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Abstract— The ongoing coronavirus disease 2019 (COVID-19)
pandemic spread throughout China and worldwide since it was
reported in Wuhan city, China in December 2019. 4 589 526
confirmed cases have been caused by the pandemic of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), by May 18,
2020. At the early stage of the pandemic, the large-scale mobility
of humans accelerated the spread of the pandemic. Rapidly and
accurately tracking the population inflow from Wuhan and other
cities in Hubei province is especially critical to assess the potential
for sustained pandemic transmission in new areas. In this study,
we first analyze the impact of related multisource urban data
(such as local temperature, relative humidity, air quality, and
inflow rate from Hubei province) on daily new confirmed cases
at the early stage of the local pandemic transmission. The results
show that the early trend of COVID-19 can be explained well
by human mobility from Hubei province around the Chinese
Lunar New Year. Different from the commonly-used pandemic
models based on transmission dynamics, we propose a simple
but effective short-term prediction model for COVID-19 cases,
considering the human mobility from Hubei province to the
target cities. The performance of our proposed model is validated
by several major cities in Guangdong province. For cities like
Shenzhen and Guangzhou with frequent population flow per day,
the values of R2 of daily prediction achieve 0.988 and 0.985. The
proposed model has provided a reference for decision support of
pandemic prevention and control in Shenzhen.

Index Terms— Coronavirus disease 2019 (COVID-19), human
mobility, multisource urban data, short-term prediction.

I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19), a global
pandemic caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), has caused tremendous social
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burden and economic losses for many regions and countries
in the world. According to the latest statistics of the World
Health Organization (up to May 18, 2020), 4 589 526 cases
have been infected in over 216 countries, areas, or territories,
resulting in approximately 310 391 deaths [1] (Fig. 1). And
the number of confirmed cases is still escalating rapidly
worldwide, which has led to an unprecedented challenge in
front of the international community [2], [3].

The outbreak of the COVID-19 began in early
December 2019, which was first reported in Wuhan city, Hubei
province of China [4], [5]. The COVID-19 can cause fever,
cough, and other symptoms, even affect acute respiratory
failure and multiple-organ dysfunction [6], [7]. Of particular
note is the fact that human-to-human transmission has been
confirmed [8], [9]. The geographic spread of emergent
infectious diseases by large-scale human mobility can cause
rapid multipoint transmission of the pandemic [10]–[12].
At the initial stage of the COVID-19 outbreak, it is an effective
approach that the pandemic situation based on multisource
urban data is analyzed. Especially, tracking human mobility
from Wuhan and other cities in Hubei province is critical due
to the massive transportation in the run-up to the Chinese
Spring Festival. Among the infected population, asymptomatic
and mild-symptomatic cases are difficult to be detected.
Considering the natural transmission efficiency and mortality
of the COVID-19 pandemic, the potential influence caused
by human mobility cannot be neglected [13]. For the first-tier
megacities like Shenzhen city and Guangzhou city, the early
prevention and control of importation risk are especially
important. For instance, Shenzhen is the largest mobility city
with the highest population density in China. There are large
inflows of the population from domestic areas, which possibly
brings high importation risk. Specifically, there are nearly
1.5 million people who immigrate from Hubei province to
Shenzhen according to recent statistics. From the aspect of
urban prevention and control of the pandemic, accurate and
timely prediction plays an important role [14]–[16].

Recently, many works have focused on forecast and
simulation for the pandemic situation from different per-
spectives [17]–[20]. The most commonly-used prediction
approaches are the classical compartmental models based on
pandemic transmission dynamics. There have been extensive
studies predicting the pandemic trend of COVID-19 [21]–[23].
For instance, Wu et al. [8] adopted a susceptible-exposed-
infectious-recovered (SEIR) metapopulation model to simulate
the pandemic across all major cities in mainland China.
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Fig. 1. COVID-19 outbreak situation [1].

Yang et al. [21] proposed a modified SEIR model in which
population migration data are integrated, and the results show
a gradual decline of the pandemic in China by end of
April. Kucharski et al. [23] employed a stochastic trans-
mission dynamic model to capture the varying dynamics of
the pandemic. However, at the early stage of an emerging
pandemic, limited knowledge about the transmission character-
istics can be obtained, such as the basic regeneration number,
transmission capability of asymptomatic cases, and so on.
Moreover, the reality could be complicated and change over
time and space, which results in that the accurate estimation of
these parameters by modeling transmission dynamics becomes
challenging. Besides them, some studies have explored the
relationship between human mobility and transmission of
COVID-19 with respect to statistics and machine learning.
To be concrete, Jiang and Luo [19] used the random effect
model to evaluate the impact of population mobility on
COVID-19 transmission. Kraemer et al. [20] utilized the
generalized linear model, aiming to estimate the influence of
human mobility and control measures for the pandemic in
China. The autoregressive time series model was adopted by
Maleki et al. [24] to analyze the confirmed and recovered
COVID-19 cases across the world from April 21, 2020 up to
April 30, 2020.

The analysis method based on multisource urban data can
be used to analyze and model the transmission of the pandemic
due to the limited prior knowledge of the emerging COVID-19
pandemic. Meanwhile, to provide rational suggestions for the
importation risk, especially at the early stage of the COVID-19
pandemic, this study proposes a short-term prediction
approach for daily new COVID-19 cases based on human
mobility data of Hubei province. Our study areas focus on
major cities in Guangdong province, especially Shenzhen
city. Firstly, considering multisource urban data, we con-
duct some statistics and correlation analysis between possible
factors – human mobility, weather condition, and so on –
and the newly confirmed cases. According to the results,
it can be observed that the early trend of the COVID-19
pandemic in Shenzhen can be explained well by the population
migrated from Hubei province during the Chinese Lunar New
Year. Then, a fixed effect multiple regression (MR) model
is constructed, serving the short-term prediction of daily

new confirmed cases of COVID-19. We finally verify the
performance of our method through several major cities of
Guangdong province, from February 1st to February 15, 2020.
Specifically, the value of R2 of daily new confirmed cases
reaches 0.988 and 0.985 for Shenzhen and Guangzhou, respec-
tively. Therefore, the proposed model can be applied to assist
the disease control department to accurately get insight into
the pandemic situation, reasonably allocate the emergency
resources, precisely arrange the medical staff at the early stage
of the pandemic. In summary, the contributions of this work
are twofold as follows.

1) In terms of Shenzhen city, the correlation between
related multisource urban data and daily new confirmed cases,
at the early stage of the local pandemic transmission, is ana-
lyzed. The early tendency of COVID-19 in Shenzhen can
be explained well by the migrated population from Hubei
province during the period of the Chinese Lunar New Year.

2) We put forward a fixed effect MR model so that
short-term prediction of daily new confirmed cases for a city
becomes available. Especially, the proposed model has been
adopted, aiming to provide a reference for the prevention and
control of pandemic in Shenzhen at the early stage of the
COVID-19 pandemic.

The rest of this article is organized as follows. Section II
describes the proposed short-term pandemic prediction model
for the early stage of the COVID-19 outbreak based on mobil-
ity flow. Section III presents analysis and prediction results
for several major cities in Guangdong province. Section IV
discusses the contribution and limitations of this proposed
model. Finally, this study is concluded in Section V.

II. METHODOLOGY

A. Study Design

The occurrence, spread, and spatial distribution of many
infectious diseases are closely related to geographical fac-
tors and human activities, such as climate change, weather
condition, human mobility, and so on [25]–[27]. In our
research, we take the epidemic situation of Shenzhen in early
February as the main analysis object. In the early phase of the
COVID-19 pandemic, owing to the lack of prior knowledge of
the emerging disease, we first collect multisource urban data,
such as temperature, humidity, air quality and human mobility
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in the study area, and the newly confirmed cases. Then the
correlation between them is investigated. It is expected that the
most relevant factors at the early stage of the local pandemic
transmission are screened out, which also makes a contribution
to precise modeling. Finally, we merge the established critical
factors and the historical confirmed cases to execute short-term
predictions. In this way, the need for early and rapid warning
is fulfilled.

B. Data Sources

To assess the impact of various factors on early dynamics
of transmission in Shenzhen, we collect multiple publicly
available urban data in Shenzhen, which consists of confirmed
cases, mobility, air quality, and weather data. In particular,
the daily data of COVID-19 confirmed cases in Guangdong
province are obtained from the Health Commission of Guang-
dong Province from January 21, 2020 to February 15, 2020.
It is composed of the numbers of the accumulated confirmed
cases and daily ones of cities in Guangdong province.1 The
data of daily human mobility moving from Hubei to Guang-
dong province are extracted from Baidu Inc.2 This information
represents the daily mobility trend in form of mobility ratio.
The daily air quality data containing air quality index (AQI)
and fine particulate matter (PM2.5 and PM10) are derived from
the China air quality online monitoring and analysis platform.3

We acquire the temperature and relative humidity data from
the open meteorological information website.4 Specifically,
human mobility, air quality and weather data are collected
from January 1st to February 15, 2020.

C. Correlation Analysis

With respect to Shenzhen city, employing correlation analy-
sis, we analyze the correlation between local temperature,
relative humidity, air quality (AQI/PM2.5/PM10) and inflow
rate from Hubei province, and daily new confirmed cases.
Due to the high intraprovince mobilization of Hubei province,
the pandemic had spread to every city in Hubei province from
Wuhan, during the Spring Festival. Therefore, we consider
the daily inflow from the whole Hubei province to the target
cities as input rather than separate cities in Hubei province.
In Shenzhen city, the first confirmed case was reported
on January 19th. Considering the incubation period of the
COVID-19, it can spread to others during this period. Accord-
ing to latest literatures [28]–[31], the mean incubation period
is defined as around 5–7 days. As a result, we define the
incubation period as 6 days before the onset of the disease.
At the same time, regarding that some factors may have a lag
effect on the transmission, we expand the incubation period
to 14 days and analyze them in Section III-B.

We investigate the relevance between the number of newly
confirmed patients from January 21th to 30th in Shenzhen and
the corresponding human mobility and other weather/climate
factors, in terms of different incubation periods. In this article,

1http://wsjkw.gd.gov.cn
2http://qianxi.baidu.com
3https://www.aqistudy.cn/historydata
4http://lishi.tianqi.com/shenzhen/index.html

the Pearson correlation coefficient [32], [33] is employed to
quantitate the correlation, which can be defined as follows:

pearsonr = E[(X − μX )(Y − μY )]√∑T
i=1(Xi − μX )2

√∑T
i=1(Yi − μY )2

(1)

where X = [X1, . . . , XT ] and Y = [Y1, . . . , YT ] represent
the two vectors to be measured, and the length is T . μX and
μY denotes the means of X and Y , respectively.

D. Early Short-Term Prediction Model Integrating
Multiple Factors

Based on multisource urban data, we construct a fixed
effect MR model, in which the historical confirmed cases are
integrated to predict the daily new confirmed cases, especially
for these cities that take high importation risks. Different from
the traditional transmission dynamics models, the model is
data-driven. Without loss of generality, the input variables
consist of the factors that correlate with the confirmed cases
and the amount of historical confirmed cases. For simplicity,
we define F as the set of these factors, in which f ∈ F
represents a factor in F (e.g. daily population inflow ratio
of Hubei toward target city). Fixing the disease incubation
period H , [ f (t − 2H + 1), . . . , f (t − H )] stands for the
daily value of the factor f in H time interval, and [I (t −
H +1), . . . , I (t)] denotes the sequence which is composed of
corresponding cumulative confirmed case. Based on the above
historical observations, the number of cumulative confirmed
cases at future time point t + n (n is the time step size of
prediction) can be modeled as follows:

Î (t + n) = γ0 +
∑
f ∈F

H−1∑
i=0

[
β f,i f (t − H − i)

] +
H−1∑
i=0

αi I (t − i)

(2)

where γ0, β f,i , and αi are the trainable parameters of the
model. Ît+n refers to the predicted number of cases at t + nth
day. We apply a supervised machine learning approach to
estimate the parameters of the model.

III. RESULTS

A. Evaluation Criteria

In the task of the correlation analysis, the Pearson correla-
tion coefficient and p value are applied. Particularly, the factor
with a high value of correlation and p value that is less
than 0.05 is considered a statistically significant feature for
subsequent prediction mission.

Verifying the performance of the short-term prediction,
the mean absolute error (MAE), root mean-squared error
(RMSE), and the coefficient of determination-R2 are adopted.
Given a series of forecast values ( Î1, Î2 . . . , ÎN ) and their
corresponding ground truth values (I1, I2, . . . , IN ), above
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Fig. 2. Confirmed cases from the Health Commission of Guangdong Province and human mobility from Hubei province to Shenzhen, Guangzhou, Zhuhai,
and Zhongshan, respectively.

evaluations can be calculated as follows:
MAE = 1

N

∑
j

|I j − Î j | (3)

RMSE =
√√√√ 1

N

∑
j

||I j − Î j ||22 (4)

R2 = 1 −
∑

j ||I j − Î j ||22∑
j ||I j − Ī ||22

(5)

where N is the total number of forecast days, I j and Î j

indicates the amount of ground truth and predicted cases in the
j th day, respectively. Ī denotes the mean values of true series.
The RMSE and MAE show the degree of deviation, while
R2 represents the extent of interpretation of the independent
variable with respect to the dependent variable. A prediction
with great performance can be represented as the low values
of RMSE and MAE and the high one of R2.

B. Correlation Analysis for Multiple Factors

The human mobility from Hubei province plays a critical
role due to that the cases reported in China are almost derived
from Hubei province until January 23, 2020. Fig. 2 depicts the
population outflow from Hubei province toward several major
cities in Guangdong province (Shenzhen, Guangzhou, Zhuhai,
and Zhongshan), during the Chinese Lunar New Year ranging
from January 15th to 26th. Especially approaching the Spring
Festival, the mobility rate has dramatically increased every
day. Fig. 3 shows the Pearson correlation coefficient between
the daily new confirmed cases and factors selected with
6 days lag. As Fig. 3(a) illustrates, there is a clear correlation
between population inflow from Hubei province and early
cases in Shenzhen (pearsonr = 0.95), which is consistent
with the statistics of the real cases, according to the official
data of Shenzhen Health Commission (Fig. 4). According to

Fig. 3(b) and (c), the daily average temperature has a
weakly positive correlation with the increased number of
confirmed cases (pearsonr = 0.41), while relative humidity
shows negative correlation (pearsonr = −0.62). Furthermore,
Fig. 3(d)–(f) show the correlation of other air quality factors.
The results indicate that the AQI, PM2.5, and PM10 are all
negatively correlated with the confirmed cases in the early
phase of the outbreak (pearsonr = −0.31, −0.25, and −0.43,
respectively). Validating whether some factors exhibit a lag
effect, the time interval is expanded to 14 days. Table I
shows the details of the correlation coefficient between the
investigated factors and the number of daily new confirmed
cases in Shenzhen with respect to different lag days. From
the statistical results, it can be concluded that human mobility
shows the highest consistency, while the other factors almost
show the negative or weak one. In the meantime, p values
of mobility ratio are all less than 0.05. It is noteworthy that
the clearest correlation between population mobility and the
number of confirmed cases occurs at 6-day lag, which is
consistent with the mean incubation period investigated in the
literature. Following this observation, we further conduct other
experiments to verify the importance of tracking population
movements from Hubei province.

C. Short-Term Predictions

According to the above correlation analysis, the impact of
population flow on the early diffusion is selected as the main
factor for short-term prediction. To further demonstrate the
effectiveness of human mobility at the early stage, we only
use human mobility as the input feature for our model firstly.
And in our work, the other two classical regression models,
the least absolute shrinkage and selection operator (LASSO)
and ridge regression (RR), are also used for verification
and comparison. Based on the above analysis, we estimate
the number of infected cases from February 1st to 15th.
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Fig. 3. Correlation analysis between the number of confirmed cases and other factors in the early phase of the COVID-19 pandemic from
January 21, 2020 to January 30, 2020, which consists of (a) mobility rate from Hubei province to Shenzhen, (b) temperature, (c) relative humidity, (d) AQI,
(e) PM2.5, and (f) PM10.

TABLE I

CORRELATION ANALYSIS BETWEEN THE NUMBER OF CONFIRMED CASES AND OTHER FACTORS IN SHENZHEN

And the corresponding daily confirmed data is used to verify
the model. Table II gives quantitative results of models with
different factors. Only using the human mobility data, the three
models achieve high R2 value, which further illustrates the
effectiveness of this factor. However, as shown in the table,
human mobility can only reflect the overall trend, and it
cannot accurately represent the changes in confirmed cases.
Therefore, only using single mobility factor, the prediction
performance of the model is limited. With the integration
of historical case data, the prediction performance has been
further improved. Taking Shenzhen as an example, the R2

value of daily prediction is increased to 0.988 compared with
only considering the population inflow of Shenzhen.

Table III shows the prediction performance from 1- to
5-day-ahead for Shenzhen, Guangzhou, Zhuhai, and
Zhongshan. For the daily forecast, our model predicts
amounts of daily cases across these cities with relatively high
accuracy, in which all the values of R2 are greater than 0.9.
Especially for cities like Shenzhen and Guangzhou with
frequent population flow per day, the values of R2 of daily
prediction achieve 0.988 and 0.985, which implies that the
magnitude of the early pandemic outside of Hubei province
is very well related to the volume of human mobility out of
Hubei province. This is also apparent from the case counts by
other cities in Guangdong province. With increasing forecast
days n, the values of R2 begin to decline. But the overall trend
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TABLE II

PREDICTION PERFORMANCE OF ONE-DAY-AHEAD IN SHENZHEN, GUANGZHOU, ZHUHAI, AND
ZHONGSHAN OF GUANGDONG PROVINCE WITH SINGLE OR MULTIPLE FACTORS

TABLE III

PREDICTION PERFORMANCE OF n-DAY-AHEAD IN SHENZHEN, GUANGZHOU, ZHUHAI, AND ZHONGSHAN OF GUANGDONG PROVINCE

Fig. 4. Distribution of COVID-19 in Shenzhen with respect to the date of
onset.

can still be captured. The main reasons for this phenomenon
are as follows: first, the number of training samples used for
learning decreases with the increase of n; second, because
of the strong correlation between early human mobility and
disease, the difference in daily mobility is still obvious.
Therefore, the lack of real-time data supplement will also
have a certain impact on the accuracy of the prediction model.

Also, Fig. 5 shows the pandemic trends for Shenzhen,
Guangzhou, Zhuhai, and Zhongshan of Guangdong province
from February 1, 2020 to February 15, 2020. From the figure,
we can find that there is a fine synchronization between the
number of predicted cases and that of ground truth cases for
daily prediction. It visually proves the prediction ability of our
model in the early phase of the pandemic. The proposed model
has served as a reference for decision support of epidemic
prevention and control in Shenzhen at the early outbreak of
the COVID-19.

IV. DISCUSSION

In the earliest phase of the pandemic, the spatial distribution
of COVID-19 cases in China was explained well by human
mobility data when the human-to-human transmission is estab-
lished. Especially, for the first-tier megacities like Shenzhen
city, we employ multisource data to verify it. Therefore, cases
exported from Hubei province appear to have contributed to
the initiation of transmission chains for Guangdong province.
Obviously, with booming population outflow from Hubei
province, the number of confirmed cases will be significantly
increased in the early phase (e.g. Shenzhen and Guangzhou).
Therefore, the rapid and massive responses of China are
necessary, which substantially slows the spread of COVID-19
through the implementation of unprecedented containment
measures, including the implementation of the travel ban,
lockdown of the whole province of Hubei, and so on.

At the early stage of the outbreak, the analysis model with
the population mobility data can realize the short-term and
quick prediction of the pandemic spread. At the same time,
it also shows that the early development of strategies, such as
the lockdown of cities, is of great significance in blocking the
rapid and large-scale spread of the pandemic.

Overall, the proposed model is mainly suitable for the
situation of the normal mobility of the population at an
early stage. Since the prevention and control measures have
been adopted by all cities in the later stage, which leads to
limited importation, the prediction of the short-term model
may be influenced to some extent. It is worth noting that
as of February 2nd, cases of intracommunity transmission
have occurred in Shenzhen; thereby the effectiveness of our
method that is based on the investigation of importation risk
has gradually decreased. With the large-scale return flow of
the Spring Festival and the stable state of mobility, the risk
of local community transmission overtaking imported cases
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Fig. 5. Estimation of the number of cumulative infected cases for (a) Shenzhen, (b) Guangzhou, (c) Zhuhai, and (d) Zhongshan.

cannot be ignored. At the middle and late stages of the
pandemic, to analyze the transmission risk under the local
steady-state situation, it is necessary to further combine the
actual local situation of disease infection and cure. What
is more, thoroughly considering the multidimensional factors
such as climate, population behavior, etc., a regional trans-
mission risk model can be built to analyze the evolution of
infectious disease dynamics within the city, and more scientific
and reasonable suggestions for the daily protection of residents
and decision-makers can be also provided.

V. CONCLUSION

In this article, we first analyze the correlation between some
possible factors and the daily new confirmed cases, utilizing
multisource urban data where many elements are somewhat or
closely related to the transmission of the pandemic. What is
more, based on the actual human mobility data and pandemic
trend, a fixed effect MR model is proposed for short-term
prediction in the early phase of the COVID-19 outbreak.
By tracking the population flow in real-time, the model
can provide powerful suggestions for decision-makers
and epidemiologists. In this way, they can settle down appro-
priate policies to promptly and effectively prevent and control
the pandemic and save lives to the largest extent.
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