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Abstract

In this paper we explore previously unidentified connections between
relational event model (REM) from the field of network science and in-
verse reinforcement learning (IRL) from the field of machine learning with
respect to their ability to characterize sequences of directed social inter-
action events in group settings. REM is a conventional approach to tackle
such a problem whereas the application of IRL is a largely unbeaten path.
We begin by examining the mathematical components of both REM and
IRL and find straightforward analogies between the two methods as well
as unique characteristics of the IRL approach. We demonstrate the special
utility of IRL in characterizing group social interactions with an empirical
experiment, in which we use IRL to infer individual behavioral preferences
based on a sequence of directed communication events from a group of
virtual-reality game players interacting and cooperating to accomplish a
shared goal. Our comparison and experiment introduce fresh perspectives
for social behavior analytics and help inspire new research opportunities
at the nexus of social network analysis and machine learning.

1 Introduction

From interpersonal relations to international politics, human social systems are
replete with sequences of directed social interaction events, or dyadic actions [7].
Person A sending person B a text message is a dyadic action. Country A
providing financial aid for country B is also a dyadic action. Intuitively, these
dyadic actions can be defined by their initiator (from whom), receiver (to whom),
nature (what they were), and time (when they happened). If we observe a
group of “actors” initiating and receiving dyadic actions for a period of time, the
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resulting data would be a sequence of events with the above properties specified.
Such data have been used as key evidence for understanding social systems
in various applications such as workplace organizations and online classrooms
[8,22,23]. With the uptake of mobile sensing technology, we are increasingly able
to obtain fine-grained, time-stamped dyadic action sequences among groups of
mobile technology users interacting in natural settings, especially face-to-face
communication [16].

To uncover the driving factors of group dyadic actions and potentially use
them to predict future actions, a social network model called relational event
model (REM) was proposed [4] and remains a popular tool to analyze group
dyadic action sequence data [22] [8]. The premise of REM is that the likelihood
of a particular sequence of group dyadic actions depends on a set of latent fea-
tures and their respective degree of importance that are intrinsically possessed
by the group regarding the type of dyadic action. For example, if a group of
people place high importance on the reciprocation of actions (e.g., physical at-
tacks that justify retaliation), then many back-and-forth dyadic actions should
be observed; whereas if a social circle likes to “pay it forward” (e.g., circulating
gossips), the dyadic actions among the members tend to form directed chains.
Thus, given a pre-specified set of underlying features and their respective im-
portance values, some dyadic action sequences are more likely to emerge than
others. By fitting an REM model to collected group dyadic action sequence
data, one can learn a set of importance values of the specified underlying fea-
tures that maximize the likelihood of the observed sequence of dyadic actions.
These learned importance values constitute valuable insight into how a group
of individuals interact and form a social system.

Now we look to the field of machine learning. Reinforcement learning (RL)
is a type of machine learning problem which hypothesizes that the behavior of
an intelligent agent is driven by its desire to accumulate higher reward when
interacting with its broadly construed environment. By taking different actions,
an agent transitions to different states of the environment, resulting in different
rewards at each transition; the actions that result in higher rewards would
be favored in the future and those in lower rewards avoided. An RL algorithm
assumes knowledge of such reward values and aims to find an optimal behavioral
strategy, or policy, that would achieve the most reward over time. Its inverse
problem, namely inverse reinforcement learning (IRL) [1,15,19,24] on the other
hand, takes the observed sequence of states and actions of an agent as input
and seeks to solve for the reward that must have driven the actions taken.
In this sense, there exists a resemblance between IRL and REM, because both
approaches take as input an observed event trajectory, both assume the existence
of certain underlying measures that are affected by taking different actions and
thus govern how different actions are sequentially chosen, and both try to find
the values of these measures that can best explain the observed trajectory of
events.

This resemblance motivates us to explore two research questions. On a
theoretical level, we want to inspect how REM and IRL are connected math-
ematically. We discuss technical details of REM and IRL in Sections 2.1 and
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2.2, examine the analogies and distinctions in their mechanisms in Section 4.1,
and find many mathematical components of the two equivalent. We outline sev-
eral unique aspects of REM and IRL that do not match in Section 4.2, which
call for further research and potential new development. On a practical level,
we wonder in what ways an IRL approach, which has not conventionally been
utilized in social interaction modeling, would enrich the existing social network
models such as REM to characterize group social interaction dynamics, espe-
cially given their differences in technical capability deliberated in the theoretical
comparison. The modeling perspective of REM is a bird-eye view of the whole
group thus making it unable to straightforwardly specify the nuances in the be-
havioral tendency of different individuals in a group. When a group interaction
scenario involves different individuals with distinct roles and behavioral tenden-
cies (e.g., team leaders and team members), understanding group behavior only
from its entirety may become insufficient and the need to model individual be-
havior arises. We propose that IRL can address this limitation and demonstrate
in Section 5 with real-world data how IRL can be used to model sequences of
directed social interaction events in group settings. We showcase the unique
utility of an IRL approach in characterizing individual behavior preferences.

To the best of our knowledge, this paper is the first to (1) identify and ex-
plore the theoretical connection between relational event model and inverse rein-
forcement learning in modeling dynamics of directed social interaction events in
groups, and (2) apply and show potential value of inverse reinforcement learn-
ing from the perspective of individual actors using data for which a network
modeling approach is conventionally employed.

2 Related Work

2.1 Relational Event Model

Relational event model is capable of taking full advantage of time-stamped or
at least time-ordered group dyadic action data which are ubiquitous in human
social systems. Full details can be found in its original paper [4] and we review
the key building blocks here. First and foremost, a dyadic action or directed
social interaction event a ∈ A, where A is the set of all possible actions, is fully
characterized by five elements: (1) a sender s(a) ∈ S, where S is the set of
senders; (2) a receiver r(a) ∈ R, where R is the set of receivers; (3) an action
type c(a) ∈ C, where C is the set of action types; (4) a timestamp τ(a), and;
(5) descriptive covariate(s) Xa, which may or may not be specified. At a given
time t, we have observed At, a time-stamped (thus time-ordered) history of
M dyadic actions a1, a2, ..., ai, ..., aM (aM is the most recent) and we denote
a0 as a place-holder for the beginning point of the observed sequence with its
timestamp τ(a0) = 0. The event history is illustrated in Figure 1.

To specify the probability density of such an event history, REM resorts to
survival and hazard functions [13]. This is a fitting approach because an event
history clearly consists of multiple eventless periods between discrete dyadic
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Figure 1: An illustration of timestamped relational event history, the input data
for REM

actions scattered over time. A survival function Sa(t) expresses the probability
of an action a not happening over duration 0∼t while a hazard function ha(t) =
∂[1−Sa(t)]

∂t /Sa(t) quantifies the propensity that an action a did occur when some
action was to happen. As such, the probability of an event history can be written
as a product of multiple survival functions and hazard functions as Equation 1.

p(At) =

M∏
i=1

[hai(τ(ai))
∏
a∈A

Sa(τ(ai)− τ(ai−1))]

×
∏
a∈A

Sa(t− τ(aM )) (1)

hai(τ(ai)) = λ(ai, Aτ(ai−1), Xai) (2)

= exp[θTu(ai, Aτ(ai−1), Xai)] (3)

Based on the intuition that actions with different senders, receivers, types,
and other descriptive covariates should have different likelihood of happening
given preceding events, REM specifies the hazard h as a rate function λ (Equa-
tion 2) that is equal to the exponential of the weighted sum of a vector of
sufficient statistics u(ai, Aτ(ai−1), Xai) (Equation 3). The sufficient statistics
featurize the trajectory of past events leading up to the current action. θ is a
coefficient vector associated with the sufficient statistics quantifying their im-
portance. The rate function governs the distribution of probability associated
with each action given the past event history. In cases where the temporal
order of the events is available but exact timestamps are not, the probability
of an event history realizing can be equivalently written as Equation 4 (proof
available [4]), which relaxes the requirement for timestamped data.

p(At) =

M∏
i=1

[
λ(ai, Aτ(ai−1), Xai)∑
a′∈A λ(a′, Aτ(ai−1), Xa′)

] (4)

By expressing the hazard function in terms of linear combinations of suffi-
cient statistics, REM allows not only straightforward parameterization of cer-

4



Figure 2: An illustration of state-action trajectory, the input data for IRL

tain realizations of event trajectory but also straightforward inference proce-
dure through likelihood-based methods (e.g., maximum likelihood estimation)
to learn the values of coefficients θ that best fit real data. We find applica-
tions of REM in diverse domains to understand human social behavior such as
team processes [10] [17], friendship [5], and within education [22] [8] and health
care [21] settings. The group interaction dynamics characterized by REM are
anticipated to be useful for predicting individual and group outcomes such as
task performance [17].

2.2 Inverse Reinforcement Learning

The life of every living creature naturally involves observing changing environ-
ment and acting upon it in a way favorable for their survival and prosperity. In
artificial intelligence applications where we train a computer to complete human
tasks (e.g., playing chess), we also require it to be able to make “good moves”
given a situation (e.g., positions of self and opponent pieces) that are conducive
to favorable outcomes (e.g., winning). As such, questions arise as to how a
human or machine should choose actions based on the observed environment,
which can change as a result of previous actions taken, to achieve particular
goals over time.

Reinforcement learning is a method aimed at officially answering these ques-
tions. In its basic setup, an agent finds itself in a state s at each time step
t, which characterizes the context in which the agent is situated, and takes an
action a, which alters the context and thus brings the agent to a new state s′.
Both s and s′ belong in a state space S, the set of all possible states, and all pos-
sible actions form an action space A. State transition is governed by transition
probabilities Pa(s, s′), specifying the probability that the agent will arrive in
state s′ after taking action a while in state s. Upon arriving in the new state s′,
the agent receives a reward (or reward function) R(s), which quantifies the de-
sirability of being in the new state; a reward value is associated with each state
in the state space S. The agent interacts with the environment by repeating
the state-action cycle and receiving and accumulating reward in the meantime.
The way the agent behaves follows a policy π(s) = P (a|s), governing the prob-
ability with which the agent is to take an action a ∈ A when in state s. A
deterministic policy specifies one action to take given a state whereas a stochas-
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tic one provides a probabilistic distribution over multiple actions. Following
different policies, an agent will take actions and visit states differently, thus
achieving different amount of accumulated reward over time. A value (or value
function) V π(s0) =

∑∞
t=0 γ

tR(st) is defined for each state as the discounted
accumulated reward when the agent starts from state s0 and behaves onward
following policy π. γ is a discount factor converting a reward received later
on into its current value, indicating a preference for long- or near-term reward
seeking. The core problem of reinforcement learning is to find an optimal policy
π∗ for the agent that maximizes its accumulated reward regardless of starting
state, given knowledge of the states, actions, and rewards. This optimization
problem can be solved by dynamic programming algorithms and has extremely
broad applications in artificial intelligence.

π∗ = argmaxπV
π(s0) = argmaxπ

∞∑
t=0

γtR(st),∀s0 (5)

Reinforcement learning assumes knowledge of the reward and aims to solve
for an optimal policy to serve as a behavioral guidance for the agent; for exam-
ple, to direct a robot to successfully navigate a labyrinth or win a chess game
against human opponents. However, in some behavioral cases (e.g., driving a
car), we don’t know or cannot define the reward straightforwardly (e.g., what
is “driving well”); instead, we can define the state and action spaces, observe
an example agent’s behavior, and want to find the underlying reward that are
mostly likely to have guided the agent to behave the way it does. Such recovered
reward can be further used to train other agents or simply to understand the
example agent’s behavioral pattern or strategy. This problem constitutes in-
verse reinforcement learning (IRL), for which the central task is to solve for the
reward given observations of an agent’s state-action trajectory O (as illustrated
in Figure 2).

Different IRL algorithms have been proposed to use different optimization
strategies procedures to find reward given state-action trajectories. A mecha-
nism adopted by several IRL algorithms [1, 15, 24] is to characterize a state s
using a feature vector f(s) and express the corresponding reward R(s) as a linear
combination of the features with the weight vector θ indicating the importance
of a feature: R(s) = θ>f(s). With reward R(s) decomposed into state features,
the value of a state under a policy V π(s) can be decomposed into featurized
state values by the same set of weights θ. Some optimization procedures [15] [1]
rely on these featurized state values by iteratively updating weights θ and the
corresponding optimal policy π∗ until the resulting featurized state values are
very close to those of the example agent’s state-action trajectories. Other al-
gorithms [24] [19] on the other hand, adopt a probabilistic perspective and aim
to find the reward that maximizes the probability of the observed trajectories
through procedures similar to maximum likelihood estimation.

Once the reward function is learned, an optimal policy can be computed
to generate agents that behave similarly to the demonstrated behavior of the
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example agent. We find applications of IRL in many motion imitation tasks
(e.g., training drones or self-driving cars); however, using IRL to solve social
interaction modeling problems is still a largely unbeaten path. One related work
[14] showed promising results using Markov reward model, a Markov decision
process based approach to learn favorable scenarios within group interactions.

3 Research Questions

As introduced in Section 1, we ask the following two research questions. We
address RQ1 by examining and comparing the mathematical components of
IRL and REM and RQ2 using a demonstrative experiment implementing an
IRL algorithm on real-world group interaction data that was modeled by REM
in previous work.

• [RQ1]: In what ways are the mathematical components of IRL and REM
similar and different to one another?

• [RQ2]: In what ways can IRL enhance the characterization of directed so-
cial interaction events in groups that is conventionally done using network
models such as REM?

4 Theoretical Analysis

4.1 Analogies

REM and IRL originated independently from two different fields; however, both
posit actions as a central concept and theorize that the tendency of a subsequent
action depends on a current situation resulting from recently realized history.
Such similarity inspires us to examine parts of REM and IRL that are analogous.
In Table 1 we list elements of the two methods that we find equivalent to one
another.

First, the group of actors studied in REM is equivalent to an IRL agent.
Although it is reasonable and somewhat more intuitive to conceive an individual
sender in REM as an IRL agent (on which we will elaborate in Section 4.2.1),
the group in REM as a whole is equivalent to the IRL agent because (1) under
the setting of REM it is the group as a whole rather than individual senders that
are the observer of their own event history, which encompasses behaviors of all
senders, and; (2) the goal of REM is to infer underlying group-level, rather than
sender-specific, characteristics that drive group social interaction dynamics.

Second, we find directly matching notions in REM for action and state in
IRL. Straightforwardly, a relational event or dyadic action a in REM maps to
the action a in IRL. Action space A in REM is determined by the number of
senders |S|, the number of receivers |R|, and the number of action types |C|.
Assuming all dyadic actions in a group are legal and no self-directed actions
are permitted, the action space size would be N(N − 1) × |C|, where N is
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the total number of nodes in the group. In REM, the notion of an IRL state
is effectively fulfilled by a group’s past relational event history, as it “creates
the context for present action, forming differential propensities for relational
events to occur” [4]. A newly taken dyadic action ai directly updates the past
event history Aτ (ai−1) of the group at the time ai is taken, as the newly taken
dyadic action becomes the most recent event in event history, and thus places
the group in a new state. The new state s′ is simply a concatenation of the old
state and the action taken upon it: Aτ (ai) = {ai, Aτ (ai−1)}. In other words,
REM is intended for a Markov decision process (MDP) with history as state.
This property assumes group interaction process to be (1) a deterministic MDP,
because once a new event happens, the event with 100% probability gets placed
on top of past event history, and (2) an MDP with non-revisitable states, as
event history always grows (assuming infinite memory) and once a dyadic action
is realized, none other could happen. As IRL algorithms require state-action
trajectories as input, and we find the nature of past event history in REM
equivalent to an RL state, we find that the input data for REM is also suitable
for IRL.

Third, the core of both the REM and IRL approaches lies in the mechanism
to determine what actions are more likely or favorable for the group/agent to
take given a context. This notion of context takes the form of event trajectory
A in REM and state s in IRL. Both methods quantify the desirability of a to-
be-realized context by a function: in REM it is the rate function λ while in
IRL it is the reward function R(s), or simply reward R when not stressing the
mapping between a state s and the desirability of being in it. Given a current
state, actions that result in transition to a subsequent state of a higher rate
value in REM or reward value in IRL are more likely chosen than those of lower
values. To specify the different factors that contribute to the desirability of
a to-be-realized context, REM decomposes the rate function λ linearly into a
weighted sum of sufficient statistics u(A). This mechanism is shared by multiple
IRL algorithms such as Apprenticeship Learning IRL [1] and Maximum Entropy
IRL [24]. In these IRL algorithms, the reward of being in a state is also de-
composed linearly, as a weighted sum of state features f(s). Both the sufficient
statistics in REM and the reward features in these IRL algorithms are the de
facto descriptors of a context and need to be pre-specified and measured by the
researcher, which are analogous to the explanatory variables or predictors in
supervised learning. Once these descriptors are selected, the objective of both
REM and the IRL algorithms is to find the value of their corresponding weights
θ via optimization techniques. These inferred θ values, together with the ob-
served values of the sufficient statistics or state features, allow straightforward
calculation (by taking a weighted sum) of the desirability to the group/agent
of a specific event trajectory/state, thus revealing the group/agent’s behavioral
tendencies. Researchers have indeed used the inferred θ values as input for fur-
ther modeling and prediction tasks such as behavioral clustering [9] and team
performance prediction [11].
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P (O) = P [(s1, a1), (s2, a2), ..., (sk, ak)] (6)

=

k∏
i=1

P (si, ai) (7)

=

k∏
i=1

exp [R(si)]∑
s′∈S exp [R(s′)]

(8)

Last but not least, we discover that the objective function used in the opti-
mization procedure of REM to find the most fitting rate function and weights
is equivalent to that of another major IRL algorithm called Bayesian IRL [19].
Generally, despite the commonality in the setup of action, state, and the goal of
inferring reward, different IRL algorithms use different optimization procedures.
Bayesian IRL, specifically, adopts a strategy identical to that of REM which is
to express the likelihood of an action being taken at each step in the trajectory
(as opposed to expressing that of entire trajectories as in Maximum Entropy
IRL), and then maximize the product of step-wise likelihoods as the likelihood
of the demonstrated event trajectory (Equation 4). The Bayesian IRL algo-
rithm first expresses the likelihood of an state-action trajectory O (Equation
6) as the product of likelihood of state-action pair at each timestep (Equation
7) based on the independence assumption. Then it models the likelihood of
each state-action pair (si, ai) as proportional to the exponential of the value
V of taking action ai while being in si. This value is the accumulated reward
expected from currently being in that state and all future states (see Equation
5 in Section 2.2), and when we consider the future discount factor γ to be zero,
is equal to the reward of state si, hence Equation 8. Equation 8 turns out to
have the identical form to that of Equation 4 of REM.

4.2 Distinctions

4.2.1 Agent identity

What constitutes an agent is the first design choice when formulating a Markov
decision process for IRL. The perspective of REM is a bird-eye view of a whole
group of N actors: legal actions between all pairs of actors are considered and
ranked by their propensity to be taken. Learned coefficients of the sufficient
statistics also represent the interaction dynamics of the whole group as opposed
to individual actors. Therefore, the counterpart IRL problem should consider
the group as the agent. However, IRL is a more generic approach that can
comfortably treat an individual actor in the group as agent and other actors
and their behaviors as environment if we construct the MDP accordingly. This
way, the modeling perspective becomes truly egocentric. Compared to REM,
IRL affords higher freedom in choosing what subset of a social system to be the
agent and what subset to be the environment, contingent upon the problem at
hand. We anticipate IRL to be useful for understanding group interactions in
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the international politics domain (in which previous work focused on network
science approaches [6]) where behaviors of individual countries may be of higher
interest than collective dynamics of multiple countries.

4.2.2 State space

As shown in Equation 4, the entire event history is retained to fit an REM.
However, the sufficient statistics of REM require memory of different lengths
of history, often much shorter than the entire history since t0. For example,
to calculate the statistic reciprocity defined as whether a current action is of a
reciprocal nature, one would only need information about the most recent event,
and if the sender and the recipient of the current dyadic action correspond to
the recipient and the sender of the most recent event respectively, the feature is
assigned value 1 and all otherwise 0. However, in cases like feature inertia de-
fined as the degree to which a current action is repeated in the past, one would
need to look up the current action in the entire event history and calculate the
frequency. This difference does not fundamentally affect REM modeling; how-
ever, it reflects greatly in the construction of state space when we formulate an
MDP for IRL. REM amounts to an IRL problem with a state space consisting
of slices of non-revisitable, potentially-realizable event histories of all possible
lengths, which may result in extremely large state spaces. However, if we trun-
cate the slices of event history populating the state space to a fixed number of
recent actions, the states become revisitable and the state space considerably
smaller. Depending on the sufficient statistics/features we choose, and out of
the intuition that older events may not matter as much as more recent ones,
we may not need to retain the entire event history all the time; the truncation
operation may be a viable, even advisable choice when building IRL procedure
for group interaction modeling problems.

In an MDP with recently realized action histories as states, the size of state
space is eventually determined by the number of past actions retained as part
of a state and the number of possible actions, the latter of which is in turn de-
termined by the number of action-capable actors and event types. As the size of
state space increases at an exponential rate as do the number of possible actions
and the number of recent actions, over-large state spaces are a pressing issue to
resolve and a thinly veiled curse of dimensionality. Countermeasure strategies
targeting over-large state spaces are of primary interest and mainly fall into two
categories: (1) state aggregation through clustering actors, actions, and state
features to directly reduce state space size; (2) value function approximation to
generalize from seen states to unseen ones.

4.2.3 Model assumptions

Besides agent identity and state space, several model assumptions also show
distinctions of IRL that speaks to its flexibity compared to REM. First, REM
explicitly assumes the absence of forward looking [4] whereas IRL is naturally
equipped with the discount factor γ to handle future states and how they are
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reflected in the current decision making. REM essentially amounts to IRL
models with γ = 0.

Also, IRL and REM have different assumptions on the stochasticity of action
choosing. The current machinery of REM has one rule of choosing actions:
given a past event history, a rate function value is computed for each possible
next action and the probability of an action being chosen as the next action is
modeled to be proportional to its rate function value. In this way an action with
a higher rate function value has a higher probability to be chosen. This operation
amounts to the Thompson sampling, or probability matching strategy [20] in the
multi-armed bandit problem. In IRL, multiple action choosing strategies have
been proposed. A popular one is ε-greedy strategy, whereby an agent chooses
the action with the highest reward with probability 1− ε and randomly chooses
among all possible actions with probability ε. Different probabilistic rules for
action choosing could be incorporated into REM as well. We suspect that such
incorporation is beneficial in behavioral modeling as different real-world social
systems fit different assumptions of action choosing rules to different degrees.

Compared to IRL, REM makes up its lower flexibility with its ability to also
model timestamped event sequence, thanks to its survival analysis mechanism
(concretely, Equation 1). It is not within the current machinery of IRL to take
advantage of continuous timestamps as the states are treated as discrete. The
philosophical trade-off between REM and IRL is that REM is a more “ad-hoc”,
special purpose model and theoretical framework without the horns and whistles
of IRL whereas IRL serves a wider range of purposes but may feel somewhat un-
natural dealing with specific issues when applied to group interaction modeling
problems.

5 Demonstrative Experiment

In this section we further elaborate on the distinction on agent identity discussed
in Section 4.2.1 through an empirical experiment demonstrating IRL’s ability
to characterize individual behavioral preferences within a group interaction sce-
nario, as opposed to the whole group perspective by the current REM. We show
the kind of individual oriented insight IRL can learn in a group interaction event
sequence modeling task.

5.1 Data

The data we use comes from a Multiple Team System (MTS) dataset collected
and published by Pilny et al. [18]. The dataset contains the sender, receiver,
and timestamps of directed verbal messages (298 in total over a duration of 22
minutes) sent with Comm Net Radio (CNR) among 2 teams of 2 players each
(a captain and a driver) playing a computer game where they carry out various
virtual tasks to ensure the safety of a path for an emergency delivery, which
requires substantial communication among the players. Within the game, a
driver is only allowed to speak to its own captain whereas a captain can not only
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Figure 3: An illustration of the Multiple Team System data. The team struc-
ture and communication rules are shown on the left; communications are only
permissible in directions indicated by the pointed arrows. The first and last
rows of the dataset are shown on the right.

speak to its driver but also the other team’s captain; however a captain cannot
speak to the other team’s driver. The communication scenario is illustrated
in Figure 3. We choose the dataset for the following reasons: (1) it has been
used to demonstrate REM modeling [17], indicating that it is the typical type
of data that’s suitable for REM, and only if IRL is applied on data also suitable
for REM can we highlight the additional insight IRL can provide; (2) with 4
actors and a singular type of directed social action (i.e. sending a message), the
size of the dataset is relatively small, which is appropriate for our demonstrative
purpose; (3) radio communication is a typical mode of technology-assisted social
interaction especially used within team members that work together to achieve
a goal such as emergency response and military missions, therefore the context
of our demonstration has wider real-world applicability.

5.2 Experiment

To model individual behavioral preferences using IRL, we construct a simple
Markov decision process as follows (among many possible, more complex ways).
First we treat Captain 1 as the agent in question and consider all messages
sent by Captain 1 as its actions and the rest as forming an environment upon
which Captain 1 adjusts its behavior. Suppose that Captain 1 observes and re-
evaluates the latest communication within the social system every time a new
action is taken (by itself or other actors) and makes a decision as to what com-
munication action to take next. From Captain 1’s perspective there are 3 per-
missible actions: to do nothing (0), to speak to its own driver (toOwnDriver),
or to speak to the other team’s captain (toOtherCaptain). Also from Cap-
tain 1’s perspective, there are 5 possible states: silence (manifested only when
Captain 1 takes two actions back-to-back thus the state after the first action
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Figure 4: Converting the original timestamped event-list data (typical input
data for REM, left) to a state-action trajectory from the perspective of Captain
1 for IRL use (right). Highlighted in red in the original data indicates an active
action taken by the agent in question (Captain 1).

is that no other actors have “chimed in” in between), getting spoken to by its
own driver (fromOwnDriver), getting spoken to by the other team’s captain
(fromOtherCaptain), observing the other team’s captain speaking to its own
driver (otherCaptainToDriver), and observing the other team’s driver speak-
ing to its own captain (otherDriverToCaptain). Following these definitions,
we re-adapt the original data into a state-action trajectory (illustrated in Fig-
ure 4), compute state transition probabilities Pa(s, s′) empirically with add-one
smoothing, and implement Maximum Entropy IRL algorithm [24] 1 to learn a
reward value associated with each of the 5 states. Then we switch perspective
from Captain 1 to Captain 2, repeat the procedure described above, and learn
an equivalent set of rewards for Captain 2. Due to symmetric, thus identical
social structures from the respective perspective of Captains 1 and 2, we are
able to compare their individual behavioral preferences based on the rewards
values, which are shown in Figure 5.

From the reward values we learned we observe that the two captains share
similar preferences regarding communication. Both of them avoid the most be-
ing spoken to by the other team’s captain (larger negative reward on fromOtherCaptain),
moderately dislike back-to-back actions (smaller negative reward on silence),
and enjoy being spoken to by its own driver and seeing chatters between mem-
bers of the other team (positive reward). Differences exist as to how the de-
sirability of different states compare for the two captains. Captain 1’s most
desirable scenario is to see conversations between members of the other team;

1Adapted from the generic purpose python code available from Matthew Alger’s Github
repository https://github.com/MatthewJA/Inverse-Reinforcement-Learning.git [2]
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Figure 5: Reward values associated with each state for Captain 1 and Captain
2

however, Captain 2 places the highest reward on having received messages from
its own driver. This distinction may reflect nuanced differences in the leadership
style of the two captains. Such individual-oriented behavioral insights are the
benefit of using IRL approach on group interaction data, whereas when using
REM to model the same data, conclusions are drawn on group level tenden-
cies such as “group members interacted with members they trusted more” [17].
A limitation of our experiment is that we do not have ground truth data to
validate the insights about individual behavioral preferences learned by inverse
reinforcement learning, which we are motivated to address in future work.

6 Conclusion

Identifying equivalences between different phenomena and mechanisms is a mean-
ingful scientific endeavor that has greatly benefited the advancement of natural
and applied sciences. James C. Maxwell introduced the mechanical-electrical
analogies in the 19th century, revealing correspondences between velocity and
current and between force and voltage. Such comparisons have later on facili-
tated deeper understanding and numerous novel developments in both domains
of physics. We consider our effort presented in this paper of a similar nature
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and serving a similar purpose. We identified Inverse Reinforcement Learning
as a novel approach to characterizing directed social interaction sequences in
groups, which has typically been tackled by Relational Event Model previously.
We examined the connections between REM and IRL, and found that both ap-
proaches posit a decision-making entity (group/agent) and a desirability quan-
tity (rate/reward) for any particular state the entity is in, assume action choices
based on the desirability of the potential state they lead the entity into, and
optimize to solve for the desirability quantities. Some similarities are shared be-
tween REM and specific IRL algorithms such as the linear decomposition of the
desirability quantity and the optimization procedure, while key distinctions ex-
ist in the model assumptions, state space specification, and model assumptions.
Both approaches can be used to characterize sequences of directed social interac-
tion events but produce different insights: using IRL for behavioral modeling in
a group interaction is well-suited for learning individual differences in behavioral
preferences, which is difficult to accommodate with the REM approach.

The applicability of REM and IRL extends beyond social interactions, as
both essentially are theoretical frameworks of event sequence. Social interaction
dynamics can be considered as sequences of social action, and so can many
tasks humans undertake. As a generalization of the REM framework, it has been
used to extract sequential dependencies in participants’ daily activities collected
in the American Time Use Survey (ATUS) data [12]. On the IRL side, we
found existing application in discovering underlying patterns in people’s routine
driving behavior [3]. With the growing amount of smart sensing data both in
daily life and in workplaces such as manufacturing plant where task procedures
are complex, we foresee great research opportunities in the application of REM
and IRL for behavioral modeling.

References

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse re-
inforcement learning. In Proceedings of the twenty-first international con-
ference on Machine learning, page 1. ACM, 2004.

[2] Matthew Alger. Inverse reinforcement learning, 2016.

[3] Nikola Banovic, Tofi Buzali, Fanny Chevalier, Jennifer Mankoff, and
Anind K Dey. Modeling and understanding human routine behavior. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pages 248–260. ACM, 2016.

[4] Carter T Butts. A relational event framework for social action. Sociological
Methodology, pages 155–200, 2008.

[5] Brooke Foucault Welles, Anthony Vashevko, Nick Bennett, and Noshir
Contractor. Dynamic models of communication in an online friendship
network. Communication Methods and Measures, 8(4):223–243, 2014.

16



[6] Emilie M Hafner-Burton, Miles Kahler, and Alexander H Montgomery.
Network analysis for international relations. International Organization,
63(3):559–592, 2009.

[7] David R Heise and Alex Durig. A frame for organizational actions and
macroactions. Journal of Mathematical Sociology, 22(2):95–123, 1997.
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