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Being able to recommend links between users in online social networks is important both for the platforms

themselves and for third parties leveraging social media information to grow their business. Predictions are

typically based on unsupervised or supervised learning, often leveraging simple yet effective graph topological

information, such as the number of common neighbors. However, we argue that richer information about

personal social structure of individuals might lead to better predictions. In this paper, we propose to leverage

well-established social cognitive theories to improve link prediction performance. According to these theories,

individuals arrange their social relationships along, on average, five concentric circles of decreasing intimacy.

We postulate that relationships in different circles have different importance in predicting new links. In order

to validate this claim, we focus on popular prediction algorithms (both unsupervised and supervised) and we

extend them to include social-circles awareness. We validate the prediction performance of these social-aware

algorithms against their baseline versions, leveraging two Twitter datasets comprising a community of video

gamers and generic users. We show that social-awareness generally provides significant improvements in the

prediction performance. In addition, social-awareness is able to deliver good predictions also in cases where

resources (e.g., storage, computing) are limited and other approaches perform poorly. Finally, we show that

social-awareness can be used in place of using a classifier (which may be costly or impractical) for targeting a

specific category of users.
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1 INTRODUCTION
In 2019, the number of social media users worldwide has reached 3.484 billion, up 9% on a year-on-

year basis [19]. Social media are now large ecosystems, where we gather to interact with people

we already know or to join communities of people that share our interests. Examples of the latter

are Science Twitter
1
or Bookstagram

2
, which are simply open, unofficial sub-communities, within

Twitter and Instagram, of accounts (mostly) talking about a specific topic. Clearly, being able to

1
https://blogs.plos.org/absolutely-maybe/2017/04/28/whos-who-on-science-twitter-and-who-counts/

2
https://www.huffpost.com/entry/bookstagram-how-readers-changed-the-way-we-use-instagram_b_

59f0aaa2e4b01ecaf1a3e867
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pair together people with similar interests is crucial for social-driven and content-driven platforms

like Facebook, Twitter, Instagram, Youtube, etc. This spurred intense research on link prediction,

whereby algorithms suggest potential new links with users that are similar to each other. Solving

this problem is equivalent to finding a needle in a haystack: online social networks (OSN) feature

millions of users, the number of potential links between them grows with the square of the number

of users, but the actually existing links are quite sparse.

Link prediction algorithms can be broadly divided into unsupervised and supervised algorithms.

Unsupervised methods typically associate a score to each potential new link, and then only the

links with a score above a predefined threshold – or the top-K ones – are used for recommendation.

Within this class, the most popular strategy for prediction is based on estimating the similarity

between pairs of nodes, and then leveraging this similarity for prediction (the higher the similarity,

the higher the probability that the two nodes should be connected). This similarity is typically

computed using topological information about the network, be it local information (such as the

number of common neighbors) or global one (such as the length of paths connecting two nodes).

Despite their apparent simplicity, local similarity-based prediction algorithms perform generally

well, even when compared to more complex approaches [36], and are also computationally efficient.

A supervised learning strategy typically treats link prediction as a binary classification problem:

potential new edges are labelled as positives if the classifier believes they will appear in the future,

as negatives in the opposite case. These classifiers are trained using a set of existing and missing

edges, described with a set of features (e.g., the heuristics used by similarity-based approaches

for computing similarity). Standard learning approaches can be used in this case (such as logistic

regression, Random Forest, etc.). Supervised learning has been shown to outperform unsupervised

benchmarks in [25, 47, 51]. Recently, self-supervised link prediction methods have been proposed,

which automatically extract latent features that reflect the relevant structure of the graph. These

approaches mainly rely on graph embeddings [13, 23] or graph neural networks [10, 27, 51], and

have been shown to perform very well on the link prediction task.

One of the well-known mechanisms that drive link formation is the homophily principle, which

states that individuals tend to bond with those that are more similar to them [38]. Common-

neighbors-based algorithms leverage this principle for predicting new links. However, findings

from anthropology show that not all bonds are equal: some relationships are just acquaintances

and do not imply a significant cognitive engagement. With respect to the meaningful relationships,

each individual organises them into concentric social circles where the intimacy progressively

decreases from the innermost to the outermost circle [26, 54]. This model of how humans organise

their relationships stems from the social brain hypothesis, which links our social life to cognitive

constraints related to the size of our neocortex [14]. This hierarchical social structure is known

to impact significantly on who we trust [44], on the way information spreads in online social

networks [4], and on the diversity of information that can be acquired by users [3]. This layered

social structure is typically represented using an ego network graph [16, 26, 32, 37], in which the

individual, referred to as ego, is at the center of the graph, and the edges connect her to the peers

(called alters) with which she interacts. Figure 1 illustrates the classical ego network structure.

The ego-alter tie strength is typically computed as a function of the frequency of interactions

between the ego and the alter. The ego network structure is characterised by a striking regularity,

both for offline and online relationships: the typical sizes of the layers are 1.5, 5, 15, 50, 150, with

an approximately constant ratio of 3 between the size of consecutive layers. Please note that the

second layer includes all the alters in the first layer, the third layer includes all the alters in the first

and second layers, and so on.

Since social links are not all the same, simply considering the set of common neighbors (or

analogous topological metrics), disregarding the importance of each social link, might not give a
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Fig. 1. Layered structure of the ego network. The red dot at the center corresponds to the ego.

precise estimation of the homophily between two individuals. Thus, in this paper, we set out to

improve link prediction algorithms (both supervised and unsupervised) with information about

the different importance of social relationships. To this end, we exploit well-established models in

the anthropology literature that describe the relative importance of our social bonds by grouping

them into different social circles. Please note that the social circles we refer to are very loosely

related to the concept of communities in social networks. In fact, social circles are (local) groupings

entirely from the perspective of the ego, they include only nodes with which the ego is directly

connected, and the links between the alters (which are crucial for regular communities) do not

play a role at all here. Note also that our goal is not to propose a new prediction algorithm, but to

add social-awareness to popular prediction solutions. To the best of our knowledge, the only other

work in the literature that investigates ego networks in relation to link prediction is [2]. However,

in the context of that work, an ego network is a different structure from the one studied here (only

the links between the alters are considered), social cognitive models are not leveraged, and the

effect of using information on the different social circles for link prediction is not investigated.

While the general problem of link prediction entails recommending any of the useful links that a

user may want to create with other users, in certain applications we may want to recommend links

between users that share a specific common interest together. Predicting links in such contextualised

communities might be much more relevant (and valuable) than predicting links between generic

users. This could be the case, for example, of a third party service that wants to connect users

interested in a specific topic. In this paper, we showcase one application of this concept by focusing

on a set of gamers on Twitter, andwe investigate how tomake new link recommendations leveraging

key properties of the way users allocate their cognitive capacity to social relationships. As discussed

in Section 3, we believe focusing on such a target set of users, characterised by a specific type of

online engagement, is particularly significant for link recommendation in online social networks.

Then, we apply the same method to generic Twitter users, in order to assess the efficacy of the

proposed solution also beyond the contextualised communities settings.

The key findings presented in the paper are the following:

• In the vast majority of cases, regardless of the prediction approach (unsupervised or super-

vised), the specific heuristic or learning algorithm, and the metric (precision, AUC, F1 score)

considered, leveraging social circles information outperforms the corresponding baseline in

which circles are ignored.

• The contribution of the different social circles to the achieved precision varies with the rec-

ommendation algorithm considered. In unsupervised similarity-based approaches, innermost

circles help policies with little or no penalization of high degree nodes, while outermost

circles boost the performance of algorithms relying on high-degree nodes penalization. The

precision of supervised strategies is generally considerably increased when only the inner-

most circle, corresponding to the small set (composed of 3-5 people typically) of the most

intimate relationships, is considered.
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• Social-awareness is very effective when only little information can be used to perform

recommendation, such as in the case of resource limitations (e.g., storage or computational

resources). In this situation, making predictions based on the edges in the innermost circles

(equivalent to considering just about a dozen neighboring nodes per ego) is generally at least

as effective as using the whole network.

• Leveraging social circles information provides the same performance as using additional

classifiers on nodes, which might be impractical or costly to use.

• When used for link prediction, our preliminary results show that explicit features that leverage

social circle information are able to beat latent features extracted using graph embedding

methods. This generally happens when the innermost circles are used, thus combining

resource savings with top prediction performance.

The rest of the paper is organised as follows. We review the related work in Section 2, considering

both the literature on social cognitive constraints and that on link prediction. In Section 3 we present

the two datasets that we leverage in our analysis. The ego-aware unsupervised and supervised link

prediction approaches that we study are presented Section 4. Their prediction performance are

then evaluated in Section 5. In Section 6 we derive the time and space complexity of our ego-aware

policies with respect to their baselines. Finally, in Section 7 we conclude the paper.

2 RELATEDWORK
2.1 Dunbar’s model and ego networks
According to the social brain hypothesis from anthropology [14], the social life of primates is

constrained by the size of their neocortex. Specifically, for humans, the typical group size is

estimated around an average of 150 members, a limit that goes under the name of Dunbar’s number.

This limit is related to the cognitive capacity that humans are able to allocate to nurturing their

social relationships. The 150 friends, in fact, do not include acquaintances, but only people with

which a coherent quality relationship is entertained. In a modern society, this entails, at the very

least, exchanging birthday or Christmas cards every year. Unsurprisingly, humans are not fair

in how they distribute their cognitive attentions among the 150 important persons they have

around them. To the contrary, it is possible to group our social relationships in circles of increasing

intimacy, as illustrated in Figure 1. Typically, each of us has at least four circles of intimacy [26, 54]:

the innermost one (support clique) includes our close family, the sympathy group comprises all

those people whose death tomorrow would leave us deeply affected, the affinity group includes

colleagues, extended family, people you hang out with, and finally the active network is made up of

all the people you meaningfully interact with at least once a year. The circles are conventionally

concentric, with the inner layers contained in the outer ones. Many people also feature an additional

inner layer (contained in the support clique) comprising on average 1.5 alters for which they have

a very high emotional investment [15].

The social brain theory was developed for the offline world, in which relationships were nurtured

via face-to-face interactions, letters, or landline phone calls. Many had postulated that this theory

would not carry over to the online world, where OSN allow us to engage conveniently with a

huge number of people scattered across the globe. However, Dunbar’s model stood the test of the

cyberworld as well: Dunbar’s number hold for email communications [24], mobile phone calls [40],

and Twitter [20]. More importantly, the same layered structure of social relationships has emerged

on both Facebook and Twitter [15]. These findings are extremely important. In fact, since ego

network structures are known to impact significantly on the way information spreads in OSN,

and on the diversity of information that can be acquired by users [3], embedding these models of
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human cognition into services for OSN may drastically improve the quality of service provided to

the users.

2.2 Link prediction
The literature on link prediction algorithms is large. Here we only summarise the main approaches

and we refer the interested readers to [35, 36] for detailed surveys on the topic. Following the

taxonomy proposed by [36], link prediction approaches can be classified into similarity-based

methods, algorithmic methods, preprocessing methods, and probabilistic & statistical methods (the

latter are out of the scope of the paper and will not be discussed further).

Similarity-based methods make up the largest class of link prediction algorithms proposed in the

literature. The rationale of this approach is that nodes are more likely to form links with nodes

that are similar to them. This idea is grounded in the widespread and well-documented social

phenomenon of homophily [38]. Algorithms in this class differ in how they define the similarity

between nodes. We can broadly distinguish them based on whether they use local information,

global information, or a hybrid combination of the two (this approach is one of the least popular,

hence we will not treat it further). For a given node pair, local similarity-based solutions rely on

node neighborhood-related structural information, such as the number of common neighbors [30],

an inverse function of the degree of common neighbors [1, 53], or a Preferential Attachment

index [30]. Local similarity-based approaches are very efficient, even on large networks, due to

their easy parallelization. Their main theoretical limitation is that they are able to predict only new

links between neighbors-of-neighbors. However, their prediction accuracy is typically good, and

comparable to that obtained with more complex approaches. Their counterpart, global similarity-

based approaches, rely on metrics computed considering the whole network topology. These

metrics focus typically on the possible paths inside the network, such as the shortest paths [29],

paths with different lengths by means of the Katz Index [30], random walks [33], or community

membership [43].

Algorithmic methods map the link prediction problem into well-known algorithmic approaches.

Within this category, classifier-based methods treat the link prediction problem as a binary classi-

fication problem [12, 25, 50, 51]. Each node pair can be characterised with a variety of attributes

(including whether the link will appear or not in the future) and this labelled set can be fed to

virtually any classifier (such as decision trees, SVM, k-nearest neighbors, random forest, neural

networks and, recently, graph neural networks). The advantage of this approach is that it can be

extended and adapted to any new attribute that one wants to test, and that it generally significantly

outperforms similarity-based methods [12, 25, 47]. Also, while the heuristics of similarity-based

approaches typically work well in human social networks (which feature well-studied structures),

recent supervised proposals (such as graph neural networks) are much more flexible when the

network under study is of a different nature, such as for protein-protein interaction networks [51].

The drawback of supervised link prediction algorithms is that they do not scale very well (as they

are computationally intensive) and that they may suffer from the class imbalance problem, typical

of link prediction. While classifier-based solutions are by far the most popular in the algorithmic

methods category, other methods have been proposed that are based on evolutionary algorithms [7]

and matrix factorization solutions [39].

Preprocessing methods are considered meta-approaches, as they are intended to be used in

conjunction with other algorithms, for which they provide preprocessing/pre-filtering intended to

remove some noise in the network. As an example, the clustering method discussed in [29] suggests

the removal of the weakest links (those between nodes with few or zero common neighbors).

The solution that we propose in this paper falls into this category. The meta-approach that we
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investigate is based on considerations related to how people distribute their social capacity across

their relationships, rather than on pure graph-related properties.

Orthogonally to this classification, we can also distinguish between approaches that consider the

weights of the links or not. Among the former, we mention [53, 55]. As discussed in [34], though,

the performance of weighted indices is often worse than their unweighted counterpart. For this

reason, in this work we do not consider the weight of links besides what is needed to compute the

ego network structure.

3 THE DATASETS
As discussed in Section 1, in this paper we investigate social circle-aware link prediction considering

both a community of users with shared interests (gaming, in our case) and generic users. Before

presenting the algorithms for predictions in Section 4, here we first introduce the datasets that we

use as case study. Without loss of generality, some definitions required in the prediction algorithms

will be discussed with reference to these datasets. However, please note that each such definition

can be used as-is for any other dataset describing different communities, and the algorithm works

unchanged in all such cases.

In the gaming-related dataset, we consider as shared topic of interest “indie games”. An inde-

pendent video game, or indie game, is a video game that is often created without the financial

support of a publisher, although some games funded by a publisher are still considered “indie”.

Indie games often focus on innovation and rely on digital distribution. Growing a community of

interested users is thus a critical success factor for them. The goal of our link prediction task is

to recommend users interested in indie games to other users interested in indie games. In order

to collect an initial community of users interested in indie games, we first had to identify some

relevant indie games. To this purpose, we referred to Steam, a digital game distribution platform

(https://store.steampowered.com/), and SteamSpy (https://steamspy.com/) , which provides statistics

about the games on Steam. Among the indie games listed as the most popular during October 2017,

we were able to identify the Twitter accounts of 133 of them. We then downloaded the timelines of

these games using the Twitter Search API. From the downloaded timelines, the 400 most frequently

used hashtags have been extracted and used to monitor Twitter using the Twitter Streaming API.

This allowed us to identify a set of 8,932 users engaging in game-related conversations. We labelled

these users as gamers. We have then collected (June 2018) their timeline (most recent 3200 tweets)

using the Twitter Search API.

In the generic user dataset, we focus on a group of users whose interests are not associated with

a specific domain. To this aim, we used a dataset presented in [5], containing the timelines (most

recent 3200 tweets) of 1,930,802 Twitter users obtained by means of a snowball sampling starting

from US President Barack Obama in November 2012. Please refer to [5] for further details on the

collection process.

We filter the 8,932 gamers and 1,930,802 generic users and extract their ego network (including

their social circles) using the same methodology as in [8]. Please note that, to this aim, we simply

need a weighted social graph, whose edge weights correspond to the contact frequency between

the corresponding nodes. In order to extract reliable information, we filter users according to

the same policy used in [8]. We only consider users whose Twitter activity is regular (i.e., they

post, on average, at least one tweet every 3 days for at least 50% of the total number of months

of their activity) and stationary (i.e., they are not in their initial stage of engagement with the

Twitter platform, which typically features a transient spike of activity). The strength of ego-alter

relationships is inferred from the frequency of direct tweets (mentions, reply, or retweets) between

the ego and the alters. The optimal number of social circles per users is obtained using the Mean

Shift clustering algorithms to group such frequencies. Approximately one third of the gamers
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Table 1. Gaming-related dataset summary

# of gamer nodes |𝑉𝑒 | 2,995

# of domain-specific nodes |𝑉𝑑 | 70,859

# of all nodes |𝑉 | = |𝑉𝑒 ∪𝑉𝑑 ∪𝑉𝑛 | 470,485

# of gamer edges |𝐸𝑒 | 2,614

# of domain-specific edges |𝐸𝑑 | 154,581

# of edges |𝐸 | 1,004,011

Table 2. Generic users dataset summary

# of ego nodes |𝑉𝑒 | 3000

# of all nodes |𝑉 | = |𝑉𝑒 ∪𝑉𝑛 | 278,510

# of ego edges |𝐸𝑒 | 7,158

# of edges |𝐸 | 567,739

passed all the filters described above (relying only on their last 3200 tweets), and this left us with

3,061 gamers with reliable ego network information. On the other hand, approximately 7% of the

generic users passed all the filters described, amounting to 148,105 generic users with reliable

ego network information. When we focus on an ego 𝑖 , who is a gamer in gaming-related dataset

or a generic user in generic user dataset, its alters can now be associated with the social circle

of 𝑖 to which they belong. In the gaming-related dataset, the alters of ego 𝑖 can be generic users,

other gamers, or even games (e.g., one of the initial 133 games). This implies that some nodes

are domain-specific (in our case, gaming-related), while others are generic. On the other hand, in

generic user dataset, all alters of ego 𝑖 are also generic users. Generic nodes make prediction more

challenging with respect to the case of homogeneous nodes (as, e.g., in [30]).

In order to enrich the set of domain-specific nodes in the gaming-related dataset, we also

downloaded all followers of the initial 133 games, thus bringing in additional 25,014 nodes, for

a total of 31,091 domain-specific nodes (which include games and gamers without ego network).

Thus, in the end, we have three classes of nodes in gaming-related dataset: gamer users with

ego network (𝑉𝑒 ), regular (unlabelled) users without ego network (𝑉𝑛), and domain-specific users

that may have or may have not an ego network (𝑉𝑑 , including games and gamers for which ego

network information is not available or not reliable because they didn’t satisfy the filters discussed

previously). In generic user dataset, we have two classes of nodes: generic users with ego network

(𝑉𝑒 ) and generic users without ego networks (𝑉𝑛) that are basically alters. We further filter these

graphs as suggested in [30] by considering only the nodes that are connected to the giant component.

In order to have a generic user dataset with a similar size of gaming-related dataset and to reduce

its computational intensity, we sampled 3,000 egos from the giant component of the generic users

network by snowball sampling [21].

The final datasets are summarised in Table 1 and Table 2. The imbalance ratio, i.e., the ratio

between the negatives (potential links that do not exist in practice) and the positives (links actually

existing) in the class of both gamers and generic users is around 10
4
:1, which is quite high. This is a

well-known problem in link recommendation for online social networks (remember from Section 1

that links are sparse). This implies that special care should be taken in the evaluation, as explained

in detail in Section 5.2.

4 LINK PREDICTION BASED ON SOCIAL CIRCLES
We denote with G = (𝑉 , 𝐸) the graph modelling the relationships in our dataset. As discussed in

Section 3, in the gaming-related dataset, vertices can belong to one of three classes: gamers (denoted
with 𝑉𝑒 ), domain-specific users (denoted with 𝑉𝑑 ), and unlabelled users (i.e., for which we know

nothing regarding their involvement in gaming related activities, denoted with 𝑉𝑛). In the generic

user dataset, vertices can belong to one of two classes: users with ego network (denoted with 𝑉𝑒 )

and users without ego network (denoted with 𝑉𝑛). Since our goal is to evaluate the contribution of

social circles to link prediction, we will focus on the subset of nodes for which social circles could

be computed. Thus, predictions will be made for the set of possible edges between nodes in 𝑉𝑒 .
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4.1 Similarity-based unsupervised learning with circle-awareness
In order to showcase the effect of social circles for unsupervised link prediction, we focus on the

simple, yet effective class of similarity-based approaches. Like for all similarity-based link prediction

algorithms, the goal of the proposed algorithm is to associate each non-existing link between two

users 𝑖, 𝑗 in 𝑉𝑒 with a score proportional to the likelihood that the link will actually be formed in

the future. Hence, the goal of the link predictor is to associate with each edge in 𝑉𝑒 ×𝑉𝑒 − 𝐸𝑒 a
probability/confidence that the link will indeed appear in the future. Qualitatively, this is equivalent

to suggesting users to other users for possible interactions, friendships, etc.
In order to study the effect of the social circles on link prediction, we propose to slice the social

graph based on the membership to a specific circle (recall that our concept of social circles is

different from that of communities). Let us focus on a user 𝑖 ∈ 𝑉𝑒 . We denote with 𝐶
(𝑖)
1
,𝐶

(𝑖)
2
, . . .,

the sets comprising the neighbors of 𝑖 that belong to 𝑖’s first, second, . . ., social circle, respectively.

Thus, the graph G sliced according, e.g., to circle 𝐶3, is the graph including only links between

egos and their alters up to layer 3 (remember that 𝐶3 includes 𝐶1 and 𝐶2). More formally, it can be

defined as G𝐶3
= (𝑉 , 𝐸𝐶3

), where 𝐸𝐶3
= {𝑒𝑖 𝑗 ∈ 𝐸 : ∃𝑖 ∈ 𝑉𝑒 , ∃ 𝑗 ∈ 𝑉 s.t. 𝑗 ∈ 𝐶 (𝑖)

3
}.

Social-circles slicing can be extended to include category-based slicing as well for domain-specific

datasets. For example, from G𝐶3
we can retain only domain-specific nodes and edges (i.e., nodes in

𝑉𝑒 ∪𝑉𝑑 and edges in 𝐸𝑒 ∪ 𝐸𝑑 ). We generalise the notation related to the slicing preprocessing by

denoting with 𝜔 the specific slicing considered, and with G𝜔 the resulting graph. In Section 5, we

will discuss the performance of link prediction both with social-based slicing and with social-based

plus category-based slicing. We anticipate here that when the social circles information is not used

for the prediction, leveraging the category information provides a significant advantage. Vice versa,

social-circles awareness makes information on the category less relevant (and this is extremely

important, since the extraction of categories typically requires an additional, domain-specific,

classifier or manual labelling).

In order to perform link predictions, for each user-user pair 𝑖, 𝑗 for which a link does not exist in

𝐸𝑒 , we do the following:

Definition 1 (Unsupervised Circles-aware Link Prediction). For a fixed K, the social circles-
aware link prediction algorithm suggests to a user 𝑖 the top K users 𝑗 in the following ranked list:

𝐿𝜔 = { 𝑗 ∈ 𝑉𝑒 ∧ (𝑖, 𝑗) ∉ 𝐸𝑒 : 𝑠𝑖𝑚𝜔 (𝑖, 𝑗)}, (1)

where 𝜔 denotes the selected slicing and 𝑠𝑖𝑚𝜔 (𝑖, 𝑗) is the similarity computed on G𝜔 .

The definition of a new similarity function is out of the scope of the paper. What we want

to do here is to evaluate popular similarity functions available in the literature when they are

enriched with knowledge about the ego network circles. In order to isolate the effect of social-circles

awareness, we need approaches that are simple (so it is easy to gauge the role of social circles)

yet effective. For these reasons, our choice fell on the strategies described below, often used in the

related literature. In summarising them, we denote with Γ𝜔 (𝑖) the neighborhood of node 𝑖 in G𝜔 .
• Common neighbors (CN) [30]: the similarity is given by the number of common neighbors

between users 𝑖 and 𝑗 in G𝜔 :
𝑠𝑖𝑚𝜔 (𝑖, 𝑗) = |Γ𝜔 (𝑖) ∩ Γ𝜔 ( 𝑗) |. (2)

• Jaccard’s Coefficient (JC) [30]: the similarity is computed as the Jaccard similarity of the set

of common neighbors of users 𝑖 and 𝑗 in G𝜔 :

𝑠𝑖𝑚𝜔 (𝑖, 𝑗) =
|Γ𝜔 (𝑖) ∩ Γ𝜔 ( 𝑗) |
|Γ𝜔 (𝑖) ∪ Γ𝜔 ( 𝑗) |

. (3)
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• Adamic-Adar (AA) [1]: the Adamic-Adar similarity reduces the importance of common

neighbours having high degree:

𝑠𝑖𝑚𝜔 (𝑖, 𝑗) =
∑

𝑧∈Γ𝜔 (𝑖)∩Γ𝜔 ( 𝑗)

1

log( |Γ(𝑧) |) . (4)

• Resource Allocation (RA) [53]: the RA score is similar to the Adamic-Adar one, but it penalises

even more the common neighbors with high degree:

𝑠𝑖𝑚𝜔 (𝑖, 𝑗) =
∑

𝑧∈Γ𝜔 (𝑖)∩Γ𝜔 ( 𝑗)

1

|Γ(𝑧) | . (5)

Among these four link prediction algorithms, RA is the one that consistently performs better in the

related literature [34, 52, 55]. In Sections 5.4 and 5.5 we will investigate if this is still the case when

the policies can leverage the knowledge of the social circles.

4.2 Supervised learning with social-circle awareness
Each topological metric discussed in the previous section captures a single possible mechanism

yielding to the formation of new links in the network. [31] discuss how this unsupervised approach

can take advantage of adding supervised learning on top of it. They show that simple ranking

of heuristics is outperformed by supervised classifiers, because the latter have the capability of

identifying multiple differentiating boundaries in the similarity score domain, even when just a

single heuristic is used as feature.

Thus, in this section, we cast our social-aware link prediction problem into a supervised learning

problem. This entails computing a vector of features for each user pair 𝑖, 𝑗 . Each of the metrics in

Section 4.1 becomes a feature that describes the user pair. Each pair is also labelled to mark whether

the link exists or not. In order to test the different performance of different supervised approaches,

in this work we consider the following learning algorithms (in parentheses we report the link

prediction papers in which they have been previously used): logistic regression [42], Random

Forest [31], decision trees, naïve Bayes, and SVM [25], the latter with both linear and polynomial

kernels. We use their R implementations (glm, randomForest, rpart, klaR, kernlab, respectively)
together with the caret package for training and test. Parameter optimization is applied on the

training set with 10-fold cross validation.

5 EVALUATION
In this section we carry out the performance evaluation of the link prediction approach proposed

in Section 4 using the dataset described in Section 3.

5.1 Training and test data
There are two main approaches in the literature to obtaining a test dataset for the evaluation. The

first one is based on randomly removing some existing links from the graph (then the capabilities

of the proposed algorithms to predict these removed links are measured). This approach has been

often used in the related literature [34, 50, 51, 53, 55]. The second approach is based on obtaining

two temporal snapshots of a graph (longitudinal dataset). In this case, the performance analysis

of the proposed link prediction algorithms measures how good each algorithm is in predicting

the links that were not present in the first temporal snapshot but appeared in the second one.

This approach is used in [25, 30, 46] and it is recommended as a general best practice in [49]. In

this work, we will rely on the second approach, as it able to capture the real process behind link

formation.
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For obtaining longitudinal data, we downloaded (December 2019) the Twitter timeline of the

gamers in 𝐸𝑒 one year and a half after the initial download, and timeline of the generic users

in 𝐸𝑒 eight years after its initial download. We then extracted the links between gamers in the

gaming-related dataset and between generic users in the generic users dataset that have appeared

in the meanwhile. These new 843 links between gamers and new 1216 links between generic users

constitute the set 𝐸𝑛𝑒𝑤 of links to be predicted, while 𝐸𝑜𝑙𝑑 contains the links existing in the first

temporal snapshot.

While the above considerations are sufficient for unsupervised link prediction, with supervised

learning we also need to assign the negatives (i.e., missing links) to the train and test sets. To this

aim, we split them 90%-10% between train and test. Clearly, the set of edges selected for test set

may offer only a partial view of the performance (i.e, they may be easier or harder than average

to predict). For this reason, we perform a 𝑘-fold cross-validation [35], with 𝑘 = 10, each time

selecting a new 10% of the negative links for the test set. How to aggregate the performance metrics

obtained from the 𝑘 folds is a problem discussed in [17]. In general, it can be done in two ways.

With microaveraging, true positives, false positives, true negatives, and false negatives from the 𝑘

folds are pooled into one contingency table, then the metrics are computed. With macroaveraging,

metrics are computed per fold, then averaged. Important performance metrics (such as the F1 score)

are unbiased under microaveraging [17], hence we opted for this approach.

Using the 90% of negatives for training entails training supervised schemes on millions of

negatives and only thousands of positives (Table 1, Table 2). While the impact of class imbalance is

typically limited for similarity-based unsupervised approaches like the ones discussed in Section 4.1,

it can create serious problems for the scalability and reliability of supervised learning. In order to

mitigate the problem, the common approach in the related literature [25, 46, 51] is to undersample

the negative class. Despite its widespread use, this technique is not without drawbacks [49], and

it can lead to overly optimistic results. In order to provide reliable measurements, we will show

both the results obtained with undersampling and the results obtained with the complete negative

class. In the latter case, some learning strategies may not converge in a reasonable time (due to the

scalability problems mentioned above), and we will exclude them from the evaluation.

5.2 Evaluation metrics
Similarly to the related literature [30, 35, 55], unsupervised link prediction algorithms are evaluated

using a top-K analysis, i.e., we compare their performance in predicting 𝐾 new links. This allows

for a fair comparison among the different approaches, as it avoids fixing a similarity threshold for

approaches in which the same threshold may have a different meaning. In order to span a reasonable

𝐾 range around the number of positives in the test set (which, as we discussed in Section 5.1, are 843

and 1216, for the gaming and generic users datasets respectively), we consider 𝐾 ∈ {100, 843, 1000}
for the gaming-related dataset and 𝐾 ∈ {100, 1216, 1500} for the generic users dataset. For a given
slice 𝜔 and for a fixed 𝐾 , each unsupervised link predictor described in Section 4.1 outputs a ranked

list 𝐿𝐾𝜔 ⊂ 𝐿𝜔 of 𝐾 pairs in𝑉𝑒 ×𝑉𝑒 − 𝐸𝑜𝑙𝑑 , which are the newly predicted links, ranked by confidence

in prediction (in our case, the similarity value). Then we can compute classic metrics such as:

• 𝑇𝑃 = |𝐿𝐾𝜔 ∩ 𝐸𝑛𝑒𝑤 |
• 𝐹𝑃 = |𝐿𝐾𝜔 − 𝐸𝑛𝑒𝑤 |
• 𝐹𝑁 = |𝐸𝑛𝑒𝑤 − 𝐿𝐾𝜔 |
• 𝑇𝑁 = |𝑉𝑒 ×𝑉𝑒 − 𝐸𝑜𝑙𝑑 | − |𝐿𝐾𝜔 ∪ 𝐸𝑛𝑒𝑤 |.

Supervised approaches automatically label all the elements in the test set (without the need to

set the 𝐾 or a similarity threshold), hence the number of positives predicted is part of the workings

of the supervised approach. In this case, thus, we do not pick the top 𝐾 potential edges, but we
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directly rely on the labelling of the trained predictor for the test edges. It is then straightforward to

compute the above metrics (for example, 𝑇𝑃s are those edges in 𝐸𝑛𝑒𝑤 that are marked as new by

the supervised prediction algorithm).

Traditionally, binary classifiers are evaluated using the ROC curve, which plots the True Positive

Rate (
𝑇𝑃

𝑇𝑃+𝐹𝑁 ) against the False Positive Rate (
𝐹𝑃

𝐹𝑃+𝑇𝑁 ). However, the scenario we are considering

clearly suffers from the class imbalance problem, since the actual edges between nodes are sig-

nificantly fewer than all the possible edges that there could exist between them. In this situation,

the ROC curve, while being insensitive to the class imbalance
3
, tends to provide overoptimistic

results [18]. The related literature on evaluating systems with class imbalance suggests using

metrics like precision (= 𝑇𝑃
𝑇𝑃+𝐹𝑃 ), recall (aka TPR) and 𝐹1 score. As already argued by [46], in the

context of link prediction, precision is more important than the other metrics (such as recall),

because if the precision is high, one can live with some false negatives. Therefore, the focus of

this evaluation will be mostly on precision. For the completeness of results, we also provide, when

relevant, the F1 score and the AUC of the precision-recall curve. Note also that we are interested in

comparing the performance obtained using the baseline approach (no social circles information, all

edges are considered) and the other strategies in which only edges belonging to the ego network

circles are considered.

Precision and recall are evaluated based on metrics (TP, FP, TN, FN) which corresponds to

specific realizations of a target phenomenon. Thus, the question arises of how confident we can be

about the results obtained on a particular collection that is the result of random sampling (as in

the case of cross-validation or subsampling of negatives for supervised prediction). [22] proposes

a Bayesian approach to the problem. The basic idea is to model TP, FP, FN, TN as if they were

sampled from a multinomial distribution, with unknown success probability per category 𝜋𝑖 . Based

on the properties of the multinomial distribution, we know that individual counts are binomial

(i.e., equivalent to the number of successes in a sequence of 𝑛 independent experiments, each with

success probability 𝑝). Specifically, it can be proved that TP are binomial with parameters TP+FP

(corresponding to the number of trials) and success probability 𝑝 (corresponding to the precision).

Using Bayes’ theorem and well-known priors associated with binomials, it can be derived that the

posterior of the precision 𝑝 is Beta distributed:

𝑝 |D (aka the posterior distr.) ∼ 𝐵𝑒𝑡𝑎(𝑇𝑃 + 𝜆, 𝐹𝑃 + 𝜆). (6)

A similar formula is obtained for the recall 𝑟 . In these formulas, 𝜆 is a parameter whose value

depends on the prior considered: 𝜆 = 1

2
corresponds to Jeffrey’s non-informative prior (the one

we use here), 𝜆 = 1 to the uniform prior. Credible intervals
4
for 𝑝 and 𝑟 can then be obtained as

the intervals containing 95% of the Beta distribution. The formula for the credible interval of the

F1 score is slightly more complicated, so we do not report it here. Microaveraging and credible

intervals are also used in [47].

5.3 Ego network analysis
As anticipated in Section 3, we extract the ego network structure of the gamers and generic users in

𝑉𝑒 using the methodology described in [8]. The resulting distribution of the optimal circle number

of gamer egos and generic user egos can be seen in Figure 2. The mean value is 4.94 for gamers and

4.73 for generic users, and the median and mode values are equal to 5 for both datasets. The plot

3
Differently from the accuracy, which should not be used when imbalance is an issue. In fact, given the accuracy formula

𝑇𝑃+𝑇𝑁
𝑃+𝑁 , it is easy to see that correct classification in the most numerous class will hide anything about the sparse class.

4
Using confidence intervals instead of credible intervals would not be the best choice in this case, because precision, recall,

and F1 score belong to [0, 1], hence, especially for values close to either 0 or 1, they depart significantly from the normality

assumption behind confidence intervals.
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(a) Gaming-related dataset (𝑉𝑒 ) (b) Generic users dataset (𝑉𝑒 )

Fig. 2. Distribution of the optimal number of social circles for the gamer egos and generic user egos. Red and

blue lines represent the mean and median values, respectively.

(a) Gaming-related dataset (𝑉𝑒 ) (b) Generic users dataset (𝑉𝑒 )

Fig. 3. Average alter distribution per each circle of gamer egos and generic user egos. For the sake of clarify,

egos that have optimal circle number equal to five have been used. Red and blue lines represent the mean

and median values, respectively, of the distribution.

shows that the number of social circles of both types of egos is compatible with the findings of

previous studies which establish that human ego network can be layered into 5 layers/circles. For

further understanding of the ego network structures, we examine the alter distribution through

the layers. In previous studies [15], it has been shown that in OSN the external layers are slightly

smaller than the reference model discussed in Section 2.1. In Figure 3, we show the distribution of

the alter number for the egos with optimal circle number equal to 5 (the case generally studied in

the related literature). These results, both for gamers and generic users, are compatible with the

typical findings from OSNs analysis in the related literature.

5.4 Evaluation of unsupervised link prediction
As shown in Figure 2, different nodes can have a different number of social circles, but typically the

majority has approximately five circles. For this reason, in our circle-based slicing we will consider

circles from C1 to C5, then we group together into the Active circle all the circles beyond C5 (for

those nodes that have more than five circles). Note that, since social layers are concentric and the
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(a) Gaming-related dataset (b) Generic users dataset.

Fig. 4. Precision in unsupervised settings - AllEdges.

𝑖-th also include the (𝑖 − 1)-th up to the first one, for egos with less than five circles the predictions

in, e.g. C5, are simply based on the last non-empty social layer (which includes all the innnermost

ones). Recall that the alters in the Active circle are all those with a significant relationship with the

ego, i.e, they interact with the ego at a frequency of at least one contact per year [54]. We denote

with All the situation in which all relationships are considered, which implies considering both the

nodes in the Active circle (significant bonds) and those outside (acquaintances). This corresponds

to the baseline from the related literature: all relationships are treated as equal, without factoring

in the role of social circles. As anticipated in Section 4, we will consider two scenarios. In the first

one, denoted as AllEdges, we consider the full graph G, slicing it based on the social circles both

in the gaming-related dataset and the generic dataset. In the second one (DomainSpecificEdges),

we perform both social-based and category-based slicing, by only retaining edges between nodes

that are domain-specific (i.e., gamers and games, in our case) with the gaming-related dataset. Note

that credible intervals are not provided here, because in the unsupervised case there is no sampling

of negatives and the links to be predicted are, deterministically, those that have actually appeared

between the first and second download.

We start our discussion from the AllEdges setting within the gaming-related dataset. The

precision
5
for varying 𝐾 (number of new links recommended) is shown in Figure 4a. The maximum

precision across all policies decreases when we increase 𝐾 : the more the links recommended, the

more the mistakes (as it is generally the case in the related literature). RA clearly outperforms the

others in the gaming-related dataset, and this is consistent with previous findings in the related

literature [34]. RA seems to benefit significantly from circle-awareness. Specifically, ignoring the

outer circle gives a clear advantage to RA, which at least doubles its precision for all 𝐾 values. Thus,

the mechanism whereby high-degree penalization and social-awareness work hand in hand is very

effective from a link prediction standpoint. It is also interesting to note that this advantage seems

5
Note that the generally low precision values are due to the high class imbalance in the dataset. The benchmark random

predictor (the always positive one), in the same settings, would achieve an even worse performance, approximately equal to

2 ∗ 10−4.
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Table 3. AllEdges scenario with gaming-related dataset: AUC (×10) for the precision-recall curve of unsu-
pervised link prediction. We highlight in bold the social layer in which each policy performs at its best. We

underline the best two AUC overall.

AUC (×10)

C1 C2 C3 C4 C5 active all

RA 0.01179 0.03162 0.04699 0.05364 0.05162 0.03641 0.01916

AA 0.02148 0.00749 0.01023 0.01169 0.01270 0.01372 0.01122

CN 0.01914 0.00540 0.00764 0.00902 0.01000 0.01144 0.00924

JC 0.00332 0.00448 0.00648 0.00813 0.00927 0.01007 0.00969

lost when only the innermost circle is considered. However, leveraging only the innermost circle C1

means using very little information (only a few links per ego, as can be seen in Figure 3). This can

be a crucial advantage in case of resource limitations (either in terms of storage space, or in terms of

computational time, since computing the similarity is faster on smaller neighborhoods, as we discuss

in Section 6). In such cases, we can have a good prediction (still better than that at All) by using

only C1. Thus, the predictive power of using only the most intimate relationships unexpectedly

outperforms baselines relying on all relationships. The drastically different performance of AA

with respect to RA in Figure 4a tells us that the way we penalise high-degree nodes impacts on the

effect that social circle information has on link prediction effectiveness. However, it is interesting

to note that while in general RA is better than AA, this is not the case when resource constraints

are considered. When only the most intimate links are kept in the ego networks, AA performs at its

best and its precision is not only equivalent to that of RA, but also comparable to the precision of

RA in the baseline (All). In this case, then, strong degree penalization seems to be less important

than strong intimacy. The Common Neighbors policy performs quite similarly to AA, even if,

in CN, all neighbors contribute the same to the similarity score, regardless of their degree. This

is evidence that here AA is working in a regime in which all nodes weight approximately the

same (i.e., its logarithmic degree penalization is not enough). Given the similarity with AA, the

same considerations we made for AA hold for CN. Finally, we highlight the poor precision of the

Jaccard-based strategy, for all 𝐾s and for all circles in the gaming-related dataset. Jaccard similarity

gives more weight to neighborhoods that are very similar to each other. This means that not only

the overlapping part is considered, but also the number of nodes that are not in common (union of

neighbors). As testified by the plots, this restriction does not give an advantage for link prediction

in the gaming-related dataset. With respect to social-circles awareness, Jaccard seems to suffer

from using only the intimate relationships, while using the Active layer yields the same precision

as the the baseline All while saving computational resources.

We report in Table 3 the Area Under the prediction-recall Curve. Recall that the AUC is not

dependent on 𝐾 , since it is obtained by exploring the whole range of similarities for making

recommendations. When considering the relation between precision and recall through the AUC,

we observe that the best overall results (values underlined in the table) are achieved by RA that

leverages C4 and C5. Looking at the layers that, for each policy, provide the best AUC, we note

that the All case (which is the baseline for similarity-based policies from the related literature) is

never the best performing. From the circle-awareness standpoint, there seem to exist two classes of

policies, those that benefit most from using the outermost circles and those that benefit from the

innermost ones.

We now focus on the AllEdges setting within the generic users dataset (Figure 4b). Again we

observe that the maximum precision across all policies decreases when we increase 𝐾 . In this
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case, though, the baseline results (i.e., those without social-awareness) are different: while, for the

gamers network, RA was already the best predictor in the All case, here we observe a generalised

advantage of the JC approach for all 𝐾 values. Given this different starting point, let us study how

the prediction policies react to circle-awareness. RA preserves the characteristics we observed for

the gamers, and still very much benefits from social-awareness: all the circle-based scenarios have

better or comparable precision than the baseline All. Note that, as mentioned in the gaming-related

dataset results, even if the prediction precision is similar – as it is the case in Figure 4b for C1 and

All with large 𝐾 – using the most intimate links in C1 gives us the advantage of less computation

time and memory usage against traditional methods (see Section 6 for a thorough discussion).

Turning our attention from RA to AA, Figure 4b shows that AA performs significantly better

compared to what we observed for the gaming-related dataset: here, AA substantially mimics the

performance of RA, both in terms of achieved precision and in terms of social circles in which it

performs best (specifically, around C4). Interestingly, AA was mimicking instead the performance

of CN in the gaming-related dataset, with peak performance in C1 and a generally poor precision

both in the other social circles and in the baseline All. The fact that this difference is due to the

different structural properties of the generic users graph with respect to the gamers one follows

directly from the definitions of RA, AA, and CN in Section 4.1. Indeed, all the three policies are

based on the principle that the more the common neighbors, the better for link prediction. Then, in

CN all common neighbors weight the same, while in AA and RA the common neighbors with high

degree weight less (much less in RA than in AA, since in RA the penalization is linear while in AA

it is logarithmic) than those with small degree. The fact that the performance of AA is approaching

that of RA implies that the degree of the common neighbors is not very high (hence the logarithmic

penalization of AA and the linear one of RA are in a regime in which they yield similar scores).

Taking into account the degree of the common neighbors still provides an advantage, though,

as highlighted by the worse performance of CN with respect to AA and RA. As a final remark,

note that while JC is performing extremely well with the generic users dataset in the baseline

All, its performance rapidly deteriorates as we incorporate circle information. This tendency was

already present in the gamers datasets (Figure 4a) but was somewhat masked by the generally poor

precision achieved by JC regardless of the circle/baseline considered. It is interesting to speculate

on why circle-awareness does not help JC in general. To this aim, let us consider the definition

of the Jaccard similarity in Section 4.1. JC captures the fraction of common neighbors out of all

neighbors for a pair of users 𝑖, 𝑗 . Thus, its very nature requires “useless” neighbors (i.e. those that

are not in common) to be present, in order to differentiate between high and low neighborhood

overlap. However, the slicing based on social-circles effectively remove “useless” nodes, hence

impairing the discriminating capabilities of the JC score.

We report the Area Under the prediction-recall Curve for the generic uses dataset in Table 4.

Again, recall that the AUC captures the trade-off between precision and recall and that it is not

dependent on the specific 𝐾 value considered, as it spans the whole 𝐾 range. The best overall

precision-recall performance is achieve by RA when it leverages social information in C5. The

second best AUC is provided by JC in the baseline case (no circle-awareness). AA and CN provides

the highest AUC when leveraging C5 information. Overall, from the results in Table 4, we can thus

conclude that, even though the advantage of circle awareness is less evident in the generic users

dataset, it still outperforms non-circle-related approaches.

We now consider the DomainSpecificEdges scenario, which is only relevant to the gaming-

related dataset. Recall that, in this case, for any social-based slicing, we also remove all nodes (and

associated edges) that are not domain-specific. All the nodes left after this additional, category-based

slicing are either gamers or games, i.e., they belong to the specific community for which we are

making link recommendations. Making a link prediction is now much easier, because the network
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Table 4. AllEdges scenariowith generic users dataset: AUC (×10) for the precision-recall curve of unsupervised
link prediction. We highlight in bold the social layer in which each policy performs at its best. We underline

the best two AUC overall.

AUC (×10)

C1 C2 C3 C4 C5 active all

RA 0.03028 0.05755 0.10289 0.14233 0.15142 0.13941 0.09313

AA 0.02730 0.04987 0.07930 0.11554 0.12075 0.10057 0.06273

CN 0.01106 0.01914 0.03093 0.04678 0.04714 0.04171 0.03088

JC 0.00927 0.01737 0.03573 0.07824 0.10735 0.12498 0.14390

Fig. 5. Precision in unsupervised settings - DomainEdges (only relevant to the gaming-related dataset) .

has been pruned by nodes potentially irrelevant or misleading. Indeed, as shown in Figure 5, the

precision of AA and CN significantly improves with respect to the AllEdges scenario in Figure 4a.

This improvement is also present when no social-circle information is used (All circle in Figure 4a).

This implies that when social-circle awareness is not used for prediction, leveraging the category

information provides a significant advantage. Vice versa, social-circles awareness seem to make

information on the category unnecessary. Since the extraction of user categories typically requires

a domain-specific classifier or manual labelling, being able to skip this phase without affecting

the link prediction quality would be very important. The precision of the Jaccard-based approach

remains very low also when considering domain-specific edges only. We conclude this part on

the DomainSpecificEdges scenario by analysing the AUC of the precision-recall curve, reported

in Table 5. Table 5 shows that, also in this case, the best performance is achieved by RA in the

outermost circles (specifically, Active and C5). We observe again the duality of behaviours with

respect to the gain from social-circles awareness: RA and AA achieve their best AUC in Active,

CN and JC in C1. The baseline All is never optimal (neither from an absolute standpoint nor for

specific policies). This further confirms the advantage of using social circle awareness in general.
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Table 5. DomainEdges scenario with gaming-related dataset: AUC (×10) for the precision-recall curve of
unsupervised link prediction. We highlight in bold the social layer in which each policy performs at its best.

We underline the best two AUC overall.

AUC (×10)

C1 C2 C3 C4 C5 active all

RA 0.3331 0.5457 0.7275 0.7361 0.8175 0.8807 0.6605

AA 0.6564 0.5754 0.7638 0.6762 0.6834 0.7870 0.5745

CN 0.6523 0.5643 0.5381 0.4289 0.4131 0.5562 0.4028

JC 0.1296 0.1270 0.1353 0.1205 0.1117 0.1053 0.0950

(a) Gaming-related dataset (b) Generic users dataset.

Fig. 6. Precision (with credible intervals) - Supervised AllEdges on the undersampled datasets.

Fig. 7. (Gaming-related dataset) Precision (with credible intervals) - Supervised DomainEdges on the under-

sampled dataset.

5.5 Evaluation of supervised link prediction
In this section we assess the advantages brought about by including a supervised classifier in the link

prediction approach. As discussed in Section 4.2, our classifier uses as features the similarity-based

metrics introduced in Section 4.1. The supervised approaches that we test are logistic regression,

decision trees, naïve Bayes, Random Forest, SVM. Recall (from Section 5.1) that with supervised

learning we investigate the performance both on the original dataset and on the undersampled one.

Also, with supervised learning we do not carry out a top-K analysis but we allow the algorithms to

freely classify all the edges in the test set.
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Figures 6a, 6b, and 7 show the results, for the AllEdges and the DomainEdges case respectively,

when the negatives are undersampled to make the positive and negative classes balanced (the

negatives are then split 90%-10% between train and test). Undersampling, as discussed in Section 5.1,

is a common approach to deal with class imbalance in supervised settings, though not without

drawbacks. For this reason, later in the section we also investigate the link prediction performance

when no undersampling is carried out. Figure 6a shows the precision of the supervised link

prediction approaches in the AllEdges scenario of gaming-related dataset. We can identify two

important results. First, all approaches that rely on C1 information provide better precision than

with any other layer. In particular, using all edges (case All) is never better than using C1 alone.

Second, all circle-based approaches that leverage information on the outermost social layers perform

at least as well as the baseline (All). When considering the generic users dataset (Figure 6b), we

observe that the peak performance in C1 is confirmed for Random Forest and naïve Bayes. However,

for the other learning strategies, the precision drastically drops in C1. For generic users, we can

conclude that all the social circles but the first one provide approximately the same precision as the

baseline All. Even with no performance improvement with respect to the All case, circle-awareness

allows us to save computational resources, and this is an important advantage. Finally, please note

that, for both datasets, the precision achieved with supervised strategies is much higher than that

obtained with unsupervised ones (consistently with the results in the related literature [46]).

In the DomainSpecificEdges scenario for the gaming-related dataset (Figure 7), again naïve

Bayes and Random Forest achieve the highest precision when leveraging only C1 relationships.

Differently from the previous case, the precision of decision trees in C1 is lower than with other

layers. The remaining learning strategies still gain from using C1 information, but the marging

is smaller in this case. Differently from the unsupervised case, supervised learning seems able

to overcome the difficulties of predicting new links in the AllEdges scenario, hence the relative

advantage of filtering out links not domain-specific is partially lost.

As already mentioned, the precision achieved with supervised learning is generally much higher

than that observed with unsupervised algorithms. In order to investigate whether this might be due

to an artificial bias introduced by the undersampling of negatives, we have also run the same link

prediction experiment using the complete set of negatives (again splitting 90%-10% between train

and test). Figures 8a, 8b, and 9 show the precision obtained in this case. Only logistic regression,

decision trees, and naïve Bayes are shown, since the others did not scale well to new size of the

problem. The precision values achieved in this case are significantly smaller than those obtained

with the undersampled dataset (thus confirming the limitations of this approach). Still, they improve

over the ones obtained with the standalone similarity measures. Again, it is confirmed that the C1

layer is the most useful for making precise predictions in the gaming-related dataset (Figures 8a).

This result is very encouraging, since C1 is the most lightweight in terms of resources consumed.

In the generic users dataset (Figures 8b), the role played by the social circles is reversed: using C5

or Active, we are able to perform predictions that are at least as good as the baseline, however the

precision drops as we move towards the innermost layers. Again, even though the precision scores

of the baseline and the social-aware method are similar, still the social-aware approach provides an

advantage in terms of computational resources, as explained in Section 6.

In summary, supervised learning consistently yields better predictions than their unsupervised

counterparts. This may be due to more flexible identification of boundaries between positives and

negatives (with respect to the simple threshold-based approach of similarity-based heuristics) or to

a smart combination of the similarity-based heuristics. Regardless, social circles again prove very

effective in boosting the precision of link prediction strategies, especially in the gaming-related

dataset. In particular, supervised strategies seem able to effectively exploit the innermost layer

C1 in the domain-dependent dataset and the active network layer in domain-independent dataset
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(a) Gaming-related dataset (b) Generic users dataset.

Fig. 8. Precision (with credible intervals) - Supervised AllEdges on the full datasets.

Fig. 9. Precision (with credible intervals) - Supervised DomainEdges on the full gaming-related dataset.

much better than the unsupervised cases. This is an important result, since leveraging C1, or any

layer of the ego network, minimises the resources needed to make predictions.

We conclude the section analysing the F1 score, which is the harmonic mean of precision and

recall. We only show the results obtained using the full negative set, as they provide a more reliable

evaluation. For both the AllEdges and the DomainEdges case (Figures 10a, 10b, and 11), we

observe a different ranking with respect to the corresponding precision results, with the highest F1

being achieved by the naïve Bayes approach. Still, since, as discussed in [47], precision is much

more important than recall in link prediction, we argue that decision trees should be preferred to

naïve Bayes. If we only look at the role played by the social circles, we observe that leveraging social

circles is always better or as good as the All baselines. However, when aiming at striking a balance

between precision and recall, C1 is not the best performing circle anymore in the gaming-related

dataset, probably due to its high selectivity for the most intimate relationships. In the generic users

dataset, instead, the Active layer is confirmed as the one providing the best prediction performance

while consuming less resources.
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(a) Gaming-related dataset (b) Generic users dataset.

Fig. 10. F1 score (with credible intervals) - Supervised AllEdges on the full datasets.

Fig. 11. F1 score (with credible intervals) - Supervised DomainEdges on the full gaming-related dataset.
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5.6 Evaluation of network embedding-based link prediction
Until now, we have studied the social-aware link prediction method by embedding the intimacy

levels of Dunbar’s ego network model into existing unsupervised and supervised approaches. The

ego network model is a way of capturing the local information of relationships of the individuals.

Since the aim of the study is to understand the contribution of the social circles to the performance

of the link prediction methods, we selected prediction methods where the feature calculation is

not a black-box, and the link prediction method is not an end-to-end method. All the methods

discussed so far were based on explicit graph features. In the literature, there are newly suggested

link prediction methods based on latent features of the graphs, where the feature vectors are

low-dimensional vector representations, produced by approaches such as graph representation

learning [9] and graph neural networks [48]. For a detailed description and classification of the

methods, the reader may refer to [9, 28, 41, 48]. In this section, our goal is to carry out a preliminary

analysis, where the results we obtained using explicit features are compared against link prediction

approaches based on self-learning of latent graph features. To this aim, we selected one of the most

popular graph embedding methods, node2vec [23].
node2vec is a framework that maps the nodes of a graph to low-dimensional feature vectors while

preserving nodes’ neighborhoods [23]. It proposes a biased random walk based on breadth-first

sampling (BFS) and depth-first sampling (DFS) with transition probabilities 𝑝 and 𝑞. BFS (𝑝) captures

the embeddings related to structural equivalence (e.g., being a hub node) while DFS (𝑞) captures

embeddings related to communities based on homophily. There exist other four parameters for

node2vec: 𝑑 the dimension/length of the feature vector, 𝑙 the length of random walk, 𝑘 the size of

the neighborhood, and 𝑟 the number of walks per node. A feature vector is produced per node in

the network by combining the Skip-gram architecture of word2vec with a flexible neighborhood

definition obtained with biased random walks. For the link prediction task, these node embeddings

are transformed into edge embeddings by applying binary operators like, e.g., Hadamard. Then,

logistic regression is applied on the edge embeddings to train a binary classification model on

positive and negative data (existing and missing links).

Given that node2vec is designed to capture latent features, in this study, we apply node2vec
method as is, without explicitly adding information on the social circles. Since the aim is to predict

the possible future links between the egos whose social circles can be computed, as described in

Section 4, we learn the node embeddings of the vertex set𝑉𝑒 by using all edges 𝐸𝑒 . For the extraction

of node embeddings, we try the different combinations of 𝑝 and 𝑞 values (𝑝, 𝑞 ∈ {0.25, 0.5, 1, 2, 4})
while keeping other parameters of random walk fixed (𝑑 = 128, 𝑙 = 80, 𝑘 = 10, 𝑟 = 10) as mentioned

in [23]. Then, we calculate the edge embeddings of all existing and missing links in 𝑉𝑒 ×𝑉𝑒 . Given
two feature vectors, 𝑓 (𝑖) and 𝑓 ( 𝑗), of egos 𝑖 and 𝑗 where 𝑖, 𝑗 ∈ 𝑉𝑒 , the edge embedding of the edge

𝑒𝑖 𝑗 is calculated as: 𝑓 (𝑖) ◦ 𝑓 ( 𝑗) where ◦ is a binary operator (average, Hadamard, weighted-L1,

weighted-L2). We are using Hadamard operator, which is shown to be the most effective one in

[23].

Figure 12 shows the precision results of the undersampled generic users dataset and Do-

mainEdges scenario of undersampled gaming-related dataset for different(𝑝, 𝑞) pairs. Recall that
we are using node2vec approach as a baseline method where all edges are included without any

slicing (this corresponds to the case All in the previous section). We are using microaveraging

of the precision scores of k-fold cross-validation as described in Section 5.1. In order to observe

the effects of 𝑝 and 𝑞 on the link prediction results, we we didn’t apply 𝑘-fold cross validation

within our training sets to optimize (𝑝, 𝑞) pairs. Therefore, the results we show here are actually

overestimated in favor of node2vec approach against the other methods we mentioned in Sections

5.4 and 5.5. As we can see from the figures, the precision values in the grid of parameters (𝑝, 𝑞)
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are quite close to each other in all cases. However, it seems that 𝑞 plays a more important role

than 𝑝 , as an high 𝑞 yields very good precision regardless of the 𝑝 value. Since a high 𝑞 biases the

random walk to stay closer to the current node (BFS), homophily seems to be more important than

structural equivalence in our datasets.

Let us now compare the results in Figure 12 against those obtained in Section 5.5
6
. The maximum

precision score achieved with node2vec for the generic users dataset is 0.955, as shown in Figure 12a,

that is approximately the same with other baseline methods visualized as All category in Figure 6b.

The only social circle playing a major role in Figure 6b is C1. In C1, Random Forest and naïve Bayes

perform better than other strategies (including node2vec) while the performance drops drastically

for logistic regression and decision tree. In C1, Random Forest 0.974 and naïve Bayes both yield a

precision of 0.974, hence they perform better than any other strategy, including node2vec. In the

DomainEdges scenario of the gaming-related dataset, the best precision score of node2vec is 0.894,
which is slightly smaller than other baseline methods shown in Figure 7, but the difference is not

significant. When leveraging social circles, Random Forest and naïve Bayes (in C1, they yield a

precision value of 0.985 and 0.981 respectively) performs better than any other strategies, including

baseline methods and node2vec, using the innermost circles (C1, C2, C3). Using C1, C2, C3, any

strategy but decision trees perform better than node2vec. To conclude this analysis, we also consider
the AllEdges scenario with the undersampled gaming-related dataset (not reported in Figure 12).

In this case, the best precision achieved by node2vec is 0.91. If we compare this result with the

ones obtained in Figure 6a for the supervised strategies, we see that node2vec outperforms all of

them when they leverage circle C3 or higher. In C1, naïve Bayes , Random Forest , and SVM (with

a precision value of 0.945, 0.927, and 0.931 respectively) perform better than node2vec, in C2 the

performance of naïve Bayes, Random Forest (with a precision value of 0.912 and 0.915, respectively),

and node2vec are comparable.

Overall, the latent features learnt by node2vec seem to be very effective for link prediction, as

we have shown that node2vec approach performs as well as other baseline methods that use all

edge information without any circle-based slicing. On the other hand, the circle-aware approaches

are able to perform as well as node2vec approach, in some cases even better. This is especially true

when the innermost circles are used, where social-aware supervised learning achieves maximum

precision while allowing to save computational resources, which is a plus considering the scale of

social network data.

6
Please note that this comparison is fair, since we are studying machine learning-based algorithms trained on explicit features

against a machine learning-based algorithm trained on latent features. Vice versa, we do not consider the unsupervised

approaches from Section 5.4 as they do not leverage machine learning techniques.
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(a) (Generic users dataset) - node2vec AllEdges on

the undersampled dataset.

(b) (Gaming-related dataset) node2vec DomainEdges

on the undersampled dataset.

Fig. 12. Precision scores for (𝑝, 𝑞) ∈ {0.25, 0.5, 1, 2, 4}

, Vol. 1, No. 1, Article . Publication date: March 2020.



24 Toprak et al.

Algorithm 1: Find the similarity between nodes

Data: G = (𝑉𝑒 , 𝐸); Γ(𝑖) = neighborhood of node 𝑖; 𝐶𝑥 = the social circle to be considered.

Result: Similarity 𝑠𝑖𝑚𝐶𝑥
(𝑖, 𝑗) for each node pair 𝑖, 𝑗 in 𝑉𝑒 .

1 begin
2 for 𝑖 ∈ 𝑉𝑒 do

// Compute the ego network and slice the graph according to 𝐶𝑥

3 𝐴𝑠𝑠𝑖𝑔𝑛𝑇𝑜𝐶𝑖𝑟𝑐𝑙𝑒𝑠 (Γ(𝑖))
4 Γ𝐶𝑥

(𝑖) = 𝑆𝑙𝑖𝑐𝑒 (Γ(𝑖),𝐶𝑥 )
5 for 𝑖 ∈ 𝑉𝑒 do
6 for 𝑗 ∈ 𝑉𝑒 do

// Compute the similarity

7 if CN then
8 𝑠𝑖𝑚𝐶𝑥

(𝑖, 𝑗) = |Γ𝐶𝑥
(𝑖) ∩ Γ𝐶𝑥

( 𝑗) |
9 if JC then
10 𝑠𝑖𝑚𝐶𝑥

(𝑖, 𝑗) = |Γ𝐶𝑥 (𝑖)∩Γ𝐶𝑥 ( 𝑗) |
|Γ𝐶𝑥 (𝑖)∪Γ𝐶𝑥 ( 𝑗) |

11 if AA or RA then
12 𝑠𝑖𝑚𝐶𝑥

(𝑖, 𝑗) = 0

13 for 𝑧 ∈ Γ𝐶𝑥
(𝑖) ∩ Γ𝐶𝑥

( 𝑗) do
14 𝑠𝑖𝑚𝐶𝑥

(𝑖, 𝑗) = 𝑠𝑖𝑚𝐶𝑥
(𝑖, 𝑗) + 𝑝𝑒𝑛𝑎𝑙𝑖𝑠𝑒𝑑 (Γ(𝑧))

6 COMPLEXITY ANALYSIS
In Section 5, we showed that ego-aware link prediction performs better than traditional methods in

the domain-specific dataset (gaming-related), and performs at least as well as traditional methods

in the domain-independent dataset of generic users. We repeatedly highlighted the fact that, even

when the performance is comparable, leveraging social circles information reduces the complexity

(both temporal and spatial), hence the computational resources needed to solve the link prediction

problem. In this section, we formally prove that this is the case.

First, we focus on the different time complexity of the baseline and ego-aware strategies. To

this aim, let us start from the unsupervised case (discussed in Section 4.1). Algorithm 1 illustrates

the steps towards computing the similarity between a pair of nodes depending on the specific

similarity considered. Please note that the weighted graph discussed in Section 3 is assumed as

input. With respect to the baselines (traditional methods which are represented as All in the results)

in which no circle information is used, our approach requires two additional steps: (i) computing

the ego networks of the nodes for which predictions should be made (line 3) and (ii) pruning the

ego networks based on the social circle we want to leverage (line 4). The code from line 5 on is

common to both the baselines and the circle-aware approaches, since the specific slicing considered

is controlled with𝐶𝑥 (and 𝑥 = All for the baseline). In order to estimate the time complexity in the

average case, we have to derive the time complexity of computing the ego network (O(ego)) and
that of computing the similarity (O(social similarity)), as illustrated in Equation 7. On the other

hand, only the similarity complexity is needed for the baseline case (Equation 8).

O(social) = O(𝑛)O(ego) + O(𝑛2) ∗ O(social similarity) (7)

O(baseline) = O(𝑛2) ∗ O(baseline similarity) (8)
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Clearly, the complexity of the social and baseline similarities depends on the specific approach (CN,

JC, AA, RA) considered. We focus first on CN. The complexity O(similarity CN) simply corresponds

to an intersection between sets (see line 7 of Algorithm 1), hence it is given by Equation 9 for the

social-aware case, and by Equation 10 for the baseline. The complexity of a set intersection by

using hashing-based dictionaries is O(min( |𝑆𝑒𝑡1 |, |𝑆𝑒𝑡2 |)) [6].
O(social similarity) = O(min( |Γ𝐶𝑥

(𝑖) |, |Γ𝐶𝑥
( 𝑗) |)) ∼ O(|Γ𝐶𝑥

(𝑖) |)) (9)

O(baseline similarity) = O(min( |Γ(𝑖) |, |Γ( 𝑗) |)) ∼ O(|Γ(𝑖) |)) (10)

While the above formulas have been derived for CN, it is easy to see that also JC, AA, and RA

share the same complexity. Indeed, JC leverages the set union in addition to the set intersection,

operation that is still linear in the size of the smaller set. AA and RA are the analogous of CN but

with different weights, hence, again, they are linear in the size of the smaller set.

Let us now estimate the complexity O(ego) of computing ego networks. Line 3 in Algorithm 1

entails a) sorting the neighbors of node 𝑖 (Γ(𝑖)) based on contact frequencies, b) extracting the active

part (corresponding to relationship with contact frequency larger than once per year, as discussed

in Section 2.1), and c) running a unidimensional clustering algorithm on the remaining contact

frequencies. The complexity of step (a) is O(|Γ(𝑖) | ∗ log( |Γ(𝑖) |)) (e.g., assuming standard merge sort

is used [11]), the complexity of step (ii) is O(log( |Γ(𝑖) |)) which is equivalent to the complexity of a

search algorithm on a sorted input (e.g., assuming binary search is used [11]). After step (b), for each

ego 𝑖 , we are not working anymore on its full neighborhood but only on the active part Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖),
which is smaller than Γ(𝑖) since it only includes strong relationships. The complexity of step (c) is

mainly dependent on the chosen clustering algorithm (note that the classification of alters in circles

is robust against the different clustering methods [15]). For example, DBSCAN is quite efficient

and it runs in O (|Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) | log( |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |)) [45]. The time complexity of k-means is linear [45]

in the number of points to cluster (i.e., O (|Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |)) but it needs additional computations for

the selection of the best 𝑘 (e.g., O(𝑘 |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |) for the partition coefficient method, O(|Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |2)
for the Silhouette method). Mean Shift runs in O(|Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) | log( |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |), like DBSCAN. The
last step to carry out is the slicing in line 4, whose complexity is equivalent to that of a search

in Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖), hence it is logarithmic in its size. In summary, the complexity of computing an ego

network is given by the following (assuming DBSCAN or Mean Shift are used for clustering):

O(ego) = O(|Γ(𝑖) | ∗ log( |Γ(𝑖) |))+
+ O(log( |Γ(𝑖) |) + |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) | log( |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) | + log( |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |))

= O(|Γ(𝑖) | ∗ log( |Γ(𝑖) |), (11)

where we have leveraged |Γ(𝑖) | ≫ |Γ𝑎𝑐𝑡𝑖𝑣𝑒 (𝑖) |. We can now substitute Equations 9, 10, and 11 into

Equations 7 and 8 above, thus obtaining:

O(social CN) = O(𝑛 ∗ |Γ(𝑖) | ∗ log( |Γ(𝑖) |) + O(𝑛2) ∗ |Γ𝐶𝑥
(𝑖) |

= O(𝑛2) ∗ |Γ𝐶𝑥
(𝑖) | (12)

O(baseline CN) = O(𝑛2) ∗ |Γ(𝑖) |. (13)

The right-hand side of Equation 12 stems from the fact that social networks are sparse, hence

|Γ(𝑖) | ≪ 𝑛. Since the number of neighbors in any circle of the ego network is (significantly) smaller

than all neighbors in the baseline (because, by definition, social circles only retain the strongest

relationships), we have that the time complexity of the ego-aware system is always (significantly)

smaller than the baseline.

In order to complete the analysis of the time complexity for the link prediction algorithms

considered in this work, we now turn our attention to the supervised case (discussed in Section 4.2).
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The complexity of supervised learning can be decomposed into the complexity for extracting the

relevant features and the complexity of solving the learning problem on this features. It is easy

to see that the latter component is the same regardless of the social circle considered, since the

features described in Section 4.2, once computed, are simply four numbers associated with each

user 𝑖 . Hence, the different complexity between baseline and ego-aware approaches only lies in the

computation of the features. Since, as we have discussed in the previous paragraph, computing the

ego-aware similarity has smaller time complexity than computing the baseline one, we have again

that the ego-aware approach is computationally more convenient also in the supervised case.

The derivation of the space complexity is more straightforward. We will discuss it briefly for the

unsupervised case, as for the supervised one it suffices to multiply by 4 (i.e., the number of features

considered) the complexity obtained for the unsupervised scenario. For both the baseline and the

ego-aware case, we start with an occupancy of O(|𝑉𝑒 | + |𝐸 |). However, in the social-aware case,

after the slicing we move to O(|𝑉𝑒 | + |𝐸𝐶𝑥
|), where |𝐸𝐶𝑥

| denotes the set of edges belonging to the

circle 𝐶𝑥 (of any node) based on which the slicing is performed. The size of 𝐸𝐶𝑥
is much smaller

than |𝐸 |, because it only contains meaningful social relationships. As discussed earlier, the circle

size per ego can be as small as 1-2 people (in the case of C1), hence it is clear that circle-based

slicing allows us to work with smaller graphs and lower space complexities.

7 CONCLUSION
In this paper, we have studied the performance of popular link prediction algorithms enriched

with the knowledge on the social structures in the network. Specifically, relying on very well-

established models from anthropology, we have considered the social circles in individual ego

networks, using the circle as a proxy of intimacy. We have selected four benchmark heuristics

(Common Neighbors, Jaccard’s Coefficient, Adamic-Adar, and Resource Allocation) and we have

modified them to include awareness of the social circles. We have tested them in an unsupervised

setting, in which only the potential links with the highest scores are recommended, and in a

supervised setting, in which the above heuristics are fed to standard machine learning algorithms

(we tested logistic regression, decision trees, naïve Bayes, Random Forest, SVM) that take care

of the labelling. In order to evaluate the predictive performance of these solutions, we have used

two longitudinal Twitter datasets, one comprising a community of gamers and one containing

generic users. Our results show that social-circles-based link prediction is generally very effective.

Specifically, in the vast majority of cases, regardless of the prediction approach (unsupervised

or supervised), the specific heuristic or learning algorithm, and the metric (precision, AUC, F1

score) considered, leveraging social circles information outperforms the corresponding baseline

in which circles are ignored. In case of resource (storage, CPU, time, etc.) limitations, using only

information about the innermost social circles guarantees the same performance achieved when

using the whole network. In addition, using social circles information seems to provide the same

performance as using additional classifiers on nodes, which might be impractical or costly to set up.

Finally, we have carried out a preliminary comparison of social-aware supervised link prediction

against graph-embedding-based link prediction. When used for link prediction, explicit features that

leverage social circle information are able to beat latent features extracted using graph embedding

methods. This generally happens when the innermost circles are used, thus combining resource

savings with top prediction performance.
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