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Mitigating COVID-19 Transmission in Schools
With Digital Contact Tracing

Hao-Chen Sun*', Xiao-Fan Liu

Abstract—Precision mitigation of COVID-19 is in pressing
need for postpandemic time with the absence of pharmaceu-
tical interventions. In this study, the effectiveness and cost
of digital contact tracing (DCT) technology-based on-campus
mitigation strategy are studied through epidemic simulations
using high-resolution empirical contact networks of teachers and
students. Compared with traditional class, grade, and school
closure strategies, the DCT-based strategy offers a practical yet
much more efficient way of mitigating COVID-19 spreading in
the crowded campus. Specifically, the strategy based on DCT can
achieve the same level of disease control as rigid school suspen-
sions but with significantly fewer students quarantined. We fur-
ther explore the necessary conditions to ensure the effectiveness
of DCT-based strategy and auxiliary strategies to enhance mitiga-
tion effectiveness and make the following recommendation: social
distancing should be implemented along with DCT, the adoption
rate of DCT devices should be assured, and swift virus tests
should be carried out to discover asymptomatic infections and
stop their subsequent transmissions. We also argue that primary
schools have higher disease transmission risks than high schools
and, thereby, should be alerted when considering reopenings.

Index Terms— Asymptomatic infection, COVID-19, digi-
tal contract tracing, mitigation strategy, social distancing,
susceptible-exposed-infectious-removed (SEIR).

I. INTRODUCTION

HE COVID-19 pandemic has emerged into a global threat
and was pseudonymously linked to more than 16 million
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and 600 thousand COVID-19-related cases and deaths as
of July 2020 [1], albeit a mass of social distancing orders
that have been enacted worldwide [2]. In the absence of
pharmaceutical interventions, measures to reduce the overall
burden of viral infection—including social distancing [3],
case isolation [4], quarantine of susceptible [5], closure of
public places [6], and increased availability of diagnostics—
are paramount in planning for the months ahead [7]. Given
the epidemiological disparity of strategies with the substantial
economic and societal costs to sustain the virus transmis-
sion [8], there is a clear need for precision mitigation to
alleviate the persistent burden of epidemics and prevent and
respond effectively to future pandemics [9], [10].

Mass education is an indispensable foundation of modern
society. Nevertheless, schools and universities, where teachers
and students have long-term and intimate connections, are par-
ticularly risky areas for disease transmission [11]. To prevent
campus outbreak, school suspension and closure of classes
and grades are generally considered feasible approaches that
can effectively reduce the number of infections [12]-[14].
However, school suspension or parts thereof can also result
in a large number of students quarantined, either concentrated
or at home, causing substantial socioeconomic costs and
psychological problems [15]. Therefore, the critical question
in effective retention lies in the selection of an effective
mitigation strategy while inflicting a minimum cost to the
society and economy [16].

Since large-scale human experiments with disease control
measures are costly and risky to conduct, mathematical mod-
eling offers a viable way to examine the impact of these
measures with varying rates of controls [17]. Traditional trans-
mission models are built upon mechanistic ones, such as the
susceptible-infectious-removed (SIR) or susceptible-exposed-
infectious-removed (SEIR) models [18]. However, the parame-
ter settings of the models can vary among different diseases.
Recently, animal experiments on cynomolgus macaques inoc-
ulated with the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) have shown that the virus shedding can
be presymptomatic and volatile [19]. Based on this finding,
we propose an SEIR model with a variable infection rate that
takes into account the frequent shift of SARS-CoV-2 from
infections hence their transmissibility.

Except for the realistic transmission model, realistic
assumptions, such as the accurate demographic data of a
specific scenario, are also the prerequisite of epidemic mod-
eling with validating results [20]. The realistic demographic
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assumption mainly relies on high-resolution human interaction
data. Common ways of acquiring such data include radio
frequency identification devices (RFID) tracing [21], GPS
tracing [22], Wi-Fi hotspot sharing [23], and other proximity
traces, such as student card presences [24], [25]. In this study,
we use two empirical data sets of wearable RFID devices’
proximity collected from a primary school [26] and high
school [21], [27], to construct temporal networks of campus
interactions. The spatial proximity of two RFID devices resem-
bles a close contact scenario that most probably facilitates the
COVID-19 transmission.

Digital contact tracing (DCT) is a new and valuable tech-
nology based on mobile applications to understand the routes
and timings of transmission [28]. Tracing devices, e.g., mobile
phones or RFID, can log their mobility or close contacts
with other devices so that wearers can monitor their virus
exposure in a timely fashion [29]. Many governments have
used smartphone contact tracing apps to automate the difficult
task of tracing all recent contacts of newly identified infected
individuals [30]. Researchers have verified the effectiveness of
DCT by constructing a contact network of 115 students at a
certain university [31] or setting a model of individual-level
transmission based on 40162 participants [32]. At present,
there are few DCT studies on the cluster environment, and
considering the easiness of technology adoption, this method
can potentially provide a cost-effective solution to early detec-
tion, case isolation, and outbreak prevention of COVID-19 in
certain environments where the population density is high,
such as on campus.

In this study, we examine the effectiveness and cost of
several mitigation strategies on campus, including the ones that
utilize the newly proposed DCT technology. The effectiveness
is measured by the number of infected students and the
cost of the quarantined students. Compared with traditional
suspension and closure methods, the DCT-based quarantine
strategy can control disease-spreading much more efficiently.
Necessary conditions for ensuring the DCT-based strategy’s
effectiveness and possible auxiliary strategies that provide fur-
ther enhancement are also explored, including the social dis-
tancing strategy, the DCT device adoption rate, the influence of
community infections, and the asymptomatic infections in the
population. The results obtained from this study are expected
to significantly impact the making of school policies in the
post-pandemic era.

The rest of this article is organized as follows. Section II
describes the student and teacher contact data sets, constructs
temporal contact networks, proposes the COVID-19 variable
infection model, and demonstrates disease spreading in the
real-life network without mitigation measures. Section III
discusses several mitigation strategies, including the closure of
classes and grades, as well as one that is based on DCT, and
their potential interventions to our proposed model. Section IV
demonstrates the effectiveness and cost of different mitigation
strategies, considering influences from further external factors,
such as the proportion of asymptotic infections, the influences
of social distancing and community infections, and the DCT
device adoption rate in schools. Section V concludes this
study.
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1I. DATA DESCRIPTION AND EPIDEMIC MODELS
A. High-Resolution Empirical Contact Networks

To reconstruct the contact patterns of students and teachers
within schools, we use two empirically collected real-time
high-resolution on-campus contact data sets provided by
SocioPatterns Collaboration [21], [26], [27]. One of the data
sets contains the contacts among 232 primary school pupils
and ten teachers, covering two days of school activities.
Another data set contains the contacts among 329 high school
students, covering five days of school activities. Students and
teachers wear RFID sensors that activate every 20 s. Surround-
ing sensors within certain proximity are detected and logged.
The teachers and students can make contact with each other in
various scenarios, such as in-class teaching and learning, out-
door exercises, and dining. Thus, each contact network G (i)
is a temporal network G(T) = {G(1),G(2),...,G(i),...},
in which the students and teachers are the nodes and two nodes
are connected by an undirected edge in G (i) if proximity is
logged by either sensor at the ith sensor activation.

Because the recorded school activities only span two days
and five days in the two data sets, the data have to be expanded
for extended time simulation. Considering that most schools
have regular and periodic activities and open five days a
week, the following expansions are made to the sample data
sets, which also agrees with the previous literature [13]. For
the primary school data, the two days of school activities
are used interlaced in school days. During Saturdays and
Sundays, teachers and students are considered with no contact.
For the high school data, the five-day activities are used
for each Monday-to-Fridays. Teachers and students are also
considered with no contact in the schools during weekends.
Considering that the teachers and students can also be exposed
to hazardous environments after school on workdays and
weekends, we study the community infections into the model
and their influence on the DCT-based quarantine strategy in
Section IV-D.

B. Epidemic Model With Variable Infection Rate

Compartmental models are commonly used to describe the
progress of infectious diseases in a population. In an SIR
model, an individual can be in each of the three states: Sus-
ceptible (S), Infectious (/), and Removed (R). An individual
starts in a susceptible state and has a probability of transferring
to the infectious state, in which they show symptoms and
are infectious. After an infected individual recovers from or
die of the disease, they enter the removed state, are assumed
permanent immunity and, thereby, can no longer be infected
again. The SEIR model builds upon the SIR model but adds
an Exposed (E) state to incorporate the incubation period in
which the individual has been infected but has not demon-
strated any symptom and is not infectious yet. SIR has been
used to model the spreading of many infectious diseases, such
as SARS [33] and SEIR for the seasonal influenza [18].

In typical SIR and SEIR models, whenever a susceptible
individual is in contact with an infectious individual, its prob-
ability p of becoming infected continually increases with the
exposure time At at a constant rate Seonst, 1.€., P = Beonst AL,
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Fig. 1.  Constant and variable infection rate models. The accumulative

transmissibilities of the variable SEIR and constant (SEIR) infection rate
models, i.e., the areas under the red and blue lines, are the same.

as shown in Fig. 1. If feonstAf > 1, the susceptible must be
infected. Especially, a constant infection rate assumes that the
virus shedding volume during the infectious period is constant.
However, this assumption is not true for SARS-CoV-2.

Animal experiments on cynomolgus macaques inoculated
with SARS-CoV-2 have shown that the transmissibility of
COVID-19 varies with time. The virus shedding volume from
macaques gradually increases from the first day after infection,
peaks, and gradually decreases until recovery or death [19].
Based on the empirical virus shedding volumes in each day
E(t), we characterize the transmissibility of COVID-19 with
a variable infection rate in Fig. 1.

Three assumptions are made in the variable infection rate
model. First, the infection rate is proportional to logged virus
shedding volume, i.e., (1) ~ log E(t) [34], [35]. Note that,
since the shedding of SARS-CoV-2 starts from day one, our
model is effectively an SEIR model. Second, the average cure
time of COVID-19 is 14 days, i.e., an incubation period of
four days median [36] and a recovery period with ten days
on average [37]. That is to say, different from the traditional
SIR model where an infected individual shows symptoms
once they enter the Infectious state, our model assumes that
the infected individuals can transmit the virus for four days
undetected. Third, the accumulated transmissibilities of the
SEIR models with variable and constant infection rates are
the same, i.e., 2;111 B(1) = Peonst X 14.

C. Transmissibility of Different Infection Models

We compare the transmissibility of the three infection
rate models using Monte Carlo simulations. The simulations
were programed with Python programming language and run
on six-core CPUs, 32-GB memory space, and Windows 10
operating system. Each of the simulations runs 5000 times to
encounter the randomness in the epidemic spreading process.

Relevant studies have shown that the R, value of COVID-19
is between 2.2 and 5.7 [38], [39]. The purpose of this study
is to verify the effectiveness of DCT in primary and high
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Fig. 2. Averaged epidemic spreading curves in (a) primary school and

(b) high school using three different infection rate models. Day O represents
the Monday of the first week.

schools. Considering the significant difference in the density
of contact between primary and high schools, we set different
Ry values for primary and high schools respectively. Based
on Ry, we can set the suitable infection rates for primary
and high schools. The infection rates in different models are
set with the assumption of feonge = 1.38 X 107* 57! je., a
120-min accumulated contact time can guarantee an infection,
in the primary school, and feonst = 2.76 x 107* s~! in the
high school. Whenever a symptom onset is detected, only the
symptomatic infection is removed from the model, and no
other mitigation measures are taken.

As shown in Fig. 2, our model significantly advances the
epidemic peaks for several days compared to the SEIR model
and enlarges the epidemic sizes when one happens. The
SIR model, on the contrary, generates very few epidemics
comparatively. The reason for such strong transmissibility of
our proposed epidemic model is that infected individuals can
be infectious for four days before being discovered than only
one day in the SIR model. Meanwhile, the virus shedding
volume surges on and before the symptom onset date. This
result highlights the necessity of a swift mitigation measure
for epidemic prevention to COVID-19 on campus.

IIT. MITIGATION STRATEGIES

This study aims to examine the effectiveness and cost of
the DCT-based mitigation strategy for COVID-19 spreading
on campus. The effectiveness of a strategy is measured by
the number of infections in the school. The cost is measured
by the number of teachers and students isolated or quaranti-
ned. Traditional on-campus mitigation strategies, such as the
temporary closure of classes, are employed as comparative
measures.

A. Traditional Mitigation Strategies

School suspension and closure of grades and classes are
generally considered feasible control measures for epidemic
spreading on campus but vary in their effectiveness and cost.
Effective distance, which has been proven a feasible measure
for evaluating the possibility of disease transmission between
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two individuals, especially for infectious respiratory viruses,
such as HINI and SARS [40], can help comprehend the
rationale behind these traditional mitigation strategies. The
effective distance d,,,, between two individuals m and n in
a contact network is defined as

dmn =1- 10g Pmn (1)

in which the contact probability is given as

Imn
P mn — Gm (2)
where 1, represents the number of contact between m and
n, and G, represents the total number of contacts of m.
dp, ranges from 1 to infinity. A short effective distance can
accelerate virus spreading, while a large effective distance will
hinder the spreading of infectious diseases.

The effective distance matrices of the primary and high
school teachers and students are shown in Fig. 3. The primary
school is composed of five grades, and each grade includes
two classes, thus a total of ten classes. The high school is
composed of four grades and a total of nine classes. In Fig. 3,
the darker the blue, the smaller the effective distance, and the
more easily the virus spreads. It can be seen that students
in the same class form a dark blue grid, and the effective
distances are mostly shorter than 4, which means that the
virus can more easily spread within a class. A red box
represents a grade. In primary school, the contact is slightly
closer in grades 1 and 3 and slightly sparser in grades 2,
4, and 5. In high school, although there are fewer contacts
between classes, the connections with the same grade are
still denser than between grades. That is to say, the virus
can spread between classes in the same grade. Therefore,
commonly used mitigation strategies for infectious diseases on
campus with ascending rigidity and effectiveness involve the
following.
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1) Case Isolation: Whenever a student shows symptoms,
they are isolated from the rest of the students for some
time.

2) Class Closure: Whenever the number of symptomatic
individuals in a class reaches a fixed threshold, the class
is closed for some time;

3) Grade Closure: Whenever the number of symptomatic
individuals in a grade reaches a fixed threshold,
the grade is closed for some time;

4) School Closure: Whenever the number of symptomatic
individuals in the school reaches a fixed threshold,
the whole school is closed for some time.

Two key parameters control the intensity of a mitigation
measure: the strategy trigger threshold, e.g., the number of
symptomatic individuals detected, and the duration of the
isolation or closure. This study considers the trigger threshold
to be 1 and the isolation duration to be 14 days. For example,
whenever a symptom onset is detected in a class, all the
classmates must be quarantined for 14 days under the class
closure strategy. Classes, grades, and schools can be closed
again after reopening.

B. Quarantine Strategy Based on Digital Contact Tracing

The traditional class and grade closure strategies, in which
all the students within the same classes or grades are quar-
antined because of their assumptive close contact with the
symptomatic individual, can be an overreaction: those who
are forced to quarantine but had no direct exposure to the
disease do not contribute to the epidemic mitigation yet lose
their opportunity of normal education. In contrast, the DCT
technology can precisely identify the most probable disease
exposures.

Considering that any logged proximity between two indi-
viduals using DCT is a close contact regardless of duration,
and any nth order contacts of the initial infection can be
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traced back and send to quarantine, covering all their subse-
quent infections. DCT-based strategy’s mitigation effectiveness
depends on the selection of n. Given a single symptomatic
infection in our model, the probability of their transmission
range, i.e., the furthest order of neighbor that the disease
reaches, is shown in Fig. 4. Since the incubation period of
the patient is four days, we consider the transmission range
of the patient within four days. The primary school data
set only includes the two days of school activities, so the
result of four days is the same as that of two days, and we
only show the transmission range of two days in the primary
school.

In most cases, the disease only transmits for one generation
and seldom over two generations. Therefore, we propose a
mitigation strategy based on DCT that, whenever an infection
is discovered, they and only their first-order close contacts in
four days before the infections, who are discovered, should
be quarantined. The quarantine time is also set to be 14 days,
as same as in the traditional strategies. If teachers and students
do not show symptoms after the quarantine, they return to the
school.

IV. EXPERIMENTAL RESULTS

This section presents the effectiveness and cost of different
mitigation strategies drawn from Monte Carlo simulations.
The simulations were programed with Python programming
language and run on six-core CPUs, 32-GB memory space,
and Windows 10 operating system. Each of the simulations
runs 5000 times to encounter the randomness in the epidemic
spreading process.

We used SEIR with variable infection rates for simulation.
The simulations are run with three assumptions. First, only
one infection is randomly placed at the beginning of each
simulation. Second, if an individual is infectious, they can
transmit the disease for the whole day. The contact dura-
tion between two individuals is accumulated by all their
discrete contact periods on each day. Third, teachers and
students are checked for symptoms at the end of each
day. Only symptomatic individuals can be detected. Individ-
vals in the incubation period or asymptomatic individuals
cannot.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 6, DECEMBER 2021

TABLE I

EPIDEMIC PROBABILITIES P, AND MEDIANS OF
NUMBERS OF QUARANTINED INDIVIDUALS N, UNDER
DIFFERENT MITIGATION STRATEGIES

Place Primary school High school

Mitigation measures P Ny P, Ny
Case isolation 94.1% 224 71.2% 86
Class closure 36.6% 46 2.4% 67
Grade closure 21.8% 90 0.9% 111
School closure 2.8% 242 0.0% 329
DCT-based quarantine 4.4% 96 0.0% 49

TABLE II

PRECISION AND RECALL OF DIFFERENT
MITIGATION STRATEGIES

Place Primary school High school

Mitigation measures Precision  Recall  Precision  Recall
Case isolation 100% 18% 100% 30%
Class closure 30% 64% 14% 88%
Grade closure 20% 75% 6.0% 91%
School closure 4.0% 100% 1.7% 100%
DCT-based quarantine 13% 91% 17 % 92%

A. Effectiveness and Cost of Mitigation Strategies

The effectiveness is measured by the number of infections,
and the cost by the man time of quarantined individuals.
We consider an epidemic being formed on campus whenever
more than 10% of the teachers and students are infected.
Table I shows the epidemic probabilities P,, i.e., the proportion
of simulations that lead to epidemics, under each mitigation
strategy and the median numbers N, of teachers and students
quarantined in both schools.

As the level of closure order escalates, the probability
of an epidemic decreases. With only case isolation, i.e., no
mitigation measure is taken, more than 94.1% and 71.2%
simulations lead to epidemics in the primary and high schools,
respectively. The DCT-based quarantine strategy can achieve
the same levels of control as school suspension but with
significantly smaller numbers of quarantined individuals.

Table II shows the precision, i.e., the proportion of total
infected individuals to total quarantined individuals under each
measure, and the recall, i.e., the proportion of total infected
individuals in quarantine to total infected individuals. We cal-
culate precision and recall when implementing measures for
the first time. Although the precision of case isolation is 100%,
the recalls in primary school and high school are only 18% and
30%. After the first isolation, 82% or 70% of cases still spread
the virus in schools. In primary school, the precision of DCT is
lower than class and grade closures because the students have
more first-order neighbors. The situation in high school is the
opposite. In both schools, the precision of the DCT measure is
higher than school closure, and the recall is higher than class
and grade closures, with a value of over 90%. Considering
that the disease is most transmissible between close contacts,
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Fig. 5. Averaged epidemic spreading curves in (a) primary school and

(b) high school under different mitigation strategies.

DCT can precisely identify the most probable individuals
rather than brutally shutting down the whole school. However,
the DCT-based strategy’s effectiveness is still lower than
school suspension, as there is still a certain probability that
the disease can spread to the initial infections’ second-order
contacts with four days of transmission.

Mitigation strategies can not only decrease the epidemic
probability but also lowers the epidemic size when one hap-
pens, although with variable effectiveness. We define epidemic
size as the proportion of infected teachers and students in a
school when an epidemic occurs. Fig. 5 shows the averaged
epidemic curves under different mitigation strategies. In pri-
mary school and high schools, the peak values of case isolation
are 0.6 and 0.14, respectively. The results are significantly
different from the other three measures. To better illustrate
the differences between the other three measures, we did not
add this curve in Fig. 5. In both primary and high schools,
class closure provides the lowest mitigation capability. The
DCT-based quarantine can achieve similar results to school
closure, which is the most rigid mitigation action and achieves
the most substantial epidemic size reduction in both the
primary and high schools.

B. Influence of Social Distancing

The epidemic probability and size in primary school are
notably higher and larger than in high school. The reason
is that the density (i.e., the average number of individuals’
contacts) and the intensity (i.e., the duration of close contacts
among teachers and students) of the primary school contact
network are different from those in the high school contact net-
work. Fig. 6 shows the distributions of first- and second-order
neighbors in the primary and high schools. In primary school,
almost every pair of pupils can be connected within two
hops, while, in high school, students are more sparsely
connected.

If one can reduce the density and intensity of a contact
network, naturally, the epidemic can be better controlled.
Social distancing policies, e.g., calling off social gathering
events and wearing masks, are feasible yet easy-to-implement
nonpharmaceutical measures to lower the network density and
reduce the contact intensity. Here, we evaluate the impact of
additional social distancing policies enforced alongside the
DCT-based mitigation strategy.
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Edges in the contact networks are randomly removed to
mimic the scenario of calling off social gathering events. The
contact duration, i.e., the weight of the contact networks,
is proportionally reduced to mimic the scenarios, such as
reduced social activities. The influence of social distancing
policies on the epidemic probability and size in both schools
is shown in Fig. 7. The epidemic size is the median of the
cumulative number of cases in the simulations where the epi-
demic can occur. That is, the number of infected individuals is
greater than 10% of the total number of students. The epidemic
probability and sizes both decrease monotonically with the
proportions of contacts removed and contact duration reduced.
Epidemics can even be entirely prevented if social distancing
is reduced to 10% of the normal level. Therefore, imposing
social distancing policies can enhance the effectiveness of a
DCT-based quarantine strategy.

C. Influence of DCT Device Adoption Rate

To implement the DCT-based strategy, teachers and students
have to wear RFID devices or install specific applications
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Fig. 8. Influence of DCT device adoption rate on (a) epidemic probabilities

and (b) epidemic sizes.

on their mobile phones. Although this method is proven
to mitigate epidemics, it could, nonetheless, raise privacy
concerns. Therefore, it is natural to assume that some teachers
or students will not adopt this tracing technology. In this
section, we analyze the impact of the adoption rate on this
mitigation action.

Fig. 8 shows the changes in epidemic probability and size
with the DCT device adoption rate. The higher the adoption
rate, the less probable that an epidemic forms on campus.
Note that the epidemic probability sharply decreases when
the adoption rate is greater than 50% in primary school and
25% in high school, respectively. The epidemic size also
decreases with the adoption rate, from close to 0.8, with less
than 25% adoption rate to around 0 with 100% adoption rate,
in both the primary and high schools. In light of these results,
we recommend that, if schools adopt a DCT-based strategy
for epidemic control, it must be implemented with continuous
monitoring to ensure its effectiveness.

D. Influence of Community Infections

In the previous scenarios, we assume that the only infection
source is the one incorporated into the model on day 0. How-
ever, considering that the teachers and students can also be
exposed to hazardous environments after school, we introduce
community infections into the model.

Specifically, an individual in a susceptible state has a
probability of being infected at home or other social events.
Depending on the community infection rate, variable numbers
of infections can be introduced into our model each day.
Fig. 9 shows the epidemic probability in both the primary and
high schools with variable community infection probabilities.
When the community infection probability is larger than 0.01,
i.e., approximately one infection can be introduced each day
or two, the epidemic probability sharply increases. However,
the DCT-based quarantine strategy still outperforms the clo-
sure of classes and grades and close to school suspension.

In the light that infections introduced externally can severely
jeopardize the mitigation effectiveness of any strategy, schools
should be always be alerted and prevent any imported infec-
tions from outside of campus.

E. Influence of Asymptomatic Infections

Asymptomatic infections are infections that do not show
any symptoms and, therefore, cannot be discovered with
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naked eyes without nucleic acid tests. Therefore, the virus
transmission period of the asymptomatic infections can be
14 days rather than four days for symptomatic infections
for COVID-19. In this analysis, we tune the proportion
of asymptomatic infections in our model and analyze their
impact on the effectiveness of mitigation strategies. Note that
the disease transmissibilities of symptomatic individuals and
asymptomatic individuals are considered the same.

An individual can be set as asymptomatic with probability
P(A) and symptomatic with probability 1 — P(A). The epi-
demic probabilities under all mitigation strategies with differ-
ent asymptomatic probabilities P (A) are shown in Fig. 10. The
result of primary school shows that the epidemic probability
can increases with P(A) almost linearly. In high school,
the epidemic probability increases with P(A) only when P(A)
is greater than 10%. The reason is that there is less contact
between high school students. Even if there are asymptomatic
patients, the probability that the patients can infect others is
lower, and the number of asymptomatic patients is relatively
small when P(A) is less than 10%.

When P(A) is greater than 10%, the epidemic probability
of the two schools can increase as P(A) increases, and
when P(A) is high, the virus can spread to the second-order
neighbors, so the effect of first-order DCT is relatively weak.
It should be noted that the prevention and control effect of
grade closure is weak in primary school but effective in high
school. When P(A) is greater than 60%, the prevention and
control effect of grade closure is even better than DCT. This
is because there is almost no contact between students of
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different grades in high school, and the virus is difficult to
spread to other grades. Therefore, even if there are asymp-
tomatic patients, closed grades have a strong effect in high
school.

In summary, considering that P(A) of COVID-19 can range
from 10% to 80% [41], [42], epidemics can easily happen
in the presence of asymptomatic infections. Therefore, before
the outbreak of the epidemic, students should be encouraged
to wear masks or maintain social distancing to reduce the
spread of the virus. Whenever a case is detected, strict virus
testing methods, such as nucleic acid or serum testing, are
encouraged to avoid epidemics. In the implementation of DCT,
second-order neighbor tracking can also be considered.

V. CONCLUSION AND DISCUSSION

DCT with wearable hardware is a new and effective epi-
demic mitigation strategy that could be used to fight against
highly infectious diseases, such as COVID-19. In this study,
we proposed to examine its effectiveness and cost, quantified
by the numbers of infections and quarantined individuals,
respectively, in controlling disease spreading on campus. Two
empirical high-resolution on-campus interpersonal close con-
tact data sets and a modified SEIR model with a variable
infection rate setting are employed to simulate epidemics.
Compared to traditional mitigation strategies, such as the
closure of classes, grades, and the whole school, the DCT
quarantine strategy can achieve a similar effect as more rigid
strategies but with a much smaller cost.

Several factors can strongly affect the mitigation effective-
ness of the DCT-based strategy. First when the probability of
asymptomatic is high, the prevention and control effects of
various strategies will be weakened as they can transmit the
disease for an extended period than symptomatic infections,
who are isolated as soon as they show any symptom. Second,
community-introduced infections can jeopardize the efforts
made by any mitigation strategy. Third, the adoption rate of
teachers and students profoundly affects the effectiveness of
the DCT-based strategy. Fourth, social distancing can help with
the mitigation strategy and further increase its effectiveness.

In light of the above results, we make the following rec-
ommendations to the on-campus mitigation of COVID-19.
First, a DCT-based strategy is encouraged in schools. Second,
the strategy’s adoption rate must be monitored and assured
continuously. Third, whenever an infection is detected on cam-
pus, rigid virus testings must be carried out to a larger extent
of the population for asymptomatic or community-introduced
case discovery. Fourth, social distancing measures must be
placed in schools to minimize the probability of disease
spreading.

Note that the density of the primary school empirical contact
network is much higher than that in the high school. Although
the contact data are collected from two individual schools
in a particular period, we argue that this phenomenon can
be universal, as pupils in primary schools are more phys-
ical activity-intensive (i.e., having more physical contacts)
than students in the high schools, who are in contrast more
academic activity-intensive. Therefore, we warn that primary
schools have a higher risk than high schools in disease
transmission, thereby less suitable for pushing school reopens.
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Our findings also have an extensible impact on all the
densely contacting communities, such as universities, military
barracks, and prisons. Individuals in these environments spend
much time in close contact (e.g., sitting and living in the
same room) so that the virus can have sufficient time to
transmit among humans. Using DCT technology to trace the
possible epidemic spreading routes and quarantine the higher
risk groups (e.g., direct contacts) can help prevent a pandemic
in the entire community but with minimum cost, compared to
a full-scale shutdown. Accordingly, we suggest that the con-
cerned organizations with sufficient economic status resources
should consider adopting DCT technology to prevent disease
spreading while maintaining their regular operations.
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