decisions. These outliers may carry significant
information in abundant fields that include, but not limited to,
intrusion detection [7], medical diagnosis [8], social network
analysis [9], fake news identification [10], public security
monitoring [11] and national security [12]. While widely
applied to high-dimensional data, uncertain data, streaming
data, network data, time-series data, etc., studies about outlier
detection mainly focus on individually abnormal node or
outlier pairs [13], [14], [15]. Various survey papers summa-
rize the existing outlier detection algorithms from abundant
perspectives [16], [17], [18].

Beyond node or pairs, outlier detection based on sub-
graphs or motifs aims to identify important local structures
of networks. Defined by a particular pattern of nodes and
edges that is statistically significant, motifs may provide a deep
insight into the network’s functional building blocks [19], [20].
For example, motifs are widely used in biological networks
for the identification of functional DNA sequences and gene
regulatory patterns [21], [22]. Despite the efforts of scholars
from computer science and bioinformatics, motif discovery
remains a computationally challenging problem, given its
combinatorial nature [23], [24].

Most motifs discovery algorithms try to enumerate all sub-
graph structures in the network and therefore suffer from
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the exponential complexity as the motif size grows [25]. An
alternative approach based on user queries provides more
focused and efficient solutions [26], [27]. In the context
of heterogeneous information networks, motif queries can
be further specified with node and edge types, as well as
searching meta paths to enable faster and more precise local
detections. For example, many users reviewing one commodity
on an online shopping website may be a common pattern. But
if many users with similar IDs post the same content in a
short period, these users may be of particular interest (e.g.,
Internet bots [28]). The search can be further narrow down by
imposing constraints on commodity and user types.

Traditional motif discovery methods rely on statistical null
models to find special motifs among the sub-structures and
identify outliers [22], [29]. Here we propose a motif similarity
measure based on their meta path connections, which can also
be specified in a user’s query. For example, in a query of an
academic collaboration network, we start with a motif consists
of two authors and their co-authored physics paper. If there
exist a motif contains two authors and a paper in a discipline
that significantly differs from physics (e.g., social science,
arts, etc.), it is unlikely that the two motifs will be strongly
connected by the query meta path set (author-paper-author and
paper-author-paper), especially compared with other multi-
authored physics papers. Since the query contains both types
of constrained motifs and meta paths, our algorithm can be
further optimized for motif discovery and ranking at the same
time. Outlier motifs refer to those motifs lying in the searching
results but with least similarities comparing to the query motif.
For example, we are aiming to find two authors coauthored
one paper in physics, and the searching results contain authors
coauthored mathematics, chemistry, and art. Then the motif
with art may be regarded as an outlier motif because others
are all theoretical science.

The high-level procedure of motif discovery is shown in
Figure 2. First of all, users should first define one or more tar-
get motifs to start the query. These target motifs are regarded
as “motif reference” when comparing sub-graphs. Then we use
meta paths (also specified by the users) to discover sub-graphs
that are related to the target motifs. These discovered sub-
graphs are “candidate motifs”. After comparing the similarities
between candidates and references, the candidate motifs with
lower similarities are regarded as outliers or the final output
motifs. All of the formal definitions are shown in Section 2.1.

We propose the similarity measure called MOS (Motif
Outlier Score) to evaluate the similarity between different
candidate motifs. According to user’s queries, guided by meta
paths, we can efficiently calculate MOS in the candidate
motif set based on the statistics gathered during the sub-
graph matching process [30]. Finally, the interesting motifs
can be recognized according to the ranked scores list. Original
contributions in this paper are outlined as follows.

• We propose an efficient and flexible motif discovery al-
gorithm by taking advantage of sub-graph and meta path
queries (i.e. human behaviour), leading to an intelligent
motif searching framework that is applicable to a wide
range of social computing applications.

• The target motif similarity is defined based on node
similarities. Interesting human behavior patterns have
been discovered by applying our algorithm to real-world
heterogeneous information networks.

• We provide empirical evidence that our framework is
robust to the choice of similarity measures, including
PathSim, CosSim, and MOS.

II. FINDING OUTLIER MOTIFS BASED ON QUERIES

Herein, we introduce how to find outlier motifs based on
users’ queries. We firstly give some related definitions. Then
we introduce our proposed outlier detection method. To clearly
illustrate our method, we explain it in four steps. First, we
achieve motifs based on queries. Second, we count the meta
paths. Then, we calculate the similarity of node pairs. Finally,
we order the MOS of each motif. When we complete the four
steps, we can find the outlier motifs based on queries.

As shown in Figure 2, the User’s query contains concepts
like target motif and search paths and we use an instance to
explain them. If an administer wants to find unusual structures
of “two friends that like the same genre of music” around
friends of two friends like rock on a streaming media platform.
We called entities of the triplet as motif (i.e., Alice and Bob
like rock, Alice-Bob-rock is a motif), and target motif is
an abstract concept that constrain node types and structures
of found motifs. We find their friends by the “user-user”
type paths. Besides, we have to define a standard to evaluate
the strange level of these motifs, if the administer wants
to compare the motifs around the start motif using motifs
generated by another motif (i.e., Cindy and David like blues).
The motifs used for comparison form the reference set. We
count the number of “user-genre-user” paths each motif in the
candidate set with all motifs in the reference set. If a motif
has fewer paths connecting with the reference set, it is more
likely to be an outlier.

A. Motifs, Meta path, and Similarity

Motifs are generally considered as building blocks in
various kinds of networks, including information networks,
transportation networks, social networks, and so on [20].
There have been various studies verifying that motifs occupy
important positions in networks. Network motifs refer to
the small structures frequently appearing in the information
network [31]. Herein, we formally give the definitions of
information network, network motif, meta path, and other
related concepts.

Definition 1. Information network: An information network
can be written as a graph G(V,E, ϕ). V is the node set of
the graph. E is the edge set of the graph. ϕ is a mapping
function ϕ : V → A, wherein A is the set of node types.

In some cases, the mapping function may be ψ : E → R,
where R is the set of edge types. Apparently, the information
network G(V,E, ϕ) is homogeneous when |A| = 1. If |A| >
1, then the information network G(V,E, ϕ) is heterogeneous.

The formal definition of motifs is given in Definition 2.
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Fig. 2: The framework of finding interesting outlier motifs based on queries.

Definition 2. Network motif: The network motif refers to a
subnetwork structure M ∈ G, wherein M appears in the
network for k > β (β > 0) times. Generally, β refers to the
times that M appears in G’s corresponding random network
G̃.

Motifs appear in a triangle structure in many situations.
Some higher-order motifs are also significant but always cause
higher computational complexity, especially in large-scale net-
works [32]. Properties of nodes and motifs in an information
network can be measured in many ways. It is difficult to
judge whether a certain motif is an outlier or not without
any restrictions. Therefore, in this study, we constrain outlier
motifs in the range of a motif set. With the motif set, the scope
of finding outlier motifs can be settled. An outlier motif set is
generated based on the query motif and the meta path. Herein,
the meta path refers to a path connected by different types of
nodes. Since there only exists one node type in homogeneous
networks, meta path only exists in heterogeneous networks.
The formal definition of a meta path is given as follows.

Definition 3. Meta path: A is the node type set. A meta path
is a directed path with fixed length and node types in the path.
An example of a meta path can be denoted as A1 → A2 →
...→ An.

Meta paths in heterogeneous information networks always
reflect certain practical meanings. Take the meta path “user-
genre-user” in the music community network as an example,
this meta path can be used to describe the users who are
interested in the same type of music. Different meta paths
represent different practical meanings. If the sequence of node
types in a meta path is centrally symmetric, then this meta path
is denoted as a symmetric meta path.

Meta path, especially symmetric meta path, can also be

applied to measure similarities between different nodes. Gen-
erally, two nodes are recognized as similar if they have many
meta paths. There are many ways to describe the similarity
between two nodes, such as value, topology, etc. Herein, we
introduce three kinds of node similarity evaluation metrics,
including PathSim [33], CosSim, and Normalized Connectiv-
ity [34]. These definitions are shown as follows, respectively.

Definition 4. PathSim: The PathSim of two nodes in the same
type is denoted as

SPathSim(x, y) =
2× |{px→y|px→y ∈ P}|

|{px→x|px→x ∈ P}|+ |{py→y|py→y ∈ P}|
,

wherein, P is the set of fixed symmetric meta paths, and px→y

is one of the symmetric meta paths between x and y.
PathSim is used to measure the similarity between two

nodes with fixed symmetric meta paths. Besides PathSim,
CosSim (cosine similarity) can also be applied to measure the
similarity between two nodes. The formal definition is given
as follows.

Definition 5. CosSim: The cosine similarity of two nodes x
and y is defined as

SCosSim(x, y) =

∑
i∈Nxy

(|px→i| × |py→i|)
||px→Nx

||2 × ||py→Ny
||2

,

wherein, N is the node set, which is reachable from node i
via meta path p.

Moreover, scholars have also proposed normalized connec-
tivity to evaluate the similarity between two nodes. Normalized
connectivity is used to measure the similarity between two
nodes with a fixed meta path, as shown in Definition 6.
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Definition 6. The normalized connectivity of two objects in
the same type is defined as

SNorCon(x, y) =
|{px→y|px→y ∈ P}|
|{px→x|px→x ∈ P}|

wherein, P is the set of fixed symmetric meta paths, and px→y

is one of the symmetric meta paths between x and y.

B. Problem Definition

It should be noted that although our algorithm is used for
motifs, it can be applied to sub-graphs in different sizes. In this
section, we use a sub-graph to represent small graph structures.
In other sections, we mainly use motifs.

For a given heterogeneous information network G =
(V,E, ϕ) and a user’s query sub-graph Mu = (VM , EM , ϕM ),
find the candidate sub-graph set CMS = Mc1 ,Mc2 , . . . ,Mcn

based on the searching constraint condition SCC. Where-
in, SCC contains the given meta path set Smp =
MP1,MP2, . . . ,MPn and the start nodes for searching. The
outlier sub-graph detection problem aims to find an outlier
sub-graph set Sout = M1,M2, . . . ,Mn satisfying that the
sub-graph M1 ∈ Sout owns the outlier score MOS(i) that
is beyond the default range.

Herein, Mu should contain the complete information, in-
cluding node types as well as the connections between d-
ifferent nodes. SCC contains two parts, i.e., meta paths
and starting nodes. Meta paths determine what the searching
routines are, and the starting nodes determine where the search
is originated.

C. Outlier Sub-graph

The measures mentioned above are used to evaluate the
similarity between nodes. However, the similarity of sub-
graphs still needs to be studied. Herein, we define MOS based
on the outlier scores of nodes in the sub-graph, as shown in
Definition 7. MOS is a function of two sets: the reference set
SR and the candidate set x. Sub-graphs in the reference set are
used as references. Users give reference set as one of the query
constraints. It can also be generated based on the query sub-
graph. Sub-graphs in the candidate set are those that need to
be compared with sub-graphs in the reference set. Therefore,
MOS reflects the outlier degree of sub-graphs comparing with
the reference set.

Definition 7. MOS: A value to represent the similarity between
sub-graphs, which is defined as

Ω(x, SR) =
∑
y∈SR

s(x, y),

wherein, SR is the reference set and s is a well-defined
similarity.

Definition 8. Outlier sub-graph: Suppose Mu is a given sub-
graph and M = {M1,M2, . . . ,Mn} is the sub-graph set
generated based on Mu. A sub-graph Mo is regarded as
an outlier sub-graph in the information network G(V,E, ϕ),
which states that Mo with the value of MOS is an anomaly.

D. Outlier Sub-graphs Detection

The overall process of outlier sub-graph detection is shown
in Algorithm 1. Based on the user’s query sub-graph, we first
preprocess the data and set the search conditions. Then we
generate the candidate sub-graph set and the reference sub-
graph set, which are determined by the user’s query sub-graph
and meta path. Next, we calculate the MOS values of the sub-
graphs in the candidate set. Finally, we order the sub-graphs
according to their MOS values.

Algorithm 1 Outlier Sub-graphs Detection

Require: Target sub-graph M , searching constraint condition
SCC, meta path set MP , reference sub-graph set RMS,
candidate sub-graph set CMS

Ensure: An ordered list of candidate sub-graphs Netoutlist
1: for meta path ∈ MP do CMS.add(search results);
2: end for
3: if SCC = NULL then RMS = CMS
4: else
5: for meta path ∈ MP do RMS.add(search results);
6: end for
7: end if
8: for sub-graph m in CMS do Netoutlist.append()
9: end for

10: sort(MOSlist);

1) Generating Requirements Based on Queries: User query
is particularly important that affects the performance of outlier
sub-graphs detection. Generally, a detailed query leads to
better detection results. In this work, the user query contains
two mandatory parts, including at least one sub-graph and a
set of meta paths. A sub-graph is judged to be an outlier sub-
graph when its MOS value is beyond the reasonable range. As
we have illustrated above, the MOS value is calculated based
on the candidate set and reference set. Hence the reference
set is vital in the whole outlier sub-graph detection process.
The reference set can be provided by the user, or it can be
generated based on one or more sub-graphs and meta paths
given by the user.

The generation process of the reference set is the same as
that of the candidate set. Figure 3 shows an example of the
process. It is a heterogeneous network that consists of authors
and papers. Wherein, the authors are labeled by “<>” and
the papers are labeled by “()”. In Figure 3, the start sub-graph
is “<C>-<D>-(B)” and the type of meta path is given as
“author-paper-author”. Then from the start sub-graph, we can
find two sub-graphs guide by 5 different meta paths, <C>-(B)-
<C>, <C>-(B)-<D>, <D>-(D)-<B>, <D>-(D)-<E> and
<D>-(D)-<A>. The number labels each path. It can be seen
that the 5 meta paths lead us to find three sub-graphs, i.e.,
<F>-<E>-(E), <A>-<B>-(A), and <C>-<D>-(B). Ap-
parently, <C>-<D>-(B) is the start sub-graph itself. Besides,
meta path 4 and 5 both lead to the same sub-graph <A>-
<B>-(A).

With the search conditions of a query given in advance, it
is easy to find out the nodes of specified classes. However,
there exists a significant problem due to the ordered search.
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Fig. 3: A reference set and a candidate set generating process.

That is, how to avoid the same sub-graph appears many times
in the result set?

For every node in a network, we keep the neighbor informa-
tion classified by node type. We traverse a node by checking
whether it is in the map from node instance to positions of
meta sub-graph. The first problem can be solved by Depth-
First Search (DFS). When generating possible sub-graphs, add
the sub-graph into the result set if it (the sub-graph or its
isomorphisms) is not found.

2) Enumerating Meta Paths: This procedure is to enumer-
ate the number of meta paths between certain pairs of sub-
graphs. As shown in Figure 3, there exist two meta paths
between sub-graphs <A>-<B>-(A), and <C>-<D>-(B). In
real-world networks, there can be multiple meta paths with
a much more complicated situation. To avoid repetitive sub-
graph detection, we discover a way to effectively enumerate
the meta paths between sub-graphs. That is to enumerate the
meta paths between nodes.

Specifically, to get the number of meta paths between any
candidate sub-graph and reference set, we first construct a
reference node set and a candidate node set, respectively. It
should be noted that there could be multiple meta paths used
in enumeration, which means that all categories that appeared
in the meta sub-graph can be the start node of a meta path.
They can also be assigned with different weights. The default
weight of each path is 1.

The two nodes connected by a symmetric meta path are
generally share higher similarities. This is because a symmetric
meta path always connects two nodes of the same type. In this
work, we use the number of symmetric meta paths to evaluate
the similarity between nodes. For two nodes in a network,
the more symmetric meta paths they have, the more similar
they are that viewed from different nodes. For two sub-graphs
in the network, more symmetric meta paths between nodes
at the same positions in sub-graphs, we consider that sub-
graphs are more similar in the corresponding positions. If all
the nodes at the same positions in two sub-graphs are similar,

then we can assume the two sub-graphs are similar. For a given
meta path MP , the symmetric meta path of MP is written
as MPsym = MP

⊙
MP−1. The detailed procedures can be

seen in Algorithm 2. We find the reachable node set for each
node in the meta path, and enumerate the number of paths
to the reachable node set. After updating the Lastlayer set,
Currentlayer is cleared up.

Herein, we propose a novel search procedure called bidirec-
tional search. Generally, the default search process is a directed
search procedure. However, for a symmetric meta path we
employed in this work, we use bidirectional search to reduce
the complexity. We implement our search process beginning
from both the candidate node set and the reference node set.
Since the search process is bidirectional, we only search for the
half-length of the meta path. This can ensure that the ending
nodes are with the same node type.

3) Calculating Similarity: We have introduced three ways
to calculate the similarity between two nodes. However, each
of them cannot be applied to calculate the sub-graphs simi-
larity directly. Since a sub-graph may have nodes in the same
categories in processing, meta paths may start from a sub-
graph and return to itself. To be specific, for node similarity
calculation, we only count meta paths from a node to itself.
Nevertheless, for sub-graph similarity calculation, some sub-
graphs may contain nodes in the same category. It leads to a
situation that a symmetric meta path from a node can arrive
at other nodes with the same node type. The example shown
in Figure 3 has already reflected this kind of situation. Meta
paths 1 and 2 both start from the start node, i.e., scholar <C>.
However, meta path 1 ends with the start node <C> and meta
path 2 ends with scholar <D>. Though <C> and <D> are
with the same type, <C> is apparently not what we want to
search for.

As a result, the number of meta paths can be represented
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Algorithm 2 Reachable Nodes Detection

Require: Candidate sub-graph set CMS, reference sub-graph
set RMS, meta path set MP

Ensure: Attribute node sets N2NC , N2NR

1: function GETREACHABLENODES(Sub− graphSet)
2: N2N = new dictionary;
3: for category c in C do
4: initialize Lastlayer;
5: initialize Currentlayer;
6: for node n in each sub-graph in MS do
7: if n in N2N[c] then
8: continue
9: end if

10: Lastlayer[n] = 1;
11: for node type t in mp do
12: find the reachable node set from node n;
13: update Currentlayer with paths numbers;
14: Lastlayer = Currentlayer;
15: initialize Currentlayer;
16: end for
17: N2N [c][n] = Lastlayer;
18: end for
19: end for
20: return N2N
21: end function
22: initialize category set C = new set;
23: for meta path mp in MP do
24: C.add(state node category in mp)
25: end for
26: N2NC=GetReachableNodes(CMS)
27: N2NR=GetReachableNodes(RMS)
28: return N2NC , N2NR;

as shown in equation 1

|{pm→m|pm→m ∈ P}| =
∑
x∈C
|{px→x}| +

∑
x,y∈C

|{px→y}|

(1)
in which C is the category of x and y, x 6= y.

Before we calculate MOS values of candidate sub-graphs,
we have to compute normalized connectivity between nodes.
The process for calculating similarities is shown in Algorith-
m 3.

4) Ordering MOS: In the last step, we calculate MOS
of each sub-graph in the candidate set, then we order them
according to their MOS values. The result is an ordered list
consisting of all sub-graphs in the candidate set. If the MOS
of a sub-graph is low, the sub-graph is more likely to be the
outlier pattern in the network.

E. Complexity Analysis

The complexity analysis can be divided into three steps. For
time complexity, we firstly consider a situation that the graph
is complete. There exist c types of nodes, c is a constant. The
number of nodes in the graph is n, the number of nodes in
each type is n/c. We define the length of search path as l1
and the size of meta sub-graph as s. The time complexity of

Algorithm 3 Meta Paths Calculation

Require: N2NC , N2NR, node type set C
Ensure: two maps A2A,A2B

1: initialize A2A,A2B = new set;
2: for node c in node type set C do
3: for node pair (a,b) in N2NC [c] do
4: if N2NC [c][a] ∩ N2NR[c][b] 6= ∅ and (a, b) /∈
A2B then

5: A2B[a][b] = 0;
6: for d ∈ N2NC [c][a] ∩N2NR[c][b] do
7: A2B[a][b]+ = N2NC [c][a][d] ×
N2NR[c][b][d];

8: end for
9: end if

10: end for
11: for node e in N2NC [c] do
12: if e in N2NC [c] then
13: if (a, e)/∈ A2A then
14: A2A[a][e] = 0;
15: end if
16: for d ∈ N2NC [c][a] ∩N2NR[c][e] do
17: A2A[a][e]+ = N2NC [c][a][d] ×

N2NC [c][e][d];
18: end for
19: end if
20: end for
21: end for
22: return A2A,A2B

the first step (1) finding the candidate set of sub-graphs is
O((n/c)(l1−1) × (n/c)s) = O(n(l1+s−1)). In the second step
(2), assume the size of the candidate set is m and the length
of half of the given symmetric path is l2. We use dictionaries
to save found nodes and number of paths to them, and the
complexity of counting edges is O((n/c)×(n/c)l2−1+m2) =
O(nl2 +m2). We sort sub-graphs according to their MOS in
the last step (3) , whose complexity is O(m log(m)).

However, networks, in reality, are often sparse. As a result,
we use and average node degree to compute the complexity of
our method. Assume the average node degree is k, and k �
n, then the time complexity of the first step (1) is O(k(l1−1)×
ks) = O(k(l1+s)). Assume the nodes of candidate set are nc,
the complexity of the second step (2) is O(nc × k(l2−1) +
m2) = O(nc × kl2 + m2). The last step (3), we sort the
similarities of sub-graphs in the candidate set, the complexity
in this step is O(m log(m)). We list the two complexity in
Table I.

TABLE I: Comparison of the complexity of two types of
networks.

Complete graph Average degree=k graph
(1) O(n(l1+s−1)) O(k(l1+s−1))

(2) O(nl2 +m2) O(nc × kl2 +m2)
(3) O(m log(m)) O(m log(m))



DETECTING OUTLIER PATTERNS WITH QUERY-BASED ARTIFICIALLY GENERATED SEARCHING CONDITIONS 7

III. INTERESTING OUTLIER MOTIFS IN REAL-WORLD
DATA SETS

In this section, to verify the effectiveness of the proposed
method, we employ it in a real-world data set. Herein, we
mainly apply the method in academic networks.

A. Data Set and Experimental Settings

We employ part of data in Aminer1 to construct a heteroge-
neous information network. It contains information including
index, title, venue, and other terms of paper. However, not
all papers have complete information. We extract 2,092,356
papers and 1,571,933 authors.

When we construct this heterogeneous network, we use
three node types, including venues, authors, and terms. The
node type of “paper” is not involved in the construction of the
heterogeneous network. This is because the node type “paper”
is the indirect relationship between authors and terms. Terms
are extracted from titles of paper, and authors are connected
with certain terms when titles of their published papers contain
these terms. The types of edges contain “author - author”
(co-authorship), “author - term” (via a paper), “term - term”
(appearing in the same title), “author - venue” (publication),
and “term - venue” (publication).

Interestingly, by the above mentioned preprocessing proce-
dure, nodes with super high degree are generally irrelevant
to our target. For example, the venue node with the largest
degree is “IEEE Transactions on Information Theory”. The
degree is 11,227. If we search motifs consisting of this node,
the complexity of the search is more than

(
10000

2

)
= 5× 107.

The term node with the largest degree is “of”, which appears
for 698,767 times. Although high degree nodes in the network
mean high frequency, these nodes are insignificant, especially
when we want to distinguish outlier motifs. The common fea-
ture of motifs is obvious, but finding out underlying relations
without any help is a difficult task. In terms, words with high
frequency are some usual words like “of”, “in”, “the”, etc.
Therefore, we preprocess them by threshold filtering, and those
appear for more than 5,000 times are filtered.

1) Case 1: We choose some typical queries to analyze
experimental results. First, we use “Feng Xia (author) -
Guowei Wu (author) - authentication (term)” from “Mobile
Networks and Applications” as query motif, “author - author
- term” as target motif, the motif set searched by “author -
term - author” as candidate set and reference set, {“author -
term - author”, “term - author - term”} as the meta path set for
MOS calculation. The result set consists of 11,219 motifs. We
show the top 10 motifs, which are most similar to the motif
set and least similar to the motif set in Table II.

Although irrelevant words are removed, we still find some
useful information - “802.16” is more relative to “authen-
tication” than “ddos”. The more interesting thing is that if
the motifs are extracted from the same paper, the MOS of
motifs tends to be similar - they are not the same, like a
motif appearing in two papers. We give more information in
Figure 4.

1http://arnetminer.org/lab-datasets/aminerdataset

TABLE II: The top 10 outlier motifs and the top 10 most
similar motifs detected based on the query motif of “Feng
Xia (author) - Guowei Wu (author) - authentication (term)”.

Author 1 Author 2 Term MOS
Xianjun Geng Yun Huang defending 58.867
Xianjun Geng Yun Huang against 58.867
Xianjun Geng Yun Huang challenge 58.867
Xianjun Geng Yun Huang ddos 58.867
Xianjun Geng Andrew B. Whinston defending 58.867
Xianjun Geng Andrew B. Whinston against 58.867
Xianjun Geng Andrew B. Whinston challenge 58.867
Xianjun Geng Andrew B. Whinston ddos 58.867

Yun Huang Andrew B. Whinston defending 58.867
Yun Huang Andrew B. Whinston against 58.867

...
...

...
...

Qian Zhang Károly Farkas more 1817.762
Marwan Krunz Mohammad Z. Siam beaconless 1848.091
Marwan Krunz Mohammad Z. Siam geographical 1848.091

Qian Zhang Jiangchuan Liu more 1855.639
Christos Politis Tasos Dagiuklas extreme 1866.679

Hsiao-Hwa Chen Ching-Hung Yeh 802.16 1868.442
Hsiao-Hwa Chen Tzone-I Wang 802.16 1868.442
Marwan Krunz Mohammad Z. Siam gains 1883.091

Qian Zhang Xudong Wang more 1899.95
Yuh-Shyan Chen Yueh Min Huang advanced 1931.042

We divide the motif list into 10 groups according to MOS
values. Figure 4(a) shows the distribution of the top 10
outlier terms appearing in each group. Figure 4(b) shows the
distribution of the top 10 outlier authors appearing in each
group.

To be specific, the different color stands for the MOS
value between motifs. The more the color appear in blue, the
corresponding term is closer to the outlier. In the old wireless
network standard, 802.11 is less relative than 802.16. Research
in 802.16 is highly associated to authentication. Moreover,
“authentication” is used frequently in network security, so we
can see terms like privacy are highly related to the motif set. If
we take network security as the central semantic of the motif
set, it is obvious the MOS represents domains related to the
central semantic, while others are components of the network.

2) Case 2: In this case, the given query venue is “IEEE
Transactions on Knowledge and Data Engineering”. We use
“Jie Tang (author) - Juanzi Li (author) - recommendation
(term)” as a query motif and “author - author - term” as target
motif type. The motif set searched by “author - term - author”
is regarded as the candidate set and the reference set. We use
a set of “author - term - author”, “term - author - term” as
the meta path set for MOS calculation. The result consists of
26,782 motifs. We list 20 motifs in Table III. The 20 motifs
include 10 motifs, which are most similar to the motif set and
another 10 motifs, which are least similar to the motif set.

The top 10 outliers is almost irrelevant to the central
semantics of the motif set. But different from the top 10
outliers, the top 10 similar motifs are not closely related to
our theme of the query motif. The distribution of outlier nodes
in this experiment are shown in Figure 5(a) and Figure 5(b),
respectively.

Most of the words appearing in Figure 5(a) are related to
recommendation. However, it seems that recommendation is
not related to the motif sets. If we focus on the distribution

http://arnetminer.org/lab-datasets/aminerdataset
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(a) Terms (b) Authors

Fig. 4: The distribution of nodes in outlier motifs. 4(a) the distribution of “terms”. 4(b) the distribution of “authors”.

(a) Terms (b) Authors

Fig. 5: The distribution of nodes in outlier motifs. 5(a) the distribution of “term”. 5(b) the distribution of “authors”.

of motifs containing recommendation in the result, there only
exists a few parts in the result. Another surprising conclusion
is that the nodes with excessive degree will affect our result
since they will generate more motifs. Despite the simple
preprocess, the results of the experiment are ambiguous. In
the next section, we will use a well-defined data set to verify
our method and assess its performance.

IV. DISCUSSION

Herein, we discuss several critical problems that are crucial
to experimental results. First, we show the efficiency of our
algorithm under different conditions. Second, we discuss how
to choose a candidate set. Then, we discuss how the meta
paths affect outlier motif detection. Finally, we discuss the

experimental results when using different similarities to detect
outlier motifs.

A. Efficiency under different conditions
Herein, we conduct several experiments to explore the

efficiency of the algorithm under different conditions. We
extract 5 different venues and list their basic information
in Table IV. The full venue names are Proceedings of the
17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Problems of Information
Transmission (PIT), Mobile Networks and Applications (M-
NA), Computing in Science and Engineering (CSE), and IEEE
Transactions on Knowledge and Data Engineering (TKDE).
Other query conditions are the same as Case 2 in the first
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TABLE III: The top 10 outlier motifs and top 10 most similar
motifs detected based on the query motif of “Jie Tang (author)
- Juanzi Li (author) - recommendation (term)”.

Author 1 Author 2 Term MOS
Wu-Jun Li Dit Yan yeung mild 34.75
Wu-Jun Li Dit Yan yeung multiple-instance 34.75

Myunggwon G. Hwang Chang Choi sense 63.857
Myunggwon G. Hwang Pan-Koo Kim sense 63.857

Chang Choi Pan-Koo Kim sense 63.857
Myunggwon G. Hwang Chang Choi enrichment 68.538
Myunggwon G. Hwang Pan-Koo Kim enrichment 68.538

Chang Choi Pan-Koo Kim enrichment 68.538
Zhong-Yong Chen Chen-Yuan Wu component 84.429

A. N. Zincir-Heywood M. I. Heywood platforms 85.615
...

...
...

...
Wenjie Zhang Ljiljana Brankovic borda 7306.0625

Ke Yi Jeffrey Jestes nutshell 7389.433
Ke Yi Jeffrey Jestes concise 7389.433
Ke Yi Divesh Srivastava nutshell 7395.054
Ke Yi Divesh Srivastava concise 7395.054

Wenjie Zhang Jianmin Wang count 7417.208
Xiang Lian Ke Yi constant 7436.015

Wenjie Zhang Jianmin Wang consensus-based 7726.739
Wenjie Zhang Jianmin Wang multivalued 7726.739
Wenjie Zhang Jianmin Wang borda 7726.739

Fig. 6: The computational time and max MOS under different
network scales.

part of Section III. We use “Christos Faloutsos - Hanghang
Tong - diversified”, “V. V. Zyablov - M. Handlery - tailbiting”,
“Feng Xia - Guowei Wu - authentication”, “Konrad Hinsen -
George K. Thiruvathukal - version” and “Jie Tang - Juanzi Li
- recommendation” as the start motifs, respectively. The result
of the experiment is shown in Fig. 6.

TABLE IV: The basic information of different venues.

KDD PIT MNA CSE TKDE
published papers 178 447 740 1,338 2,601

edge number 8,760 16,280 34,860 38,896 91,801
author number 535 381 2,002 2,335 4,999
term number 721 1,224 1,710 2,962 3,943

It can be seen that the computational time grows with
the increase of edge numbers. Meanwhile, we also randomly
choose 5 motifs as the start motifs in each network. Then we
compute the average running time with different lengths of
symmetric paths. The result is shown in Figure 7, wherein
there exist five groups. Each group contains five bars, and
each bar corresponds to a meta path with a certain length. The
line shows the average computational time of each group. All

Fig. 7: The time consuming and max MOS with the increasing
length of metapaths.

of metapaths start with “author” and end with “author”. That
is, a metapath with length of 3 is “author-term-author” and
with length of 5 is “author-term-author-term-author”, and so
on. Interestingly, with the increasing length of meta paths, the
computational time grows with a slight ascending trend. This
indicates that the computational time is robust to the length of
meta paths. Combining with the basic information of networks,
the computational time grows with the increase of average
network degree. Variations in computational times among
different meta paths are observed, which is due to different
query conditions: the more specific the query conditions are,
the less time the algorithm consumes. A fuzzy query condition
will lead to more searching results in the candidate set,
which will lead to longer computational time. In general, the
computational time of the proposed algorithm mainly depends
on the average network degree and the query conditions.

Since different scales of networks will have an impact on
computational time, we specifically discuss the relationships
between node degree distribution and computational time. The
statistics of node degree distribution is shown in Figure 8. It
can be seen that the node degree distribution influences on
the computational time. When the networks are in smaller
scales (KDD, PIT, MNA), degree distribution has little impact
on computational time. CSE and TKDE are in larger scales,
while the computational time of CSE is much less than that
of TKDE. This is because the author node degree in CSE
network is much less, meanwhile the peak node of term node
degree appears earlier than that of TKDE.

B. Candidate Set

In this work, we generate the candidate set based on the
reference set and the given meta path set. The motifs in the
candidate set are relevant to the query motif and the motifs
in the reference set. The outlier motifs refer to the irrelevant
ones according to ground truth that appear relevant in the query
results. The generation of the candidate set can collect query-
relevant motifs because we use symmetric meta paths. The
symmetric meta path we employed can reflect the similarity
between the two connected nodes. Therefore, the motifs we
generated in the candidate set are generally relevant to the
query motif or the motifs in the reference set.
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(a) KDD (b) PIT (c) MNA (d) CSE (e) TKDE

Fig. 8: The distribution of node degree in KDD, PIT, MNA, CSE, and TKDE.

The number of meta paths can reflect the irrelevant rela-
tionships between outlier motifs and the query motif or the
motifs in the reference set. If two motifs own a large number
of meta paths, then the two motifs are of closer properties
as well as structural similarities. Therefore, the outlier motifs
are generally irrelevant to the query motif or the motifs in the
reference set.

C. Meta Path

Herein, we discuss the validness of the meta path. Although
we can use different meta paths for calculating MOS, the
important problem is which type of paths should we use to get
a better performance? In heterogeneous information networks,
different meta paths have different semantic meanings, like
“author - paper - author” means co-authorship between two
authors. As a result, they will show different properties. We
present the different paths for computing, which leads to
different distributions in the result. Moreover, it also illustrates
that more meta paths will get the exact relative order. But
we cannot use excessive meta paths in the set for computing.
In real life, different meta paths have different semantics.
According to the meaning we are concerned about, we use
different meta paths to find motifs and calculate the similarity
between motifs. Herein, we implement a contrast experiment,
and the experimental results are shown in Figure 9. We also
use “Feng Xia-Guowei Wu-authentication” as a start motif.
Meanwhile, we only use one meta path (i.e., “author-term-
author”) to detect outlier motifs. We achieve totally differ-
ent detecting results. Comparing with two meta paths (i.e.,
“author-term-author” and “term-author-term”), one meta path
gains more fuzzy searching results. The reason behind may be
that the searching results are generally influenced by a certain
node within the start motif when employing only one meta
path. Apparently, more meta path can improve the searching
accuracy but decline the consuming time in the meantime.

There are also some works on the reliability of meta path
[35]. However, the conclusion is not comprehensive for all
types of heterogeneous networks. We also need to find a
common standard for various heterogeneous networks. On the
other hand, an effective method is also vital for finding fitting
paths in calculating similarity.

D. Similarities

We discuss the influences of finding outlier motifs according
to different similarities. Herein, we detect the outlier motifs
based on PathSim and CosSim, respectively. The results of

TABLE V: The top 10 outlier motifs and top 10 most similar
motifs detected based on the query motif “Feng Xia (author)
- Guowei Wu (author) - authentication (term)” and PathSim
similarity.

Author 1 Author 2 Term PathSim
Xianjun Geng Yun Huang defending 41.397
Xianjun Geng Yun Huang against 41.397
Xianjun Geng Yun Huang challenge 41.397
Xianjun Geng Yun Huang ddos 41.397
Xianjun Geng Andrew B. Whinston defending 41.397
Xianjun Geng Andrew B. Whinston against 41.397
Xianjun Geng Andrew B. Whinston challenge 41.397
Xianjun Geng Andrew B. Whinston ddos 41.397

Yun Huang Andrew B. Whinston defending 41.397
Yun Huang Andrew B. Whinston against 41.397

...
...

...
...

Hsiao-Hwa Chen Yan Zhang wimax 1460.127
Yan Zhang Hsiao-Hwa Chen resilient 1460.299
Yan Zhang Hsiao-Hwa Chen optimized 1469.887

Victor C. Leung Yan Zhang controlled 1470.980
Hsiao-Hwa Chen Yan Zhang inter-carrier 1471.115
Victor C. Leung Yan Zhang fusion 1479.168

Yan Zhang Victor C. Leung 802.16 1482.189
Hsiao-Hwa Chen Yan Zhang qos-aware 1485.277
Hsiao-Hwa Chen Yan Zhang uplink 1485.788
Hsiao-Hwa Chen Yan Zhang 802.16 1527.335

PathSim are shown in Table V. Comparing with MOS, we can
see that the most similar 10 motifs in Table V are completely
different from those in Table II. However, the top 10 outlier
motifs are exactly the same, even with the same ranking order.
Moreover, each motif listed in the top 10 outlier motifs owns
the same similarity distribution. That is, though different ways
calculate the similarity values, outlier motifs with the same
MOS value are detected in same orders. For example, in
Table V, all of the 10 outlier motifs are with the same PathSim
equal to 41.397. In Table II, these 10 outlier motifs own the
same MOS values of 58.867. In Table VI, the CosSim values
of these outlier motifs are all 42.038.

CosSim reflects the similarity between two nodes from the
perspective of the cosine value between two vector angles
in a vector space. Herein, we list the detecting results in
Table VI. Comparing with NetOut and PathSim, CosSim yields
identical detecting results. There exists another interesting
phenomenon that the top 10 outlier motifs have the same
similarity values, including MOS, PathSim, and CosSim. It
seems that different similarities barely influence on the outlier
motif detection results. This phenomenon indicates that our
proposed algorithm performs well in detecting outlier motifs.
Furthermore, the proposed algorithm is insensitive to different
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(a) Terms (b) Authors

Fig. 9: The distribution of nodes in outlier motifs. 9(a) the distribution of “term”. 9(b) the distribution of “authors”.

TABLE VI: The top 10 outlier motifs and top 10 most similar
motifs detected based on the query motif “Feng Xia (author) -
Guowei Wu (author) - authentication (term)” and the CosSim
similarity.

Author 1 Author 2 Term CosSim
Xianjun Geng Yun Huang defending 42.038
Xianjun Geng Yun Huang against 42.038
Xianjun Geng Yun Huang challenge 42.038
Xianjun Geng Yun Huang ddos 42.038
Xianjun Geng Andrew B. Whinston defending 42.038
Xianjun Geng Andrew B. Whinston against 42.038
Xianjun Geng Andrew B. Whinston challenge 42.038
Xianjun Geng Andrew B. Whinston ddos 42.038

Yun Huang Andrew B. Whinston defending 42.038
Yun Huang Andrew B. Whinston against 42.038

...
...

...
...

Hsiao-Hwa Chen Honglin Hu ad-hoc 1389.960
Hsiao-Hwa Chen Chonggang Wang ad-hoc 1404.822
Hsiao-Hwa Chen Yueh-Min Huang ad-hoc 1411.361
Hsiao-Hwa Chen Ching-Hung Yeh ad-hoc 1417.390
Hsiao-Hwa Chen Tzone-I Wang ad-hoc 1417.390
Hsiao-Hwa Chen Keith Conner ad-hoc 1421.122
Hsiao-Hwa Chen Tinku Rasheed ad-hoc 1421.122
Hsiao-Hwa Chen Djamal-Eddine Meddour ad-hoc 1429.639

Shiwen Mao Victor C. Leung ad-hoc 1439.300
Hsiao-Hwa Chen Yan Zhang ad-hoc 1496.971

similarities when detecting outlier motifs.
As for the most similar motifs in our result tables V and VI,

there exist some differences. None of the top 10 most similar
motifs are the same in the three tables. Some of the nodes
or edges within the motifs may be the same, but the whole
motifs are not. The top 10 most similar motifs are different
may be caused by different similarity metrics.

To verify the similarity’s influence on the detection results,
we implement another two experiments for Case 2 in an
academic network, which starts from motif “Jie Tang (author)
- Juanzi Li (author) - recommendation (term)”. We implement
our experiments with PathSim and CosSim, respectively. Ta-

TABLE VII: The top 10 outliers and top 10 most similar to
given motif set using PathSim. The beginning motif is “Jie
Tang (author) - Juanzi Li (author) - recommendation (term)”.

Author 1 Author 2 Term PathSim
Wu-Jun Li Dit Yan yeung mild 16.358
Wu-Jun Li Dit Yan yeung multiple-instance 16.358

Myunggwon G. Hwang Chang Choi sense 39.134
Myunggwon G. Hwang Pan-Koo Kim sense 39.134

Chang Choi Pan-Koo Kim sense 39.134
Myunggwon G. Hwang Chang Choi enrichment 39.938
Myunggwon G. Hwang Pan-Koo Kim enrichment 39.938

Chang Choi Pan-Koo Kim enrichment 39.938
A. N. Zincir-Heywood M. I. Heywood object-orientated 46.706
A. N. Zincir-Heywood C. R. Chatwin object-orientated 46.706

...
...

...
...

Xuemin Lin Yufei Tao multivalued 5651.753
Xuemin Lin Yufei Tao borda 5651.753
Yufei Tao Xuemin Lin anonymous 5680.435
Yufei Tao Xuemin Lin dimensional 5689.031
Yufei Tao Xuemin Lin skylines 5690.555
Yufei Tao Xuemin Lin threshold-based 5699.910
Yufei Tao Xuemin Lin k 5699.910
Yufei Tao Xuemin Lin existentially 5700.076
Yufei Tao Xuemin Lin extents 5736.802
Yufei Tao Xuemin Lin medium 5752.686

ble VII shows the detecting results of PathSim, and Table VIII
shows that of CosSim. In Table VII, the list of the top 10
outlier motifs is similar but not the same as the experimental
results using MOS. Generally, the top 8 outlier motifs detected
based on PathSim are identical as that of MOS. The other 2
outlier motifs are quite different from that in Table III. For
detecting results in Table VIII, there also exist the same top
8 outlier motifs.

Similar to Case 1, the similarity values of the top 10 outliers
appear with the same ranking orders. Among all the detecting
results based on these three similarity metrics, the first top
2 outlier motifs own the same value. This illustrates that
the proposed algorithm is a general method that will not be



12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 14, NO. 8, OCTOBER 2019

TABLE VIII: The top 10 outliers and top 10 most similar to
given motif set using CosSim. The beginning motif is “Jie
Tang (author) - Juanzi Li (author) - recommendation (term)”.

Author 1 Author 2 Term CosSim
Wu-Jun Li Dit Yan yeung mild 18.356
Wu-Jun Li Dit Yan yeung multiple-instance 18.356

Myunggwon G. Hwang Chang Choi sense 40.436
Myunggwon G. Hwang Pan-Koo Kim sense 40.436

Chang Choi Pan-Koo Kim sense 40.436
Myunggwon G. Hwang Chang Choi enrichment 41.740
Myunggwon G. Hwang Pan-Koo Kim enrichment 41.740

Chang Choi Pan-Koo Kim enrichment 41.740
A. N. Zincir-Heywood M. I. Heywood object-orientated 48.951
A. N. Zincir-Heywood C. R. Chatwin object-orientated 48.951

...
...

...
...

Xiang Lian Lei Chen cost 4152.757
Xiang Lian Lei Chen range 4156.470
Yufei Tao Xuemin Lin location-based 4158.846
Yufei Tao Xuemin Lin medium 4168.364
Yufei Tao Xuemin Lin neighbor 4179.917
Yufei Tao Xuemin Lin nearest 4214.662

Xiang Lian Lei Chen neighbor 4232.639
Yufei Tao Xuemin Lin reverse 4236.367

Xiang Lian Lei Chen nearest 4265.022
Lei Chen Xiang Lian reverse 4278.532

affected by different similarities. In other words, our proposed
algorithm can detect outlier motifs with a stable performance.
As for the top 10 most similar motifs, few nodes or edges of
Table VII or Table VIII are the same comparing with MOS.
This means that different similarities lead to different detecting
results, but the proposed algorithm reduces or eliminates such
cases. Therefore, the proposed method can achieve relative
stable detecting results.

V. CONCLUSION

In this work, we have examined outlier motifs, an interesting
and critical issue in social computing. We have proposed an
efficient algorithm for finding outlier motifs in heterogeneous
information networks. By exploring the user’s query and
constrained conditions (i.e. human behaviour), we calculate
MOS of each motif in the candidate motif set and sort the
MOS values in the ascending order. We set the standard for
MOS in query, which is the structure of a motif similar to
a reference motif set. The proposed algorithm contains four
steps: obtaining motifs meeting query conditions, counting
meta paths between nodes, calculating MOS between a motif
in the candidate motif set and the whole reference motif set,
and ordering MOS of each motif in the candidate motif set.
We verify our algorithm on two information networks from
the real-world academic network and discuss the experimental
results of both networks. Interesting outlier motifs are also
found in these networks. Furthermore, we also discuss the
details about how to choose the candidate set, meta path, etc.
Our work sheds light on finding interesting outlier motifs in
large-scale heterogeneous networks and provides a new way
of outlier detection for human behavior patterns.

APPENDIX A
LABELS FOR FIGURES

We list the labels of the figures here for references, see
figs. 10 to 12.

(a) Labels for Figure 4(a) (b) Labels for Figure 4(b)

Fig. 10: The labels for Figure 4(a) and Figure 4(b).

(a) Labels for Figure 5(a) (b) Labels for Figure 5(b)

Fig. 11: The labels for Figure 5(a) and Figure 5(b).
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