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Abstract— Coronavirus outbreak is one of the challenging
pandemics for the entire human population on Earth. Techniques,
such as the isolation of infected people and maintaining social
distancing, are the only preventive measures against the pan-
demic. The actual estimation of the number of infected peoples
with limited data is an indeterminate problem faced by data
scientists. There are several techniques in the existing literature,
including reproduction number and case fatality rate, for pre-
dicting the duration of a pandemic and infectious population.
This article presents a case study of different techniques for
analyzing, modeling, and representing the data associated with a
pandemic such as COVID-19. We further propose an algorithm
for estimating infection transmission states in a particular area.
This work also presents an algorithm for estimating end time of
a pandemic from the susceptible infectious and recovered model.
Finally, this article presents the empirical and data analysis to
study the impact of transmission probability, rate of contact,
infectious, and susceptible population on the pandemic spread.

Index Terms— Coronavirus, infectious, isolation, pandemic.

I. INTRODUCTION

ADISEASE is a harmful deviation from the normal con-
dition that adversely affects human health [1]. Every

disease is a medical challenge, which may have symptoms and
signs for their identification. These symptoms facilitate easier
spotting of the disease in the early stage. However, some dis-
eases do not have symptoms, which makes them untraceable.
The rapid advancement in medical science helps in curing
most of the existing diseases. However, some diseases are
spread due to unidentified viruses or bacteria, which creates
pandemics such as COVID-19. The newly identified novel
coronavirus is responsible for the outbreak of COVID-19 that
has the potential for maximal death [2]. The effect of the
pandemic (COVID-19) and its preventive measures, such as
quarantine and social distancing, can be analyzed using data
analysis, modeling, and representation techniques of data
mining [3], [4]. These techniques help in predicting disease’s
behavior, thus providing the convenience of taking necessary
preventive measures.

Reproduction number is an essential parameter for pre-
dicting the behavior of a pandemic in terms of infection
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spread. It estimates the spread of secondary infections from the
primarily infected people. Next, the case fatality rate captures
the number of deaths during a pandemic spread. It plays a
vital role in estimating the actual damage to human lives.
Furthermore, there are four states of infection transmission
in a pandemic, i.e., no contact, local, untraceable, and source
missing. The first state is the least harmful and often occurs
at the initial stage of the pandemic, whereas the last state is
critical, indicating that the spread of infection is severe. In the
literature, different pandemic models are discussed, including
susceptible, infectious, and recovered (SIR), susceptible infec-
tious (SI), and susceptible, infectious, and susceptible (SIS)
model.

We are currently living in the information-centric era that
encourages prediction and analysis of different parameters
associated with a pandemic disease. The predictions are per-
formed by the models that take the historical data to learn
different patterns. The performance of these models depends
heavily upon data representation and storage. Therefore, in this
article, we summarize different techniques presented in the
existing literature for estimating various parameters of the
pandemics. We further discuss the models that predict the end
time and the total population infected and susceptible.

A. Related Work

The impact of the heterogeneous recovery rate of a
pandemic on a complex network is analyzed by de
Arruda et al. [1]. They have used the modified version of
the SIS model to determine the infectivity. Li et al. [2]
developed a new model named SEIQR. It incorporates sus-
ceptible (S), exposed (E), infectious (I ), confirmed (Q), and
recovered (R). SEIQR helped in estimating the imported cases
of COVID-19 in the discrete-time interval. Zhou et al. [5]
proposed the mechanism of estimating the basic reproduction
number using the SEIR model, where they have estimated the
transmission probability of COVID-19 in China. Next, Van
den Driessche and Watmough [6] proposed the mechanism for
analyzing the disease-free equilibrium on the heterogeneous
population. They proposed an epidemic model named SEIT,
which incorporates susceptible (S), exposed (E), infected (I ),
and treated (T ). The methodology for epidemiological mod-
eling is discussed by Ranjan [7], where he has predicted the
reproduction number of the COVID-19.

Furthermore, Zhang et al. [8] proposed an improved ver-
sion of the SIR model for characterizing the dynamics of a
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TABLE I

SUMMARY OF SOME EXISTING WORK ON PANDEMIC MODELING

pandemic on social contacts. The layered architecture for mod-
eling the pandemic is discussed in [9]. Finally, Shi et al. [10]
examined the pandemic threshold for identifying the spread
of disease. Table I presents a comparative summary of some
existing work on pandemic modeling. It compares the pan-
demic models and parameters, including reproduction number
(Ro), case fatality rate (Cr ), and state of infection transmission.

B. Major Contributions

To the best of our knowledge, this is the first work as a case
study that covers data analysis, modeling, and representation
of the coronavirus spread in India. This article makes the
following major contributions:

1) Reproduction Number: First, we describe the role of
the reproduction number for estimating the infected
population during pandemic such as COVID-19. We also
determine the average value of the reproduction number
for India up to the specified date by analyzing the
existing dataset.

2) Case Fatality Rate: This work analyzes the role of case
fatality rate while estimating the damage caused by the
pandemic. We describe the necessity of case fatality rate
along with the reproduction number while estimating the
infected and recovered population.

3) Infection Transmission States: Next, we describe the dif-
ferent infection transmission states of a pandemic such
as COVID-19. This work also proposes an algorithm for
iteratively estimating the infection transmission states.

4) Data Modeling: Furthermore, we present different mod-
els of a pandemic, including SIR, SI, and SIS. We also
propose an algorithm for estimating the end time of a
pandemic using the SIR model.

5) Empirical Analysis: Finally, this article presents an
empirical analysis to study the impact of transmission
probability, rate of contact, infectious, and susceptible
population.

The rest of this article is organized as follows. Section II
illustrates the COVID-19 open-access dataset and the parame-
ters used for measuring the impact of a pandemic. Section III

illustrates the different mathematical models of the pandemic.
Section IV illustrates the empirical results and this article is
concluded in Section V.

II. DATASET AND PARAMETERS FOR MEASURING THE

SPREAD OF A PANDEMIC DISEASE

In this section, we first illustrate an open-access dataset of
COVID-19 that we use in the rest of this article. We next
define the parameters used for measuring the impact of the
pandemic.

A. Dataset of COVID-19

This work uses the COVID-19 dataset available in [11] for
predicting and analyzing the pandemic in India. The dataset
illustrates the detailed description of the patients infected
from coronavirus. Table II shows the first eight entries of the
dataset having different columns, including patient number,
state patient number, date announcement, age bracket, gen-
der, detected city, detected state, state code, current status,
nationality, type of transmission, and status change date. The
column header patient number indicates the actual patient
count in India, and state patient number is a combination
of state code, detected city code, and patient count. The
column current status indicates the current state of the patient.
Next, nationality followed by type of transmission that depicts
whether the transmission of infection is imported from other
countries or local. Finally, status change date illustrates the
status change of infected patient to recovered or deceased.

B. Pandemic First Parameter: Reproduction Number

The pandemic disease modeling incorporates the repro-
duction number (denoted by Ro) to understand the disease
outbreak by wrapping up all the infection transmission in a
particular area. The reproduction number specifies the number
of people being infected by the infectious population [5].
We can define Ro as follows.

Definition 1: The reproduction number of a given region is
the ratio of the total number of people infected to the total
number of people who are infecting, i.e.,

Ro = Total number of people infected

Total number of people who are infecting
(1)

where “the total number of people infected” means the number
of secondary cases from the primary cases. Next, “the total
number of people who are infecting” means the number of
patients who have infected other people.

Ro is an essential metric that determines: how contagious
the disease is? A disease is said to be highly contagious when
an infected individual transmits the infection to a large number
of people. The mechanism of providing a proper treatment or
appropriate handling of any disease requires full information
about how the infection develops in the body, the mode of
transmission, and the social structure where it can spread.
If all this information is available, then the outbreak can be
detected and monitored easily. The reproduction number Ro

captures all this necessary information by incorporating three
components: population density, rate of infection, and rate of
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TABLE II

DATASET OF COVID-19 [11] (TOTAL ROWS ARE 20 000+ AS ON APRIL 23, 2020)

Fig. 1. Illustration of Ro for COVID-19 spread in India.

recovery [6]. The estimation accuracy of Ro does not depend
on the dataset but relies on the mechanism of the calculated
number of peoples being infected.

Fig. 1 shows the value of Ro for the given dates. It also
shows the minimum and maximum values of Ro in the states of
India. We conclude that the difference between the minimum
and maximum values of Ro is very high, which indicates that
the pandemic is very high in some states while others at lower
threat. The value of Ro changes over time, as shown in Fig. 1.
Here, though the value of Ro is time-varying but is always
greater than 1. As the value of Ro ≥ 1 indicates the outbreak
of the pandemic. Furthermore, we observed from Fig. 1 that
the value of Ro achieves sharp peaks and sudden decrements.
It is because the reported infection transmission on some
specified date can sharply increase or decrease independent of
previous days. Table III shows the value of Ro for the spread
of COVID-19 in different states of India from the dataset
available in [11] up till April 18, 2020. The average Ro value
of some states is less than 1, which is a good indication of
lower spread.

C. Pandemic Second Parameter: Case Fatality Rate

The case fatality rate (denoted by Cr ) provides an estimation
of the number of people who dies among the total infected
people from the disease during its spread in a particular area.

Definition 2: Case fatality rate of a given region is the ratio
of the total number of people who died from the pandemic to
the total number of the people who are infected, i.e.,

Cr = Total death from the pandemic

Total number of people who are infected
× 100. (2)

Fig. 2. Illustration of Cr in India on specified dates.

The reproduction number only provides the rate of disease
spread but cannot estimate how many people lose their lives in
the entire cycle of the spread. Therefore, the case fatality rate
is crucial for such estimation. The pandemic such as measles
with Ro around 18 has a lower case fatality rate to that of Ebola
with Ro around 1.5 [12]. Fig. 2 shows the value of Cr for the
given dates. It also shows the minimum and maximum values
of Cr in the states of India. We conclude that the difference
between the minimum and maximum values of Cr is very high,
which indicates that a pandemic is very high in some state,
while others are free. The result also illustrates the minimum
value of Cr increases with time. It indicates that the pandemic
is spreading in India at a slower rate. Table IV shows the case
fatality rate of different states of India.

D. Pandemic Third Parameter: State of Given Region

Measures, such as social/physical distancing, reduce the
spread of the disease infections by breaking the transmis-
sion chains. infection_transmission of each individual can be
easily obtained by tracing the infected person’s contact with
other people. In this work, we are using a dataset available
in [11], which also provides a dedicated column for tracing
out the infection source. Therefore, we can easily determine
infection_transmission of each individual. The spread of the
infection is categorized in the following four states [7], [13]:

1) State 1 (No Contact Transmission): In this transmis-
sion state, the infection from an infected person does
not proceed further to any other person. The infected
person remains confined with the disease-causing virus
without further dissipation. For a pandemic disease such
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TABLE III

STATEWISE REPRODUCTIVE NUMBER (Ro) USING THE COVID-19 DATASET [11]
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TABLE IV

ILLUSTRATION OF CASE FATALITY RATE IN STATES OF INDIA

as COVID-19, this state is the most crucial state to
control coronavirus spread through quarantine and social
isolation. For example, the topmost layer in Fig. 3
demonstrates two persons (i.e., A and B) are infected
with coronavirus, and there is no further transmission.

2) State 2 (Local Transmission): The isolation compromise
and delay in the detection of infection lead to this
state. The infected person transfers the infection to the
person in its close contact. This type of transmission
is usually observed when the infected person comes in
close contact with a person such as a friend or a family
member. At this stage, it is easy to trace disease spread.
The second layer in Fig. 3 indicates that the transmission
is from infected person A to C and B to D.

3) State 3 (Untraceable Transmission): The unaltered
social contacts result in a third transmission state. In this
state, the concept of transmitting and being transmitted is
followed. Here, an infected person transfers the infection
to another person who transfers to the third person. Here,
the source of the infection is untraceable. Fig. 3 shows
transmission State 3. In this state, A transfers infection
to C that further propagates to E. Similar infection
transmission is observed among B, D, and F.

4) State 4 (Source Missing Transmission): This is the final
infection transmission state where the source of infection
is unidentified. It can be understood by an example
where a person is infected despite not coming in close
contact with an infected person and had no travel history
from an infected country.

Algorithm 1 illustrates the steps for identifying the
infected population in the different transmission states.
In the algorithm, we introduce a variable infection_tramission
that predicts the chance of a person to lie in a particu-
lar state depending on its values (i.e., 0, 1, and more).
infectiontransmission = 0 indicates that there is no person-
to-person infection transmission and infectiontransmission = 1
indicates that infection transmission is in State 2. Furthermore,
if the infection is transmitted from the first person to the

Fig. 3. Example scenario representing four transmission states.

Algorithm 1: Pandemic State Identification

Input: Population M of a particular area (state/country);
Output: States in which all the infected population lie;
/*Variable initialization*/

1 Set1={}, Set2={}, and Set3={}.
2 in f ection_tramission← 0.
3 Identify the infectious population I .
4 for i ← 1 to �I� do
5 if in f ection_tramissioni == 0 then
6 Set1 ← Set1.append(personi ).

7 else if in f ection_tramissioni == 1 then
8 Set2 ← Set2.append(personi).

9 else
10 Set3 ← Set3.append(personi ).

11 The resultant sets Set1, Set2, and Set3 contain the
infected person in different transmission state, i.e., State
1, State 2, and State 3, respectively.

second person and then to the third or the source is untrace-
able, this indicates the transmission State 3. If the transmission
state does not belong to the above three, then the infection
transmission State 4 is reached.

Fig. 4 shows the number of peoples in the different states
of infection transmission on the specified dates. The fig-
ure depicts the increment in the registered cases with the
passing time. An interesting observation from this result is that
the number of peoples in State 2 increases sharply than State 1.
Table V shows the different states of infection transmission
in India. Due to several cases in Maharashtra, a number of
peoples in transmission State 2 are high. The table is created
using the data available in [11] (April 18, 2020). An important
conclusion from the table is that India is in Stage 2 (90.11%)
and shifting toward Stage 3 (5.13%).

III. PANDEMIC MODELS AND CONTACT TRACKING

Data modeling helps in quantifying the damage caused by
the pandemic (such as COVID-19) and its probable end time.
The models simulate the infection transmission from person
to person and its geographical spread on the entire popula-
tion. This section discusses the existing pandemic models.
In addition, we estimate different parameters using the existing
dataset.
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Fig. 4. Illustration of the number of peoples in the different states of infection
transmission on the specified dates.

TABLE V

ILLUSTRATION OF STATES OF TRANSMISSION IN INDIA

A. SIR Model

SIR model [8] is one of the widely used models to figure out
the damage caused by a pandemic. The SIR model incorpo-
rates the three types of people, i.e., susceptible, infectious,
and recovered denoted as S, I , and R, respectively. Here,
the people of one type switch to another type with a specific
course of action like the frequent contact with infectious
converts S into I . If a pandemic covers the entire population
M having S, I , and R type of peoples, then M = S + I + R.
The phases (type of people) of SIR models are shown in Fig. 5.

Fig. 5. Illustration of SIR population.

All the people in a particular area who are not infected
with the disease and have no reported immunity against the
infection are categorized as susceptible (S). The absence of
immunity in a person results from no prior exposure to the
infection and no vaccination against such infection. During
the disease outbreak such as COVID-19, some people came
in close contact with the infected person and got infected
afterward, forming a group called infectious (I ). These people
are solely responsible for the spread of the disease in the
community. The quarantine of such infected people preserves
the community from being infectious. Every disease such
as pandemic COVID-19 has a specific cycle for infection
persistence. After this cycle, the infected population recovers
from the infection with proper treatment. However, the severe
spread of infection in the human body and inadequate cure
can result in death. The summation of total recovered and
total dead is termed recovered (R) or sometimes removed.

The transmission of the disease changes the peoples count
in a phase over time. The SIR model can be represented as [9]

R = α2 I − γ I (3)

I = α1 S (4)

M = S ∪ I ∪ R (5)

where α1 and α2 are force of infection and recovery rate,
respectively, γ denotes the death rate, and ∪ is the union
operator.

The force of infection α1 is the rate at which the suscep-
tible person becomes infectious on close contact with the
infected person. Recovery rate α2 is the rate at which an
infected person recovers from the infection using the proper
treatment. The force of infection is not a constant quantity and
is proportional to the transmission rate τ . The transmission rate
τ is the product of the rate of contact rc and the probability
of transmission pt from susceptible to infectious

τ = rc × pt . (6)

Using (6), we can define force of infection α1 as

α1(I ) = τ

{
I

M

}
× 100 (7)

where {I/M} × 100 represents the percentage of population
infectious among the total population in a particular area.

To capture the population change in a phase, the SIR
model adopts differential equations. A differential equation
captures the progression of the disease. The rate of change
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Algorithm 2: SIR
Input: Population M of a particular area facing

pandemic;
Output: Time T for which the pandemic persist;
/*Variable initialization*/

1 α1 ← 0, α2 ← 0, τ ← 0, and rc ← 0.
2 Time t← 0 and change in time �t .
3 Calculate reproduction number Ro.
4 while Ro < 1 or dS

dt = dI
dt = dR

dt = 0 do
5 Estimating transmission rate τ
6 Calculate rate of contact (rc) among the persons.
7 Calculate probability of transmission (pt).
8 τ ← rc × pt .
9 Estimate force of infection α1 using Eq. 7.

10 Calculate R and I for given S.
11 I = α1 S and R = α2 I − γ I using Eqs. 4 and 3.
12 Calculate the derivatives dS

dt , dI
dt , and dR

dt .
13 t← t +�t .

14 Either Disease Free or Endemic Equilibrium is reached.
15 The pandemic will be ended after t time.

Fig. 6. Illustration of SIR model on the COVID-19 dataset of India up till
April 18, 2020.

in S, I , and R are defined as follows:

dS

dt
= −α1(I )S (8)

d I

dt
= α1(I )S − α2 I (9)

dR

dt
= α2 I. (10)

An essential step after estimating the rate of change in S, I ,
and R using the differential equation is to determine the SIR
model’s equilibrium state. To describe the pandemic method-
ology, two equilibria exist side-by-side, i.e., disease-free equi-
librium and endemic equilibrium [14]. Algorithm 2 illustrates
the step of estimating the time t for which a pandemic persists
using the SIR model.

Fig. 6 shows the relationship between SIR cases in India
up till April 18, 2020. The figure demonstrates that infectious
persons grow up to a limiting value, where recovery starts
at a higher pace. It compels most people to come out of
the susceptible, and the outbreak is about to die. During
the construction of the result, we have taken the value of
reproduction number Ro = 1.79.

Fig. 7. Illustration of infectious population using the SI model on the
COVID-19 dataset of India up till April 18, 2020.

B. SI Model

Ranney et al. [15] proposed the SI model and assumed
that the total population in a particular area during pandemic
belongs either to susceptible or infectious. Apart from the SIR
model, they do not consider the recovered cases in a particular
location. Let, at time t = 0, the number of infectious and
susceptible peoples be represented as Io and So, respectively.
Let τ represent the transmission rate given in (6). Then,
the rate of change in susceptible and infectious is given as

dS

dt
= −τ SI (11)

d I

dt
= τ I (1 − I ). (12)

Upon further calculation as given in [15], the number of
infectious during a pandemic breakdown can be obtained as

I = Ioeτ t

1− Io + Ioeτ t
. (13)

Fig. 7 shows the fraction of the infectious population for the
past 30 days of the pandemic (COVID-19) breakout in India.
The result shows that the curved we obtained is an S-shaped
curve for infectious. The curve grows exponentially from the
early stage of infection in the country, and the infection starts
spreading. During the result estimation, we have taken the
value of reproduction number Ro = 1.79.

C. SIS Model

The SIS model is an extension of the SI model [10], where
the authors assumed that people who recovered from the
infection are still susceptible. The rate of change in susceptible
is given as

dS

dt
= −τ SI + α I (14)

where τ and α represent the transmission rate and fraction
of the infected population, respectively. The term τ SI can be
understood as an average infection transmitted by an individual
to τ M susceptibles. The rate of change in infectious is

d I

dt
= τ SI − α I. (15)

Using the assumption that the pandemic could infect the
entire population such that M = S + I , we obtain

d I

dt
= τ I (M − I )− α I

= (τ M − α)I − τ I 2. (16)



1048 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

Fig. 8. Illustration of infectious and susceptible population curve of the SIS
model on the COVID-19 dataset of India up till April 18, 2020.

Fig. 9. Overview of pandemic models (SI, SIS, and SIR).

The result shown in Fig. 8 depicts the relationship between
susceptible and the infectious fraction of population in India
up till April 18, 2020. The result is estimated by taking the
value of the reproduction number as Ro = 1.79, i.e., current
status for India with a total 12 079 active cases. If the rate of
infection in India is decreasing or not exceeding the current
rate, then the spread of COVID-19 would be ended in the
next 70 days. Fig. 8 shows that the rate of susceptible and the
rate of infectious remain constant between 20 and 70 days.
In the SIS model, people who are recovered from the infection
are still susceptible. Moreover, if the rate of susceptible is
constant, then no new person will be infected during the
pandemic. Furthermore, at given recovery and case fatality
rates, the total population being infected will be recovered in
the next 70 days. Thus, no new population will be infected,
which indicates that the pandemic is ended.

Fig. 9 shows the entities of different pandemic models,
including SI, SIS, and SIR. Here, in the SIS model, susceptible
and infectious are forming a cycle, where the susceptible
population being infected are still susceptible.

IV. EMPIRICAL EVALUATION

This section empirically evaluates the performance of the
SIR model on the population size of 1000. During the entire
evaluation, we have taken the value of reproduction number
(Ro) as 1.79. The empirical results on the SIR model rely on
the following expression [16]:

Itotal = Io + rc

(
I

M

)
× 100× S × pt (17)

where Io is the initial infected population, rc is the rate of
contact, and pt is the transmission probability.

We have considered only the SIR model in the empirical
analysis due to its broader applicability for modeling pandemic
such as COVID-19. In addition, SI and SIS models are also

Fig. 10. Impact of population size on (a) infectious and (b) susceptible.

Fig. 11. Impact of rate of contact (rc) and probability of transmission
(pt ) on a number of infectious and susceptibles. (a) Infectious versus rc .
(b) Susceptible versus rc . (c) Infectious versus pt . (d) Susceptible versus pt .

available, which have not considered the recovered population
that plays an essential role in determining the extent of
pandemic’s spread. Furthermore, the SIS model assumes that
the infected populations are still susceptible. This assumption
is not suitable for COVID-19 as there persists an uncertainty
of infectious being susceptible.

1) Impact of Infectious and Susceptible: At first, this work
carried out an empirical analysis to estimate the infectious
population when the susceptible increases from 25% to 100%.
Here, we fix the rate of contact rc = 1 and the probability
of transmission pt = 0.3. Fig. 10(a) shows the increment
in infectious with the increase in the % susceptible. If the
susceptible reaches 100% on population size 1000, then the
infection can be spread to 487 people. Similarly, Fig. 10(b)
shows that the increment in the infectious accelerates the
growth of susceptible population. Susceptible reaches 564 at
the population size of 1000 with 40% infectious. It indicates
that the effect of a pandemic (such as COVID-19) can be
reduced by decreasing either the susceptible or infectious.

2) Impact of Rate of Contact and Probability of Transmis-
sion: Next, we study the impact of the rate of contact (rc)
and the probability of transmission (pt) on susceptible and
infectious with a population size of 1000. First, we consider
the probability of transmission as a constant (pt = 0.3) and
the rate of contact as a variable. Fig. 11(a) shows that the
increment in the infectious is nearly linear with the rate of
contact and population size. At higher population size (>800),
the curve starts flattening as the infection has covered roughly
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Fig. 12. Impact of case fatality rate and recovery rate on infectious and
susceptible. (a) Both case fatality and recovery increase. (b) Increasing case
fatality and decreasing recovery. (c) Increasing recovery and decreasing case
fatality. (d) Both decrease.

half of the population. Similarly, susceptible increases linearly
with increment in the rate of contact.

Furthermore, Fig. 11(c) and (d) shows that the transmission
probability is highly sensitive toward the rate of infection
spread and increment in the susceptible count. We have con-
sidered the rate of contact (rc = 1) for calculating the value of
infectious and susceptible. Fig. 11(c) shows that the infectious
count is directly proportional to the transmission probability
and shows an exact linear increment with the increase in the
population size. In a similar pattern, Fig. 11(d) shows that
the number of susceptibles increases with an increment in the
transmission probability.

3) Impact of Case Fatality Rate and Recovery Rate: Finally,
we evaluate the impact of the case fatality and recovery rates
on the rate of change in infectious and susceptible.

1) Both Case Fatality and Recovery Rates Increase:
Fig. 12(a) shows the variation in infectious and sus-
ceptible when both case fatality and recovery rates
increase. The result depicts the simultaneous increase
in case fatality and recovery rates rectify the number of
infectious and susceptible. This increment in infectious
and susceptible continued until a thresholding limit,
where the case fatality rate’s influence starts degrading
to that of recovery rate. We also observe from Fig. 12(a)
that when the population size is 50, the change in case
fatality and the recovery rates are nearly similar. As the
population size increases, the recovery rate is more rapid
than the case fatality rate, i.e., gap between recovery and
case fatality rates is considerable. Furthermore, at the
population size 600, infectious and susceptible cover the
entire population of 1000 people; thereafter, infectious
and susceptible will only decrease.

2) Case Fatality Rate Increase and Recovery Rate
Decrease: It is the most adverse situation for a pan-
demic, where the case fatality is increasing, and recovery
is decreasing. It indicates that the pandemic is in the

worst phase and can infect the entire population in a
particular area. Fig. 12(b) shows the adverse situation
where both infectious and susceptible are increasing.

3) Both Case Fatality Rate and Recovery Rate Decrease:
It is similar to that of the previously discussed case,
but one positive thing that mitigates severe damage is
the decrement in fatality rate. Fig. 12(c) shows that
the simultaneous decrement in both case fatality and
recovery rates increase the infectious and susceptible.

4) Case Fatality Rate Decreases and Recovery Rate
Increases: The last combination is the condition when
the case fatality rate decreases and recovery rate
increases. It is a favorable situation where there is an
indication that the pandemic is ending. Fig. 12(d) shows
that both infectious and susceptible decrease under such
circumstances.

V. CONCLUSION

The pandemic COVID-19 is spreading at a higher pace
around the globe. The empirical and data analysis in this article
tried to figure out the impact of various parameters, such as
the probability of transmission, contact rate, infectious, and
susceptible populations. The results indicated that the spread
of COVID-19 could be analyzed, modeled, and represented
in the tabular and graphical format. The data analysis has
provided the complete in-site of the coronavirus spread and
approximated the reproduction number of COVID-19 between
1.5 and 4 with a low fatality rate. This article has covered
popular models for analyzing different aspects of the pandemic
and identifies one model’s advantage and disadvantage over
others. The representations have provided a more natural way
to visualize the actual effect of the pandemic spread.

ACKNOWLEDGMENT

The authors would like thank to Vinit Kumar Patra for doing
the implementation and data preprocessing.

REFERENCES

[1] G. F. de Arruda, G. Petri, F. A. Rodrigues, and Y. Moreno, “Impact of the
distribution of recovery rates on disease spreading in complex networks,”
Phys. Rev. Res., vol. 2, no. 1, pp. 013046:1–013046:6, Jan. 2020.

[2] M.-T. Li et al., “Analysis of COVID-19 transmission in Shanxi province
with discrete time imported cases,” Math. Biosci. Eng., vol. 17, no. 4,
pp. 3710:1–3710:11, 2020.

[3] P. C. Cooley et al., “The model repository of the models of infectious
disease agent study,” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 4,
pp. 513–522, Jul. 2008.

[4] Z.-K. Zhang, C. Liu, X.-X. Zhan, X. Lu, C.-X. Zhang, and Y.-C. Zhang,
“Dynamics of information diffusion and its applications on complex
networks,” Phys. Rep., vol. 651, pp. 1–34, Sep. 2016.

[5] T. Zhou et al., “Preliminary prediction of the basic reproduction number
of the Wuhan novel coronavirus 2019-nCoV,” J. Evidence-Based Med.,
vol. 13, no. 1, pp. 3–7, Feb. 2020.

[6] P. van den Driessche and J. Watmough, “Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of disease
transmission,” Math. Biosci., vol. 180, nos. 1–2, pp. 29–48, Nov. 2002.

[7] R. Ranjan, “Predictions for COVID-19 outbreak in India using epi-
demiological models,” medRxiv, early access, pp. 1–10, 2020, doi:
10.1101/2020.04.02.20051466.

[8] Z. Zhang, H. Wang, C. Wang, and H. Fang, “Modeling epidemics
spreading on social contact networks,” IEEE Trans. Emerg. Topics
Comput., vol. 3, no. 3, pp. 410–419, Sep. 2015.

http://dx.doi.org/10.1101/2020.04.02.20051466


1050 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

[9] Z. Wang, C. Xia, Z. Chen, and G. Chen, “Epidemic propagation with
positive and negative preventive information in multiplex networks,”
IEEE Trans. Cybern., vol. 51, no. 3, pp. 1454–1462, Mar. 2021, doi:
10.1109/TCYB.2019.2960605.

[10] H. Shi, Z. Duan, and G. Chen, “An SIS model with infective medium
on complex networks,” Phys. A, Stat. Mech. Appl., vol. 387, nos. 8–9,
pp. 2133–2144, Mar. 2008.

[11] COVID-19 India. (2021). [Online]. Available: https://www.covid19india.
org/

[12] Pandemic. (2021). [Online]. Available: https://theconversation.com/how-
to-model-a-pandemic-134187

[13] Four Stages Of Coronavirus Transmission. (2021). [Online]. Available:
https://www.healthwire.co/four-stages-of-coronavirus-transmission-and-
next-phase-of-indias-battle/

[14] E. Pardoux, “Deviations from the law of large numbers and extinc-
tion of an endemic disease,” in Mathematical Modeling of Random
and Deterministic Phenomena. Wiley, 2020, pp. 1–30, doi: 10.1002/
9781119706922.ch1.

[15] M. L. Ranney et al., “Correlates of depressive symptoms among at-
risk youth presenting to the emergency department,” Gen. Hospital
Psychiatry, vol. 35, no. 5, pp. 537–544, Sep. 2013.

[16] Z. Ma, J. Liu, and J. Li, “Stability analysis for differential infectivity
epidemic models,” Nonlinear Anal., Real World Appl., vol. 4, no. 5,
pp. 841–856, Dec. 2003.

Rahul Mishra (Graduate Student Member, IEEE)
received the M.Tech. degree in computer science
and engineering from the Madan Mohan Malaviya
University of Technology, Gorakhpur, India, in 2017.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with IIT (BHU)
Varanasi, Varanasi, India.

His research interests include wireless sensor net-
works, deep learning, and fog computing.

Hari Prabhat Gupta received the Ph.D. degree
in computer science and engineering from IIT
Guwahati, Guwahati, India, in 2014.

He is currently working as an Assistant Professor
at the Department of Computer Science and Engi-
neering, IIT (BHU) Varanasi, Varanasi, India. His
research interests include wireless sensor networks,
machine learning, and distributed algorithms.

Tanima Dutta received the Ph.D. degree in com-
puter science and engineering from IIT Guwahati,
Guwahati, India, in 2014.

She is currently working as an Assistant Profes-
sor at the Department of Computer Science and
Engineering, IIT (BHU) Varanasi, Varanasi, India.
Her research interests include multimedia, digital
forensics, wireless sensor networks, and algorithms.

http://dx.doi.org/10.1109/TCYB.2019.2960605
http://dx.doi.org/10.1002/9781119706922.ch1
http://dx.doi.org/10.1002/9781119706922.ch1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


