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Recognising British Sign Language using Deep Learning: A
Contact-less and Privacy-Preserving Approach
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Kashif Ahmad, Senior Member, IEEE, Amir Hussain, Senior Member, IEEE, Muhammad Ali Imran, Senior

Member, IEEE, and Qammer H. Abbasi, Senior Member, IEEE

Abstract—Sign language is utilised by deaf-mute to communi-
cate through hand movements, body postures and facial emotions.
The motions in sign language comprise a range of distinct hand
and finger articulations that are occasionally synchronized with
the head, face and body. Automatic sign language recognition is a
highly challenging area and still remains in its infancy compared
to speech recognition after almost three decades of research.
Current wearable and vision-based systems for sign language
recognition are intrusive, suffer from limitations of ambient
lighting and privacy concerns. To the best of our knowledge, our
work proposes the first contactless British Sign Language (BSL)
recognition system using radar and Deep Learning (DL) algo-
rithms. Our proposed system extracts two dimensional spatio-
temporal features from the radar data and applies state-of-the-
art DL models to classify spatio-temporal features from BSL
signs to different verbs and emotions, such as help, drink, eat,
happy, hate and sad etc. We collected and annotated a large-
scale benchmark BSL dataset covering 15 different types of BSL
signs. Our proposed system demonstrates highest classification
performance with a multiclass accuracy of up to 90.07% at a
distance of 141 cm from the subject using the VGGNet model.

Index Terms—RF sensing, Contactless monitoring, micro-
Doppler signatures, British sign language, deep learning

I. INTRODUCTION

OVER 430 million people on earth are living with some
form of hearing impairment, who represent a significant

5% of the world’s population. Hearing loss is expected to
afflict roughly 700 million people by 2050 [1]. People who
have trouble hearing rely on sign language to communicate,
depending on their level of disability. Millions of people
throughout the world use sign language to communicate, and
it is critical for their social inclusion. Similar to spoken lan-
guages, sign language is used in different variants in different
parts of the works. The importance of sign language with its
origins is discussed in [6], [7], with examples from American,
Japanese, Chinese, Arabic and British sign languages (BSL).

Automatic sign language recognition is a highly challenging
field of research and the current progress still remains in
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its infancy compared to speech recognition. Many efforts
to automate the sign language translation into speech/text
have been made in the literature using sensor or vision-based
approaches.

For sensor-based approaches, more than one sensors are
generally adopted by researchers. [22] utilised 10 flex sensors
to develop a single-hand data glove for hand gesture recog-
nition. These flex sensors are attached to each finger’s two
joints. Patel et al. [23] proposed a data glove, which utilised
5 flex sensors, one for each finger to reduce the bulkiness of
the wearable glove. However, flex sensors can only measure
flexion of fingers and cannot obtain finger and hand move-
ments or orientation. Wang et al. [24] proposed a gesture
recognition system using data glove that utilised 5 flex sensors
along with a three-axis accelerometer. The accelerometer was
placed in the centre of the back of hand palm. The system
recognises 50 Chinese sign language gestures in real-time with
an accuracy of around 91%. However, wearable systems are
intrusive, devices such as hand gloves are cumbersome to wear
and limit human computer interaction to subjects which cannot
carry or wear the sensors for continuous interaction.

Vision-based systems, such as Kinect sensor systems may
perform fusion of depth data and color information for the
recognition of static signs of sign language [8]. Coloured
gloves are used in [9] along with hidden Markov models for
automatic recognition of sign language. Authors in [10] pre-
sented a system for recognition of Thai sign language using a
glove-based device equipped with flex sensors and gyroscopes.
Furthermore, the authors classified the data using the K-nearest
neighbor algorithm. Camera-based systems are widely used
to recognize sign language, because of the wide availability
of cameras and tools to comprehend video and images. For
this reason, majority of the existing works that focus on
designing sign language recognition (SLR) systems, generally
utilise widely available two-dimensional (2D) video cameras
[11]. One such work is presented in [12], where the authors
propose a deep neural network with bidirectional recurrences
and temporal convolutions. The paper aims at identifying sign
language gestures with a focus on enhancing the frame-wise
accuracy of gesture recognition. Interestingly, the work in
[13] combines the data from a grayscale video with depth
information and hand’s skeletal joints. A convolutional neural
network (CNN) based framework is designed that integrates
the features coming from all three data sources. Raj et al.
[18] utilised an artificial neural network (ANN) to classify
the BSL signs on the image data coming from a standard 2-
D camera, where images were examined using histogram of
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oriented gradients (HOG), However, all camera-based systems
have certain fundamental flaws, such as the video may be
recorded and video/images raise privacy concerns in real-world
applications. Furthermore, ambient lighting is an important
requirement and a limitation of vision-based systems for SLR.

Contactless radio frequency (RF) sensing has been recently
studied in the healthcare sector for its applications in activity
monitoring and assisted living. The "contactless" feature of
RF sensing obliterate the requirement of wearing and carrying
devices. Furthermore, an added advantage of RF sensing is its
ability to leverage existing communication infrastructure, such
as Wi-Fi routers. Moreover, the radar-based sensing system
can alleviate the limitations of camera-based systems by
protecting users’ privacy and providing immunity to variations
in ambient lighting. From a privacy perspective, people do not
vary to disclose their private data. The information they deliver
by Sign language is confidential between people to people.

These radar systems exploit the Doppler signatures of
the reflected wave to produce unique hand movements. Mc-
cleary et al. [19] used a frequency-modulated continuous-wave
(FMCW) radar to classify four BSL gestures with the help of
deep CNN models. Similarly, a FMCW radar has been used in
[20] to classify different words in American sign language with
the help of generative adversarial networks (GAN). Feature-
level fusion of RF sensor network data has been used for
ML classification of American sign language [21]. Diverse
hand and arm motions create distinct multi-path distortions
in Wi-Fi signals, resulting in distinctive patterns in the time
series of channel state information (CSI), which have been
utilised for classification of sign language using kernel-based
SVM [15]. Maclaughlin et al. [17] demonstrated that multiple
radar antenna signals received at different azimuth angles
can be utilized to differentiate between different subjects for
sign language recognition with a fusion based CNN. The
author of this study uses a deep learning architecture to
solve the challenge of BSL fingerspelling alphabet recogni-
tion. The suggested work performs better than the current
works in terms of precision (6%), recall (4%), and F-measure
(5%). It reported better outcomes with 98.0% accuracy on
webcam and BSL corpus dataset [28]. For overcoming the
communication gap between speech-impaired and non-speech-
impaired community members. The author creates a model of
a deep learning model for predicting British Sign Language.
CNN and LSTM employ vision-based data. The CNN model
performed the best, achieving training and testing accuracies
of 98.8% and 97.4%, whereas the LSTM model performed
poorly, achieving training and testing accuracies of 49.4%
and 48.8%, respectively [29]. This study presents the use of a
four-beam patch antenna as a sensor node to evaluate the pill-
rolling effect in Parkinson’s disease using the S-band sensing
technique at 2.4 GHz. The proposed system uses amplitude
and phase information to efficiently distinguish between finger
tremors and nontremors. It is determined that support vector
machines have an accuracy of more than 90% on the collected
dataset [30] .

Although RF sensing has been partly discussed in the
literature to recognise sign language, the existence of a diverse
dataset that includes samples from a wide range of subjects

(diverse age and sex) and covers diverse number of classes
is missing in the literature. To bridge this gap, this work
focuses on recognising different gestures in BSL using micro-
Doppler signatures of the data collected using a Radar sensor.
Fifteen different types of Doppler signatures are considered
that include verbs (Drink, Eat, Help, Stop and Walk), emotions
(Sad, Happy, Hate, Depressed, and Confused) and Family
Group (Family, Brother, Father, Mother and Sister). These
categories of BSL signs include dynamic gestures wherein
mobility or movements of the hands are used to represent var-
ious signs. An ultra-wideband (UWB) Radar, namely XeThru
X4M03 was utilised for recording the dataset. We note that the
dataset is recorded at two different distances and angles. These
characteristics make the dataset a better choice for training and
evaluation of ML algorithms for BSL signs recognition and
translation. The recorded data is represented in the form of
spectrograms and further spatio-temporal features are extracted
using GoogleNet, squeezenet and VGGNet CNNs.

The main contributions of the work are summarized as
follows:

• We propose a contact-less BSL recognition system that
automatically recognises and translates BSL signs into
verbs and emotions.

• We propose a contactless BSL recognition system that
automatically recognises and translates BSL signs.

• We also collect a large-scale benchmark dataset con-
taining a total of 1950 samples from 15 different types
of BSL signs captured at distances of 141 and 154
centimetres. Moreover, the data samples are captured
from two different angles. To ensure diversity, the data
was collected from four deaf participants (1 male and 3
females) having ages between 16 and 82 years of age.

• We report experimental results of several state-of-the-art
DL models on the dataset, which will provide a baseline
for future research in the domain.

• In our contactless data, we got 90.07% accuracy across
all fifteen classes using deep learning models.

The remaining sections of the paper are organized as fol-
lows: Section II discusses the adopted methodology including
the data collection and annotation, pre-processing and deep
learning algorithms. Dataset, evaluation metrics (matrices),
experimental setup, results and Discussion are discussed in
Section III. Conclusions and future insights are presented in
Section IV.

II. METHODOLOGY

Figure 1 illustrates the methodology used in this study as a
block diagram. The proposed framework is divided into three
stages. In the first phase, we collected and annotated a large
collection of BSL signs. In the second phase, we used signal
processing techniques to extract spectrograms of various signs
captured in the first phase. Finally, several DL models were
employed to classify the signs.

In the next sub-sections, we provide a detailed description
of each of the phases of the proposed methodology.
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British Sign
Language
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Radar Signal Amplitude
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Deep Learning Pre-trained Model

Signal Processing and Deep Learning Algorithm
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Fig. 1: A high level signal flow diagram of the proposed framework highlighting the UWB radar-based system, data collection,
and the DL models for the classification of BSL signs.
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sitting is 0.473 m
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the table 0.16 m

154 CM

9024

66

(a) Measurable Experimental-Setup (b) Real Experimental Setup

Fig. 2: Experimental setup of data collection using Xethru UWB radar sensor.

A. Data Collection

In this phase, we collected BSL sign data through UWB
radar. Figure 2 provides an overview of the hardware setup of
the radar-based BSL data collection system. To this aim, an
ultra-wide band (UWB) radar sensor, namely Xethru X4M03,
is used. The Xethru X4M03 is a UWB radar sensor with built-
in transmitter (Tx) and receiver (Rx) antennas, providing a
maximum detection range of 9.6 metres.

As shown in the figure, the radar sensor is placed on top
of the screen of the laptop. The key parameter settings of
the radar are indicated in Table I. In order to encompass
different complexity levels in the dataset, the radar sensor
was placed at two different distances including a distance of
141 and 154 centimetres from the subject (i.e., participant).
Moreover, the sign gestures of the subject were recorded at
two different angles. One was placed directly at front of the
subject at a distance of 141cm, while the second was placed
at an angle of 24o from the subject at a distance of 154cm

(see Fig. 2). The variations in the distance and viewpoint are
expected to help in training distance and viewpoint invariant
DL models that are able to recognize gestures of the subjects
from different distances and angles. During the data collection,
the body of the subject was in normal position with head
and hands movements only. Moreover, the duration of each
activity was set to 5 seconds involving the data collection of a
single gesture from a single subject. Figure 3 provides visual
illustration of the pronounced BSL1.

Moreover, four deaf subjects/participants, one male and
three females, participated in the data collection process. The
reason to include more participants was to make the dataset
more realistic and diverse. A total of 1950 data samples
were collected during experiment for 15 different categories
at distances of 141cm and 154cm. The details of the collected
dataset are highlighted in Table II. In each experiment, a

1All the data and the photos for this research are being published with the
consent of the participants.
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(a) Brother (b) Sister (c) Mother (d) Father (e) Family

(f) Confuse (g) Depress (h) Happy (i) Hate (j) Sad

(k) Walk (l) Eat (m) Help (n) Drink (o) Stop

Fig. 3: A visual illustration of the pronounced British Sign Language

Parameter Value
Sensor XeThru X4M03
Sensor range 9.6 metres
Sensor’s distance from subject 141 cm and 154 cm
Sensor frequency 7.29GHz
Sensor bandwidth 1.5 GHz
Tx power 6.3dBm
Activity duration 5 seconds

TABLE I: Parameters configuration of radar software and
hardware.

total of 975 data samples were collected from four deaf
participants, where 15 samples were collected in each class.
In particular, each participant repeated the speaking activity
of each gesture 15 times with the radar. In this way, each
participant contributed to collect 225 or 300 data samples
in total for fifteen classes. In each case, A total of 975
spectrograms were categorized as fifteen BSL gestures, where

Classes
Experimental Dataset

141 CM 154 CM TotalSubject
(S1)

Subject
(S2)

Subject
(S3)

Subject
(S4)

Subject
(S1)

Subject
(S2)

Subject
(S3)

Subject
(S4)

Brother 15 15 20 15 15 15 20 15 130
Sister 15 15 20 15 15 15 20 15 130
Mother 15 15 20 15 15 15 20 15 130
Father 15 15 20 15 15 15 20 15 130
Family 15 15 20 15 15 15 20 15 130
Confused 15 15 20 15 15 15 20 15 130
Depressed 15 15 20 15 15 15 20 15 130
Happy 15 15 20 15 15 15 20 15 130
Hate 15 15 20 15 15 15 20 15 130
Sad 15 15 20 15 15 15 20 15 130
Stop 15 15 20 15 15 15 20 15 130
Walk 15 15 20 15 15 15 20 15 130
Eat 15 15 20 15 15 15 20 15 130
Help 15 15 20 15 15 15 20 15 130
Drink 15 15 20 15 15 15 20 15 130
Total 225 225 300 225 225 225 300 255 1950

TABLE II: An overview of the data collected, number of
subjects and the activities performed.

750 were utilized for training and 225 for testing.
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B. Pre-Processing

This section describes the pre-processing steps carried out
to extract the required spectrograms from the radar’s data. In
the beginning, the radar chip was configured via the XEP
interface with x4driver. Data (were) was recorded from the
module at 500 frames per second (FPS) (in the form of the
float message data), where each value is a 32-bit floating
point number. A loop was used to read the data file and save
the data into a DataStream variable, which was mapped into
a complex (range-time-intensity) range-time intensity (RTI)
matrix. Thereafter, moving target indication (MTI) filter was
applied to get the Doppler range map. Afterwards, the second
MTI was used as a Butterworth 4th order filter to generate
the spectrograms using the following parameters: window
length, overlap percentage, and fast Fourier transform (FFT)
padding factor. In particular, a window length of 128 samples,
and a padding factor of 16 was used. In addition, a range
profile was created by first converting each chirp to an FFT.
Afterwards, given a range bin, a second FFT was performed
on a selected number of consecutive chirps [31]. Thereafter,
spectrograms were generated leveraging a short time Fourier
transform (STFT). The reason to exploit STFT is their ability
to offer both temporal and frequency information, unlike
Fourier transform (FT) that provides frequency information
only. This is achieved through data segmentation wherein an
FT was performed on each data segment. When the window
length is changed, both the temporal and frequency resolutions
are altered inversely. For instance, increasing one decreases
the resolution of other parameter. Moreover, the level of
Doppler details is mainly dependent on the sampling capa-
bility of radar’s hardware. The greatest unambiguous Doppler
frequency in radar is Fd,max = 1

2 tr, where tr represents the
chirp time. The transmitted signal, Ts, can be represented by
the following expression

Ts(t) = E cos(2πft), (1)

where E is the reflection coefficient. At the receiver, the
received signal, Rs(t) can be represented by the given ex-
pression

Rs(t) = É cos(2πf(t− 2D(t)

c
)), (2)

where c is the speed of light and D(t) is the distance of radar
from the target location while performing hand’s movements
over time. Now 2 can be rewritten as The reflected signal can
be expressed as Rs(t),

Rs(t) = É cos(2πf(1 +
2v(t)

c
)t− (

4πD(θ)

c
)), (3)

where θ represents angle of the signal reflected off the target
points to the direction of radar and v(t) represents the point
of target movement in front of the radar. The Doppler shift,
fd can be expressed as,

fd = f
2v(t)

c
. (4)

The reflected signal received at the receiver is a composite of
many components, reflected from different moving parts of the

body, such as head and hands. Each reflected component has
unique characteristics of speed and acceleration. Let’s assume
that there are N number of unique reflected components, then
3 can be rewritten as the following expression.

Rs(t) =

N∑
k

Ek cos(2πf(1 +
2vk(t)

c
)t− (

4πDk(0)

c
)). (5)

Accordingly, the combined Doppler shift comprises of an
interaction of various Doppler individual shifts caused by
unique movements of hands and head. Therefore, the suc-
cessful classification of sign language gestures depends on
unique characteristics of Doppler signatures due to different
gestures. After obtaining the spectrograms of various Signs
from the participants a dataset was constructed. As indicated
in the high-level signal flow diagram in Figure 1, the dataset
is consisted of two key modules: (i) System Training and (ii)
System Testing. The proposed pre-trained DL classification
algorithms were implemented on spectrograms to recognize
British Sign language dataset.

C. Classification via Deep Models

For classification, the spectrograms generated in the pre-
vious step are fed into DL models. Three different pre-
trained models are considered for this purpose: GoogLeNet,
SqueezeNet and VGGNet. Our classification framework to
differentiate in BSL signs/activities is mainly based on fine-
tuning pre-trained models where multiple state-of-the-art CNN
architectures pre-trained on ImageNet [5] are fine-tuned on the
spectrogram images generated from the radar data. In fine-
tuning the pre-trained models, we modify the top layers of the
models to classify the collected data into fifteen considered
classes The CNN architectures used in this work are described
in detail in the following subsections.

1) GoogLeNet Model: GoogLeNet [4] is one of the state-
of-the-art and commonly used CNN architecture for different
image classification tasks [3]. The architecture is made up
of 22 layers, including convolutional, pooling, inception, and
fully linked layers. Six convolutional layers plus a pooling
layer comprise the inception module. The module is made
up of patches or filters of sizes 1 × 1, 3 × 3, and 5 × 5.
These different-sized filters help in obtaining diverse patterns
from the input image. At the output of each module, the
feature maps produced from various filters are concatenated.
Furthermore, 1 × 1 convolutions are performed prior to large
filter convolutions. The use of a 1 × 1 convolution filter reduces
the number of parameters that GoogLeNet requires.The hyper-
parameter settings of GoogleNet are shown in Table III.

2) SqueezeNet Model: Our second pre-trained model is
based on SqueezeNet architecture [2], which is composed of
18 layers. This architecture has shown comparable outcomes
with fifty times fewer parameters, making it a better choice
for applications with limited data and processing resources.
Squeezenet accommodated three major strategies. In first, It
reduces the squeeze layer from 3×3 filters to 1×1 filters. In
the second strategy, It uses an expanded layer in which 1x1
and 3x3 filters were fed with fewer input parameters. The
third technique down-samples late (with smaller stride values),
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DL Model Parameters Settings

GoogleNet

Learning rate
Batch size
Learning algorithm
Loss function
Total epochs
Iteration per epoch
Elapsed time for 141CM
Elapsed time for 154CM

0.0001
128
Adam
Cross entropy
100
500
04:35:57
06:15:21

SqueezeNet

Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs
Total epochs
Elapsed time for 141CM
Elapsed time for 154CM

0.0001
128
Adam
Cross entropy
100
500
01:41:53
02:03:28

VGG16

Learning rate
Batch size
Learning algorithm
Loss function
Total epochs
Iteration per epoch
Elapsed time for 141CM
Elapsed time for 154CM

0.0001
16
Adam
Cross entropy
100
46
41:32:11
45:03:58

TABLE III: Parameter settings for the selected models

resulting in larger activation maps in the final layer, which
improves accuracy. The parameter settings of SqueezeNet are
shown in Table III.

3) VGGNet Model: Another pre-trained model is based on
VGG16 architecture [27], which is composed of 16 layers.
This architecture contains 138 million parameters, a 3x3
filter size with a stride of 1. Further the padding and max-
pooling layer are same as a 2x2 filter with a stride of 2. The
layers in this design are organized as follows: ReLU layers,
convolutional layers, and max pool layers. ReLU provides
efficient computing with faster learning. In the end, It has 3
fully connected layers and a softmax for output. The parameter
settings of VGG16 are shown in Table III.

III. EXPERIMENTS AND RESULTS

This section highlights the dataset description along with
system evaluation using the discussed pre-trained DL models.

A. Dataset

The data collection and pre-processing phases described
earlier resulted in a collection of spectrograms. In total,
the dataset is composed of 1950 samples from 15 different
categories/classes. These classes can be sub-grouped into three
groups, namely (i) verbs, (ii) emotions, and (iii) family. The
verbs group includes five classes namely Drink, Eat, Help,
Stop and Walk. The emotions include Confused, Depressed,
Happy, Hate and Sad while the final group is made of Family,
Brother, Father, Mother, and Sister classes. Each of these
fifteen classes contain an equal number of samples. Figure. 4
provides some samples images/spectrograms from the dataset.

The dataset has been divided into two subsets namely
training and test set. The training set is composed of 1560
samples while the test set provides a total of 390 samples.

The training and test sets have equal representation from all
the classes and subjects.

B. Evaluation Matrics for Classification Model

In this work, the performance of the DL models in clas-
sification of BSL signs is evaluated in terms of weighted
average accuracy, precision, recall, and F1 Score. F1 Score
is one of the most commonly used metrics in the literature for
classification, which is calculated using Equation 6. F1 Score
is a combination of precision and recall, which are calculated
using equation 7 and 8, respectively.

F1 = 2
Precision.Recall

Precision+Recall
(6)

Precision =

∑
TruePositive∑

TruePositive+
∑

FalsePositive
(7)

Recall =

∑
TruePositive∑

TruePositive+
∑

FalseNegative
(8)

C. Results and Discussion

The objectives of the experimentation in this work are two-
fold. On one side, we want to analyze the performance of
different existing pre-trained models on the newly collected
BSL dataset. On the other hand, we want to analyse the impact
of variations in viewpoint and distances from the subject on
the performance of BSL frameworks. Therefore, we conducted
two different experiments by evaluating the performances of
the models on spectrograms captured at distances of 141 and
154 centimetres.

The hyper-parameter settings for all the models are provided
in Table III. All the models are fine-tuned on the dataset for
a maximum of 100 epochs. Moreover, in all the experiments,
fixed training and test sets are used. Our training and test sets
are composed of 80% and 20% of the total data, respectively.

Table IV provides the experimental results of the experi-
ments conducted at distances of 141 and 154 centimetres in
terms of precision, recall, and F1 Score. As expected, overall
better results, for all the models, are obtained when the radar
sensor is placed at a distance of 141 centimetres compared
to 154 centimetres. This is due to the reason that the 141cm
radar is placed exactly in front of the subject and the micro-
Doppler signature at this view points are more sensitive to
hands movements as compared to what is received at 154cm
radar for the same movements. As a result, the ML model
better classify the hand movements as this viewpoint. As far
as the performances of the pre-trained models is concerned,
overall better results are obtained with VGGNet achieving an
F1 Score of 0.87.

In order to better analyse the performances of the models,
we also provide confusion matrices for each model at each
distance in Figure 5. Figure 5a illustrates the confusion matrix
of the GoogleNet model with 141 CM distance. It is worth
noting that most of the signs are correctly identified with most
of them having close to 100% accuracy. The lowest accuracy
is 0.26% on Brother class, which is mostly confused with the
class Happy. Similarly, the confusion matrix of the GoogleNet
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(a) Brother (b) Sister (c) Mother (d) Father (e) Family

(f) Confuse (g) Depress (h) Happy (i) Hate (j) Sad

(k) Walk (l) Eat (m) Help (n) Drink (o) Stop

Fig. 4: Obtained spectrum’s sample of 15 BSL signs

Model 141 CM 154 CM
Precision Recall F1 Score Accuracy 95% CI Precision Recall F1 Score Accuracy 95% CI

GoogleNet 0.81 0.87 0.83 0.813 0.789-0.838 0.78 0.87 0.80 0.787 0.761-0.813
SqueezNet 0.75 0.83 0.77 0.75 0.723-0.777 0.69 0.76 0.71 0.693 0.667-0.718

VGG16 0.90 0.92 0.91 0.907 0.892-0.928 0.86 0.89 0.87 0.862 0.8404-0.884

TABLE IV: An evaluation of the pre-trained models in terms of macro-recall, macro precision, macro-F1-score, Accuracy and
95% confidence interval on the datasets captured at distances of 141 and 154 centimetres.

at a distance of 154 is presented in Figure 5b, where the
classification accuracy is nearly 100% for all classes except
the classes Brother, Mother, and Sister. The samples from the
class Brother are mostly (around 0.13%) confused with the
class Happy. The samples from the class Mother confused with
the samples from classes Father and Family. This is due to the
fact in both classes, both right and left-hand fingers move in
the same manner. Similarly, the class Sister has resemblance
with class Drink as the participants used their right-hand index
finger and thumb to touch the nose.

Similarly, the confusion matrix of SqueezeNet with a dis-
tance of 141 centimetres is presented in Figure 5c. Here
again, most of the test samples from all the BSL signs are
correctly identified with an exception of Brother, which shows
similarities with Confused class. This may be because of the
reason that in both classes subjects rub their right-hand and
left-hand with each other between the head. Furthermore,
the confusion matrix of SqueezeNet at a distance of 154
centimetres is presented in Figure 5d. In this case, most of the
signs are correctly identified with an exception of class Brother
and Mother, which show similarities with the classes Happy
and Father. Moreover, Sad gives a classification accuracy
of 80% with only 20% matching/confusion with the class
Depressed.

Lastly, the confusion matrix VGG16 with a distance of 141
centimetres is presented in Figure 5e. Here again, most of
the BSL signs are correctly recognised with an exception of
Depressed, which is similar to class Sad. This is because the
way these two signs are performed are similar. In both classes
the subjects face makes a downward movement. On the other
side, help is similar to the family because both signs have
upturned hands while performing the activity. Furthermore, the
confusion matrix of VGG16 at a distance of 154 centimetres is
presented in Figure 5f. In this case, VGG16 mostly classifies
the considered classes correctly with few exceptions. The class
Confused shows a resemblance with the two classes, namely
Family and Stop, due to related movements. Despite, Confused
class shows only 20% similarity with Family and 10% with
the Stop class, producing 70% correct classification.

IV. CONCLUSION AND FUTURE WORK

This paper presents BSL recognition framework in con-
tactless and privacy-preserving manner. Off-the-shelf XeThru
X4M03 UWB radar sensors are used combined with deep
learning models. Fifteen most common gestures in BSL were
studied, including verbs (drink, eat, help, stop, and walk),
emotions (confused, depressed, pleased, hate, and sad), and
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(a) Confusion matrix of GoogleNet at 141 CM (b) Confusion matrix of GoogleNet at 154 CM

(c) Confusion matrix of SqueezNet at 141 CM (d) Confusion matrix of SqueezNet at 154 CM

(e) Confusion matrix of VGGNet at 141 CM (f) Confusion matrix of VGGNet at 154 CM

Fig. 5: The Confusion Matrices of all the models at two different distances.



9

family group (family, brother, father, mother, and sister). The
experiment included four participants, three of whom were
deaf, ranging in age from 16 to 82 years. Micro-Doppler
unique features were maintained in the form of spectro-
grams for each class. Three deep learning models, GoogleNet,
SqueezeNet, and VGGNet, were trained using these. Most of
the gestures were correctly identified with 100% classification
accuracy. The VGGNet model surpassed others, yielding an
overall accuracy of 90.07% across all fifteen classes.

This preliminary work produced a fifteen-class BSL most
common gestures dataset, which will be expanded for future
research with additional vocabulary or sentences. We intend
to strengthen our model by adding more users. The long-term
goal is to create a real-time intuitive version of BSL that can
be scaled to other sign languages and personalised for use by
a range of end-users, such as deaf and blind children.
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