
1

Automatic Depression Detection via Learning and
Fusing Features from Visual Cues

Yanrong Guo, Chenyang Zhu, Shijie Hao, and Richang Hong

Abstract—Depression is one of the most prevalent mental dis-
orders, which seriously affects one’s life. Traditional depression
diagnostics commonly depends on rating with scales, which can
be labor-intensive and subjective. In this context, Automatic
Depression Detection (ADD) has been attracting more attention
for its low cost and objectivity. ADD systems are able to detect
depression automatically from some medical records, like video
sequences. However, it remains challenging to effectively extract
depression-specific information from long sequences, thereby
hindering a satisfying accuracy. In this paper, we propose a novel
ADD method via learning and fusing features from visual cues.
Specifically, we firstly construct Temporal Dilated Convolutional
Network (TDCN), in which multiple Dilated Convolution Blocks
(DCB) are designed and stacked, to learn the long-range temporal
information from sequences. Then, the Feature-Wise Attention
(FWA) module is adopted to fuse different features extracted
from TDCNs. The module learns to assign weights for the feature
channels, aiming to better incorporate different kinds of visual
features and further enhance the detection accuracy. Our method
achieves the state-of-the-art performance on the DAIC WOZ
dataset compared to other visual-feature-based methods, showing
its effectiveness.

Index Terms—Depression detection, visual cue, dilated convo-
lution, fusion.

I. INTRODUCTION

DEPRESSION is a major mental disorder in nowadays
society. It has a negative impact on one’s life, even

leading to suicide in extreme conditions [11]. What’s more
urgent, despite that depression has become one of the most
prevalent psychiatric disorders, the number of people suffering
from this disease is still on the rise. Luckily, the symp-
toms of depression can be be alleviated on the premise of
in-time diagnosis. Therefore, accurate depression diagnosis
has become the key factor. Traditional depression diagnos-
tics mostly rely on subjective rating with scales, such as
the Eight-item Patient Health Questionnaire depression scale
(PHQ-8) [19], where patients with scores no smaller than
10 are considered as depressed. It needs the participation
of experienced psychologists, which can be labor-intensive.
However, subjective bias may still exist, therefore leading
to misdiagnosis. Besides, different from common physical
illness, the severity of mental disorders may vary at different
time [18, 23], which brings extra challenges to the diagnostics.

Y. Guo, C. Zhu, S. Hao, and R. Hong are all with Key Laboratory of
Knowledge Engineering with Big Data (Hefei University of technology),
Ministry of Education and School of Computer Science and Information
Engineering, Hefei University of Technology (HFUT), 230009 China e-mail:
yrguo@hfut.edu.cn.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Consequently, automatic depression detection (ADD) has been
drawing increasing attention. It is typically realized through a
pattern classification paradigm based on one’s verbal or facial
behavior data. Obviously, this process is more objective, while
requiring much fewer human interventions.

Images or videos provide rich visual cues of mental con-
ditions. Compared to common people, patients suffering from
depression usually have different facial actions, such as glazed
expressions, abnormal head movements [3, 28]. Due to the
importance of these facial emotions or dynamic changes,
visual data become a main information source for detecting
depression. However, depression does not appear as instant
behaviors. Instead, it is not distinguishable until a relatively
long observation time is given. Thus, the detection model usu-
ally requires a large perceptive field to explore the depression-
specific information. Therefore, as for depression detection
based on visual cues, it is necessary to take care of the
dynamic characteristics of data, which can be called temporal
information. Some works try to solve this issue with LSTM
[37] or TCN [12] and achieve promising results. Nevertheless,
limitations still exist in two aspects. On the one hand, they
are less suitable for processing the overlong sequences. On
the other hand, they prefer to using a single visual cue,
ignoring the complementarity between different kinds of visual
information.

To tackle these limitations, we propose a novel ADD
method based on visual cues in this paper. The whole frame-
work of our method can be seen in Figure 1, which has
two main modules: Temporal Dilated Convolution Network
(TDCN) and Feature-Wise Attention (FWA). Specifically,
TDCN extracts depression-specific information by fulling uti-
lizing the dilated convolutions of various receptive fields. FWA
further enhances the feature representation ability by assigning
different weights to the feature channels. We achieve the state-
of-art performance compared to other visual-based works,
e.g. 0.800 F1-score, on the validation set of the DAIC WOZ
dataset. Generally, the contributions of our work are two-fold:

• We propose Temporal Dilated Convolutional Network
(TDCN) to effectively extract the temporal information
from long video sequences. Within TDCN, two parallel
dilated convolutional modules are applied to learn useful
temporal information for detecting depression, and the
max pooling layers are adopted to solve the problem of
overlength.

• We construct the Feature-Wise Attention (FWA) mod-
ule to fuse the learned features from different TDCN
branches. With the attention module, our method is able
to further highlight the important part of the learned
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Fig. 1. The framework of our model. The sequences of 2D facial landmarks and head-pose are taken as the inputs. We design Temporal Dilated Convolutional
Network (TDCN), which consists of Dilated Convolutional Blocks (DCB) and max pooling layers, to extract the depression-specific features. With the features
obtained from the two TDCN branches, Feature-Wise Attention (FWA) is then adopted, which assigns higher weights to more valuable parts of the concatenated
features. As last, the fused features are fed into a simple classifier, which is composed of three fully connected layers and a Softmax layer. The outputs are
the probabilities of being depressed and non-depressed.

features, thereby enhancing the ADD accuracy.

II. RELATED WORK

Many methods have been developed for the task of au-
tomatic depression detection. Some methods are based on a
single modality like audio [14, 24, 30], text [6, 40] or visual
cues [7, 37], while others combine at least two modalities that
tend to achieve a higher accuracy [26, 31].

Early ADD works typical follow the traditional roadmap of
a pattern recognition task, i.e., hand-crafted features are firstly
designed based on visual data, and then novel classifiers are
constructed to achieve the depression detection. Either of these
two steps can be the key factors in the ADD research. For
example, Wang et al. [35] design probabilistic classifiers for
the purpose of judging the mental state of candidates through
variations of their facial expressions. Yang et al. [41] propose
a gender-specific decision tree for depression classification.
As for the visual cues, geometric features from 2D facial
landmarks are extracted. Besides, gaze and pose features and
emotion evidence measures provided by AVEC2016 [34] are
also added. Despite the obtained promising results, they take
the average of each feature as input without considering the
long-term correlations, inevitably losing the temporal infor-
mation. Some other methods also have the similar issue.
Pampouchidou et al. [27] extract low-level features such as
Landmark Motion History Images (LMHI) and Landmark
Motion Magnitude (LMM) from 2D facial landmarks, both of
which encode the motion of features. However, the temporal
information of other visual cues are mostly neglected. In a
word, the works based on the traditional pattern recognition
paradigm have a common problem, that is, the features ex-
traction process are usually constructed based on some prior
knowledge or ad hoc rules, which can be less comprehensive
and robust for the ADD task.

Recently, more and more ADD methods based on the deep
learning models have been proposed, as they are advantageous
for solving the issue of hand-crafted features. To learn the cor-
relation and dynamic variation between time frames, the Long-
Short Term Memory (LSTM) neural networks [15] or other
Recurrent Neural Networks (RNN) for such temporal data can
be usually adopted. For example, both [10] and [29] choose
LSTM as their backbone networks. However, the performance
of LSTM degrades when sequences become too long [22].
In other words, LSTM are not good at handling overlength
sequences in practice. Besides, the number of parameters
becomes huge when they receive overlong sequences, possibly
leading to speed reduction and overfitting in the training
process. One feasible solution is to shorten the input length
directly by sampling. Wang et al. [37] introduce Sampling
Slicing Long Short Term Memory Multiple Instance Learning
(SS-LSTM-MIL), a method based on multiple instance learn-
ing with 2D facial landmarks as input. Its sampling strategy
is that only frames when patients are speaking are chosen.
It outperforms other visual-based methods in the ADD task.
Another solution is to do embedding first to unify the length of
sequences or feature dimensions. Du et al. [7] propose DepArt-
Net for depression recognition, which encodes four visual cues
into long-term representations and then applies atrous residual
temporal convolution with attentive temporal pooling. Haque
et al. [12] leverage a casual convolutional neural network,
which is a TCN [1] actually, with a sentence-level summary
embedding to detect the major depressive disorder. However,
TCN still has some disadvantages that are analyzed in the next
section.

Different from the above methods, our work is designed to
better relieve the overlength issue. First, in order to decrease
the computational complexity of our model, we split samples
into several sequences with fixed sizes. Second, we propose
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the TDCN model which fully utilizes the information from
perceptive fields of various sizes.

III. METHOD

A. Overview

Generally, as shown in Figure 1, the overall framework of
our method includes four parts: data preprocessing, feature
extraction, fusion and classification. Specifically, we firstly
divide samples into sequences with fixed shape. Then, we
use two TDCN branches to learn discriminate features for
detecting depression. In the third part, the learned features
are fused by FWA, which assigns weights to different feature
channels. Finally, as the main part of the whole model, the
details of TDCN and FWA are described in the following.

B. Temporal Dilated Convolution Network

Figure 1 shows the general structure of the proposed TDCN.
Generally, TDCN is a multi-layer structure, consisting of five
Dilated Convolutional Blocks (DCB) and four max pooling
layers. On the one hand, within a certain TDCN layer, DCB
explores the useful information at different perceptive ranges.
On the other hand, along the TDCN pipeline, the max pooling
layers keep on shrinking the feature resolutions and gradually
extract the most important responses. Therefore, TDCN can
be seen as a feature learning module that extracts depression-
specific information from multiple scales.

As shown in Figure 1, DCB is the main components of
a TDCN module, which is described in the following. In
Figure 2, we can see that two parallel dilated convolution paths
are formulated, which extract features with different dilation
factors. Given an input X = [x1;x2; · · · ;xT ] ∈ RT×D where
T is the time steps and D is the feature dimension, the
operation of dilated convolution can be expressed as:

F (t) =

k−1∑
i=0

filter(i) · xt+d·(i−1) + b (1)

where d is the dilation factor, k is the kernel size and b is
the bias. Zero padding is adopted to keep the same shape
of its input and output. As for our ADD application, the
dilation factor doubles by a factor of 2, aiming to obtain
temporal information from different time spans along the path.
At different dialtion factors, the two paths join together by
means of the summation and activation operations. We choose
ELU [4] as our activation function, which is defined as:

fELU (x) =

{
x if x ≥ 0

ex − 1 if x < 0
(2)

To avoid degradation issue when the network goes deeper, a
residual block [13] is added in our DCB. In addition, to keep
the same shape of the element-wise addition in shortcut con-
nections, we add a 1D convolutional layer with a kernel size
of 1 in every DCB. At the end of DCB, batch normalization
layer is applied to accelerate the training process. Besides,
it is able to alleviate the problem of gradient vanishing. Of
note, we remove it from the last DCB in TDCN to reserve the
distribution of different features.
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Fig. 2. the structure of a Dilated Convolutional Block

We add a max pooling layer after each DCB, except the last
one in TDCN. With this operation, its output tensor obtains a
broader receptive field. Its aim is to gradually aggregate the
most important information from the long sequence. In addi-
tion, Max pooling layers also cut down the length of sequences
and retain the important part, reducing the complexity of our
model.

In the following, we further analyse the difference be-
tween Temporal Convolutional Networks (TCN) [21] and our
TDCN module. To enlarge the receptive field of the tradi-
tional convolution, Bai et al. [1] develop a new architecture
for TCN by employing dilated convolutions. However, as
sequence-to-sequence architectures, TCN is less suitable for
handling overlong video sequences due to the insufficient
receptive field. Take Figure 3(a) for example, given an input
X = [x1;x2; · · · ;xT ] ∈ RT×Din , the length of TCN’s output
Y = [y1; y2; · · · ; yT ] ∈ RT×Dout is same as X . Therefore, the
size of Y can be large in applications in which the input is
also very long. In this context, yT in Y can be selected as the
input of the final classifier. The rationale comes from the use
of causal convolutions, such as the connection between units
of different layers in Figure 3(a). Based on this construction,
the network is expected to be deeper when a larger receptive
field is needed in our ADD application. This potentially brings
in the side effects such as oversize dilation factor and more
computational cost, which may lower the detection accuracy
of the TCN-based model, as well as the efficiency.

Our Temporal Dilated Convolutional Network (TDCN) re-
lieves the above limitation by using a different structure.
Figure 3(b) shows the n-th DCB+max pooling layer in our
TDCN. In the DCB part, we incorporate multiple dilated
convolutions with increasing dilated factors (d = 1, 2, 4). Then
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a max pooling layer is followed, shrinking the feature length
and naturally enlarging the receptive field for its neighboring
(n+1)-th DCB, of which the input size has been reduced into
T/2M (M = 2n−1, n = 1 · · · 5). Compared with the TCN
structure, TDCN better controls the receptive field of long
sequences in terms of flexibility and efficiency. This is also
empirically validated by the experimental results.

C. Feature-Wise Attention

In the visual-based ADD task, various visual cues represent
the interviewee’s status from different views. For example,
the sequence of landmark positions represents one’s facial
morphing, while the pose vector sequence represents how
one’s face orientates during the interviewing process. They
all potentially contribution to the final inferring process in our
ADD research. To make the most of visual information, we
construct the FWA module, inspired by [16], to effectively
combine the different features together. We first concatenate
the features learned from different TDCN branches directly,
obtaining X ∈ RT×kD, where D is the feature dimensions
and k is the number of TDCN branches. They are then fed
into the feature-wise attention module to learn the weight of
each feature dimension based on its significance. The details of
the FWA module can be seen in Figure 4. The global average
pooling is applied to achieve a feature-wise vector s ∈ RkD,

obtained as:

sj =
1

T

T−1∑
i=0

xi,j (3)

where xi,j is the unit of i-th time-step and j-th feature
dimension of X . After that, two linear layers, as well as a
ReLU operation, are imposed on s. Subsequently, a sigmoid
activation is applied to learn the non-linear correlation between
the features. Formally, this process can be expressed as:

h = Fatt(s,W ) = σsigmoid(W2(fReLU (W1s))) (4)

where W1 and W2 are the weighted matrices of linear layers.
h ∈ RkD reveals the importance of feature channels. The
output of feature-wise attention X̃ is obtained by broadcasting
h to the same shape of X , and then element-wise product X:

X̃ = Fscale(x, h) = X � H̃ (5)

where H̃ ∈ RT×kD is the rescaled output of h. The number
of visual cues k is set to 2 in our work.
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Fig. 4. The structure of Feature-Wise Attention Module

IV. EXPERIMENTS

A. Dataset and Implementation details

In our research, we use the Distress Analysis Interview
Corpus Wizard-of-Oz dataset (DAIC WOZ) [9] to evaluate the
effectiveness of our model. The Distress Analysis Interview
Corpus (DAIC) collects interviews of semi-structured clinical.
The Wizard-of-Oz interviews use a virtual avatar named Ellie
to interact with patients, asking fundamental questions, and
collecting audio, video, and depth sensor recordings in the
meanwhile. In general, this dataset includes audio and video
recordings and text transcripts from audio data. The number
of samples for training/validation/testing is 107/35/47 respec-
tively. As our model needs inputs with the same shape, it
is necessary to re-sample the sequence and set them into a
unified length. In the meanwhile, the overall length of one
input is expected to be relatively long so as to preserve the
temporal information. To this end, we empirically perform the
head-first re-sample to all the sequences in the dataset, and set
the length of every sample as 5000.

To protect the privacy of participants, DAIC WOZ does
not release the raw video recordings. Instead, several visual
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TABLE I
COMPARISONS ON DAIC WOZ VALIDATION SET

Method Feature Accuracy Recall Precision F1-score
SVM [34] V - 0.428 0.600 0.500
GSM [38] AUs - - - 0.530
CNN [32] AUs+Gaze+Pose - 0.583 0.636 0.609

SGD-SVM [25] 3D Landmarks+Gaze + Pose - 0.71 0.56 0.63
Topic [8] A+L+AUs - - - 0.70

C-CNN [12] A+L+3D Landmarks - 0.833 0.714 0.769
SS-LSTM-MIL [37] 2D Landmarks - 0.75 0.818 0.783

Ours 2D Landmarks + Pose 0.857 0.833 0.770 0.800

cues extracted from video recordings with OpenFace toolkit
[2] are provided, including 68 2D/3D facial landmarks, Action
Units (AUs), gaze vector, head-pose vector and Histogram
of Oriented Gradients (HOG) features. 2D facial landmarks
record the two-dimensional coordinates of 68 facial feature
points with a total of 136 dimensions. Pose features contain 6
dimensions, including X, Y, Z, Rx, Ry and Rz, where X, Y, Z
are the position coordinates of the head, and Rx, Ry, Rz are
the head rotation coordinates. Gaze vectors record the eye-gaze
directions. AUs record the existence of 20 action units. HOG
is a feature descriptor used for object detection, of which the
size is too huge for our application. As for the rest features,
we select two of them to validate the effectiveness of the
FWA module, i.e. 2D facial landmarks and head-pose features.
Of note, we empirically find that incorporating three or more
kinds of features does not gain extra detection accuracy, which
would be discussed in the analysis of our method.

The implementation details are described in the following.
Depressed subjects are labeled as 1 (being positive), and
non-depressed subjects are labeled as 0 (being negative).
The feature dimensions of Dilated Convolutional Blocks are
256, 256, 128, 64, 64 for 2D facial landmark features, and
128, 64, 256, 128, 64 for the head-pose features. During the
training stage, we choose SGD as the optimizer whose learning
rate is 2e-5 and momentum rate is 0.9. The mini-batch size is
set as 8.

B. Evaluation Metrics

As shown in Eq. (6), we choose the metrics commonly
used in classification tasks, i.e. accuracy, precision, recall
and F1-score, to evaluate performance. TP, TN, FP and FN
denote True Positive, True Negative, False Positive and False
Negative, respectively. As for our application, for example, TP
means the number of the depressed subjects that are predicted
as depressed, and TN means the number of the non-depressed
subjects that are predicted as non-depressed.

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1− score =2× Precision×Recall
Precision+Recall

(6)

Based on these, Accuracy represents the percentage of
correctly classified samples in the total number of samples.
Recall represents the percentage of the positive samples that
are correctly predicted. Precision represents the percentage of
correctly predicted positive subjects in the subjects predicted
as positive. F1-score jointly considers the metrics of Precision
and Recall. In particular, Recall is clinically important, as it
reflects a model’s capability of finding out patients suffering
from depression from all participants. In another word, the
price that the detection model misses one depressed subject is
much higher. In addition, F1-score also matters in our appli-
cation as this metric jointly considers Recall and Precision.

C. Comparison with Other Methods

We compare our method with the related ADD methods
utilizing the visual modality. Considering that most works
evaluate their methods on the validation set, we split a part of
the original training set for tuning the hyperparameters. Then
we report our results on the validation set for a fair compari-
son. The results are shown in Table I, in which ’A’, ’V’, ’L’
denotes audio, visual and textual modality, respectively.

From the table, we can see several general trends. First, the
overall results demonstrate the usefulness of the visual cues in
the ADD task, both for the multi-modality and single-modality
methods. Second, two factors contribute to the success of
a ADD model, that is, the subtle construction of learning
models and the effective incorporation of features. As for the
comparison between the related methods and ours, we have
the following detailed observations. First, we achieve very
competitive performance among all the methods. Our method
achieves the best performance in the metrics of Accuracy,
Recall and F1-score, and achieves the second highest score on
the Precision metric. Second, the results of our method surpass
the ones based on multi-modalities, demonstrating that our
method is able to fully explore the useful visual information
for accurate depression detection.

D. Analysis of Our Method

We conduct more experiments to investigate the influence
and the effectiveness of our method’s elements. Of note, in
these experiments, we follow the original partition of the
dataset (107/35/47), and tune hyperparameters with which our
model performs best on the original validation set. Conse-
quently, the results on the validation set are different from
those in Table I.
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TABLE II
RESULTS OF THE TDCN WITH SINGLE FEATURE COMPARED TO TDCN

WITH FWA

Validation Set
Feature Accuracy Recall Precision F1-score

AUs 0.800 0.500 0.857 0.632
Gaze 0.800 0.500 0.857 0.632
Pose 0.800 0.667 0.727 0.696

2D Landmarks 0.800 0.750 0.692 0.720
2D Landmarks+Pose 0.857 0.917 0.733 0.815

Test Set
Feature Accuracy Recall Precision F1-score

AUs 0.638 0.357 0.385 0.370
Gaze 0.596 0.214 0.273 0.240
Pose 0.660 0.214 0.375 0.273

2D Landmarks 0.596 0.214 0.273 0.240
2D Landmarks+Pose 0.660 0.643 0.450 0.530

We first show the necessity of incorporating different kinds
of visual cues. As is shown in Table II, we compare the result
of our model with its intermediate version, which only uses
one single feature with one TDCN branch. We can observe
a general trend that the performance of incorporating two
kinds of features is better than the performance based on a
single kind of feature. Specifically, the Recall metric is largely
improved in both the validation set and the test set. In another
word, our model is able to detect more depressed individuals
from all the subjects, which can be meaningful in clinical
applications. In contrast, compared with the performance of
Accuracy and Precision, the Recall scores of the single-feature
models are relatively low, especially for the results of the test
set, which makes them almost useless in clinical applications.
These results again empirically validate the effectiveness of
incorporating different kinds of visual cues in the ADD task.

TABLE III
RESULTS OF OUR MODEL WITH DIFFERENT FUSED FEATURES ON

DAIC WOZ VALIDATION SET

Fused Features Accuracy Recall Precision F1-score
AUs+Gaze 0.800 0.417 1.00 0.588
Pose+AUs 0.800 0.750 0.692 0.720
Pose+Gaze 0.800 0.500 0.857 0.632

Landmarks+AUs 0.829 0.917 0.688 0.786
Landmarks+Gaze 0.771 0.917 0.611 0.733
Landmarks+Pose 0.857 0.917 0.733 0.815

Landmarks+Pose+Gaze 0.743 0.583 0.634 0.609
Landmarks+AUs+Pose 0.686 0.583 0.539 0.560

Landmarks+AUs+Pose+Gaze 0.686 0.333 0.571 0.421

As a step further, as shown in Table III, we report the results
of the different feature combinations. In general, compared
with the results in Table II, we can see that almost all the
combinations obtain better performance than the single-feature
configurations. Specifically, we observe that incorporating the
landmark feature is important to the final results, especially
for the metrics of Recall and F1-score. The reason is that
the facial landmarks provide more details of how one’s facial
organs morph in a fine scale. Based on that, we empirically
find that the 2D Landmarks+Pose configuration achieves the
best performance, which we adopt in our research. As for our
application, we note that it might not be the best choice to
utilize all kinds of the features. From Table III, for example,
we can see that the performance of incorporating three and

four kinds of visual cues has an obvious decline. The reason
is that the model falls into the overfitting problem when
facing more features [36]. Specifically, a new TDCN branch
is needed when adding another kind of visual cue, bringing
in a significant increase of the parameter size for the whole
model. As a result, the overfitting problem is inevitable given
that the number of training subjects keeps on limited.

TABLE IV
RESULTS OF DIFFERENT RE-SAMPLING STRATEGIES

Validation Set
Sample Method Accuracy Recall Precision F1-score

Head-first 0.857 0.917 0.733 0.815
Average 0.629 0.583 0.467 0.519

Test Set
Sample Method Accuracy Recall Precision F1-score

Head-first 0.660 0.643 0.450 0.530
Average 0.617 0.571 0.400 0.471

We also investigate the effects of different re-sampling
strategies, as shown in Table IV. In the data preprocessing
stage, we empirically re-sample the sequence into a fixed
length for all the training and test subjects. To represent a
subject, Head-first means that we only use the a part of the
sequence from the beginning. As for the Average strategy,
the sequence of a subject is divided into pieces with the
fixed length. The results based on this strategy are obtained
through taking the average of the soft predicting scores of
these pieces. From the table, we can see that the Head-
first sampling strategy consistently performs better than the
Average strategy in both sets. As the interviewing process is
relatively long, many divided sub-sequences of one subject
may not be depression-specific. In this context, the results
based on the Average strategy can be inevitably lowered in
a statistical sense.

In the following, we conduct several ablation studies on
the proposed model in terms of the backbone TDCN, the
FWA module, and the max pooling operation. First, we replace
TDCNs with TCNs in our model. The results in Table V shows
that TDCN significantly outperforms TCN in all the evaluation
metrics. The results empirically validate the effectiveness of
TDCN in aggregating global temporal information. Besides,
our TDCN has much lower FLOPs (4.5G vs 10.7G, the in-
puts are 2D Landmark sequences), showing its computational
efficiency.

TABLE V
RESULTS OF DIFFERENT BACKBONES

Validation Set
Backbone Accuracy Recall Precision F1-score

TCN 0.686 0.500 0.546 0.522
TDCN 0.857 0.917 0.733 0.815

Test Set
Backbone Accuracy Recall Precision F1-score

TCN 0.596 0.286 0.308 0.296
TDCN 0.660 0.643 0.450 0.530

To show the significance of the FWA module, we construct
an incomplete model by not using FWA. In another word,
the features learned from the TDCN branches are simply
concatenated and directly sent into the fully connected layers.
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As is shown in Table VI, compared with our model, the
incomplete version suffers from the significant degeneration
in terms of all four evaluation metrics, which verifies the
usefulness of our fusion module assigning different weights
to the feature channels.

TABLE VI
RESULTS OF DIFFERENT FUSION METHOD

Validation Set
Model Accuracy Recall Precision F1-score

With FWA 0.857 0.917 0.733 0.815
Without FWA 0.771 0.583 0.700 0.636

Test Set
Model Accuracy Recall Precision F1-score

With FWA 0.660 0.643 0.450 0.530
Without FWA 0.575 0.143 0.200 0.167

In our model, the multiple max pooling layers gradually
extract the maximum response from the long sequence. To
validate this, we modify the model structure by replacing all
the max pooling layers in TDCNs with the average pooling
layers, and compare the performance based on these two pool-
ing operations in Table VII. We can see that the Max Pooling
adopted in our model is on par with Average Pooling on the
validation set, while it is slightly better than it counterpart
on the test set. These results empirically show that it is more
appropriate to choose the max pooling operation in the ADD
task.

TABLE VII
RESULTS OF DIFFERENT POOLING LAYERS

Validation Set
Pooling Layer Accuracy Recall Precision F1-score
Max Pooling 0.857 0.917 0.733 0.815

Average Pooling 0.857 0.917 0.733 0.815
Test Set

Pooling Layer Accuracy Recall Precision F1-score
Max Pooling 0.660 0.643 0.450 0.530

Average Pooling 0.617 0.643 0.409 0.500

V. CONCLUSION

In this paper, we conduct research on automatic depres-
sion detection (ADD) based on the visual cues recorded in
the interviewing process. To fully explore the discriminating
information from the sequence, we propose a novel ADD
method that is mainly composed of Temporal Dilated Convolu-
tional Networks (TDCN) and Feature-Wise Attention (FWA).
The former tries to better extract the long-range temporal
visual information from the sequences via dilated convolutions
and max pooling at different scales. The later tries to fully
utilize the different kinds of visual information reflecting
facial details. We validate our method on the DAIC WOZ
dataset. Extensive experimental results show the state-of-the-
art performance over other related ADD methods, as well as
the effectiveness of the elements in the proposed method.
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