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Abstract—Human gait refers to a daily motion that represents
not only mobility, but it can also be used to identify the walker
by either human observers or computers. Recent studies reveal
that gait even conveys information about the walker’s emotion.
Individuals in different emotion states may show different gait
patterns. The mapping between various emotions and gait pat-
terns provides a new source for automated emotion recognition.
Compared to traditional emotion detection biometrics, such as
facial expression, speech, and physiological parameters, gait is
remotely observable, more difficult to imitate, and requires less
cooperation from the subject. These advantages make gait a
promising source for emotion detection. This article reviews
current research on gait-based emotion detection, particularly
on how gait parameters can be affected by different emotion
states and how the emotion states can be recognized through
distinct gait patterns. We focus on the detailed methods and
techniques applied in the whole process of emotion recognition:
data collection, preprocessing, and classification. At last, we
discuss possible future developments of efficient and effective gait-
based emotion recognition using the state of the art techniques
in intelligent computation and big data.

Index Terms—Emotion recognition, gait analysis, intelligent
computation.

I. INTRODUCTION

UMAN gait is a manner of walking of individuals. It

describes a common but important daily motion through
which observers can learn much useful information about
the walker. In clinical terms, apart from the detection of
movement abnormalities, observation of gait patterns also
provides diagnostic clues for multiple neurological disorders
such as cerebral palsy, Parkinson’s disease, and Rett syndrome
(L], [2]1, [3], [4] in an early stage. Clinical gait analysis
therefore plays a more and more important role in medical
care which may prevent patients from permanent damage. It
becomes a well developed tool for quantitative assessment of
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gait disturbance, which can be applied to functional diagnosis,
treatment planning and monitoring of disease progression [,
[6]. In addition, gait provides useful social knowledge to the
observers. Research has revealed that human observers are able
to recognize themselves and other people that they are familiar
with even from the point-light depicted or impoverished gait
patterns [7]], [8]], indicating that gait is unique. The identity
information is embedded in the gait signature, which has been
considered as a unique biometric identification tool. With the
advacements of computer vision and big data analysis, gait
recognition has been widely employed for various security
applications [9]], [LO].

Furthermore, it was suggested that emotion expression is
embedded in the body languages including gait and postural
features [[L1], [12], [13], [14], [15]. Indeed, people in different
emotional states show distinct gait kinematics [16]], [17]. For
instance, studies found that depressed individuals show differ-
ent gait patterns, including slower gaits, smaller stride size,
shorter double limb support, and cycle duration, in contrast to
the control group [18]], [19]. According to the previous studies,
human observers are able to identify emotions based on the
gait [12]. These findings indicate that gait can be considered
as a potential informative source for emotion perception and
recognition.

Human emotion is heavily involved in cognitive process and
social interaction. In recent years, automated emotion recog-
nition becomes a growing field along with the development
of computing techniques. It supports numerous applications
in inter-personal and human-computer interaction such as
customer services, interactive gaming and e-learning, etc.

However, current research on emotion recognition mainly
focused on facial expression [20], [21]], speech (including
linguistic and acoustic features)[22] and physiological signals
(e.g. electroencephalography, electromyography, heart rate,
blood volume pulse, etc.) [23]], [24], [25], [26], while rela-
tively few studies investigate the association between emo-
tion and full-body movements. Gait analysis shows apparent
advantages over the prevailing modalities, which makes it a
promising tool for emotion recognition. We summarize these
advantages as follows.

e Human bodies are relatively large and have multiple
degrees of freedom. Unlike facial expression data which
must be collected by cameras in very short distance. For
monitoring gait patterns, the subjects are allowed to be
relatively far from the cameras. The practical distance can
be up to several meters while most other biometrics are
no longer observable or provide very low resolution [27]],
[28]].



o Walking usually requires less consciousness and intention
from the walker. Thereby it is not vulnerable to active
manipulation and imitation. Ekman [29]] has pointed out
that the head expresses the nature of emotions while the
body shows information about the emotional intensity.

o The data collection process of gait patterns requires less
cooperation from the subject, so that his or her behaviour
is less interfered and closer to the normal state in real life.

With a goal of exploring the opportunities and facilitating
the development of this emerging field, we systematically
review the literatures related to emotion detection based on
gait. A recent survey [30]] discussed how emotion affects gait
for patients with Parkinson disease. Different from that survey,
our study focuses on a generic target group with physically
and mentally healthy individuals in this work. Another survey
by Stephens-Fripp et al. [31] focused on emotion detection
based on gait and posture, but it discussed gait and posture
together and emphasized more on the posture part whereas
our current paper is all around gait and shares the details of
how gait can be affected by emotions and the process of gait-
based emotion detection. Moreover, we also introduce emotion
models in current emotion theory and dynamics of gait. It is
not only informative, but also essential for computer scientists
to integrate theories into their design of the automated emotion
recognition system since this field is highly interdisciplinary.

This survey is organized as follows: Section II and III
give some background on different models of emotion, gait
initiation and gait cycle. Section IV discusses the impact of
emotion on the gait initiation and the gait cycle. Section V
presents the details of gait based emotion recognition including
data collection, preprocessing, and classification. In Section
VI, we propose some future directions on gait based emotion
recognition with machine learning and data analysis. Finally,
Section VII gives the conclusion on this topic.

II. MODELS OF EMOTION

Human emotion is a diverse complex. It can be reflected
by a clear happy representation like laughter or smile to
extreme sadness with tears. Emotion is hard to be defined
comprehensively since it is identified in context-dependent
situations.

There are three common models to describe and measure
emotional states in scientific analysis: 1) distinct categories;
2) pleasure-arousal-dominance model (PAD model); and 3)
appraisal approach. The model based on distinct categories is
simple and intuitive, which consists of six discrete emotions
including happiness, sadness, fear, anger, surprise, and disgust.
They are often linked to human facial expression [32]. The
PAD model is a continuous space divided by three orthogonal
axes shown in Fig. |I| The pleasure dimension identifies the
positivity-negativity of emotional states, the arousal dimension
evaluates the degree of physical activity and mental alertness
of emotional state, and the dominance dimension indicates to
what extend the emotional state is under control or lack of
control33]]. Each type of emotion has its place in the three
dimensional space including the former mentioned distinct
emotions. For instance, sadness is defined as negative pleasure,

positive arousal, and negative dominance according to the
mapping rules between distinct emotions and the PAD model
[34], [35]. This model has been used to study nonverbal
communication like body language in psychology[36]]. The
third model is appraisal model which describes how emo-
tions develop, influence, and are influenced by interaction
with the circumstances[37], [38]. Ortony et al. [39] applied
this appraisal theory to their models and found out that the
parameters in the environment such as the events or objects
may affect the emotion strength. Because of the complexity of
individuals’ evaluations (appraisals or estimates) on events that
cause specific reactions in themselves, the appraisal method is
less often applied for recognition of emotional states than the
two former models.

III. GAIT

Human gait refers to a periodical forward task that requires
precise cooperation of the neural and musculoskeletal systems
to achieve dynamic balance. This requirement is so crucial
since the human kinematic system controls the advancing with
the support from the two feet. In particular, when only one foot
provides standing, the body is in a state of imbalance and it
needs a complicated mechanism to make accurate and safe
foot trajectory. In the next two subsections, we will talk about
the gait initiation and the gait cycle since both of them would
be affected by emotion.

A. Gait Initiation

As an individual starts to move from the static state, he
or she is doing gait initiation. In this initiation, anticipatory
postural adjustments (APA) plays an important role in breaking
the erect posture and transferring the body center of gravity to
the stepping foot [41]]. It is a movement involving the swing
of a leg forward and leading to imbalance. This imbalance is
a result of a swift lateral weight shift and is for generating
enough advancing power.

B. Gait Cycle

One gait cycle is measured from one heel-strike to another
heel-strike with the same heel [42], which can be described
by two cyclic features, phases and events. Both features can
be divided into percentage by several key action points (see
Fig. [2). Two main phases are shown in the gait cycle: In the
stance phase, touching the ground with one foot is called single
limb stance. When both feet are on ground, it is called double
support. Following the stance phase, the target foot is going
to swing and followed by midswing and terminal swing. Gait
can be divided into eight events or subphases. Fig. [2| shows
an example of gait cycle, which starts with initial contact of
the right foot in the stance phase. In the initial contact, the
crotch extends to a large angle and the knee flexes. Next is
the loading response. It is a progress that transfers the body
weight from the left leg to the right. Midstance shows the
right leg is on the ground whereas the left leg is in motion
and the weight is being transferred between them. When the
right heel starts to lift and before the left foot lands on the
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Fig. 1. The pleasure-arousal-dominance space for emotions[33]][40]. The center of each ellipsoid is the mean and the radius is the standard deviation of each

emotional state.

ground, the individual is in terminal stance. Once the left toe
touches the ground following the terminal stance, the weight
is again uphold by both limbs and the preswing phase begins.
Passing through the right toe-off (initial swing) event, the body
weight is transferred from the right to the left this time (the
midswing phase). As soon as the right heel strikes again, the
whole gait cycle is completed and the walker prepares for next
cycle.

Fig. B| summarizes the emotion models and the gait cycle
that we discussed above. It shows the general relationship
between emotion and gait, and gives an overview on the
content of this paper. It includes the aforementioned content
in Section II and Section III, namely the models for describing
emotion and the components of gait, respectively. It also
contains a brief representation of Section IV and Section V
with the upper part listing the gait parameters that would
be influenced by emotions and the bottom part showing the
process of gait based emotion recognition.

IV. EMOTIONAL IMPACT ON GAIT
A. On Gait Initiation

Appetitive approach and defensive avoidance are two basic
motivational mechanisms for fundamentally organizing emo-
tion in the light of the biphasic theory of emotion [43]. Based
on this theory, studies [44], [45], [46l, [47], [48] have been
conducted to explore the emotion effects on gait initiation.
Theses studies were usually conducted by giving congruent
(CO) tasks and incongruent (IC) tasks to the walkers. In the
CO tasks, the participants were asked to show approaching
when sensing the pleasant stimuli or they should express
avoidance responding to the unpleasant stimuli. IC tasks were
the opposite to the CO tasks as the participants were asked to
make approach movements for the unpleasant stimuli or they
needed to performed avoidance at the moment they perceived
the pleasant stimuli [49]. Apparently, the IC tasks were related

to the human emotional conflict. To elicit participants’ emo-
tions, the pleasant or unpleasant images from the International
Affective Picture System (IAPS) were used as visual stimulus
and force plates were used to record the ground reaction forces
for the movements.

We summarize the experimental setups and results from the
research studies related to emotion impacts on gait initiation
in Table |I} In [44]], the specific paradigm was “go” or “nogo”
for volunteers. The “nogo” response (i.e., volunteers were not
supposed to move) was related to the stimulus of neutral
images showing only an object whereas the “go” response
(i.e., volunteers should approach or avoid) was for pleasant
or unpleasant pictures corresponding to CO or IC tasks.
Volunteers were asked to perform responding action as soon
as possible after the onset of the images. In [45], participants
were asked to make either an anterior step (approach) or a
posterior step (withdrawal) as soon as the image was presented
and to remain static till it disappeared. The experiment in
[46]] studied the influence of a change in the delay between
picture onset and the appearance of “go” action for checking
people‘s reaction time. The changes in the delay had two
conditions, namely the short condition (the word “go” showed
500ms after image onset) and the long condition (the word
“g0” showed 3000ms after image onset). Research[47] aimed
at gait initiation as soon as the participants saw the image (i.e.,
onset) or as soon as the image disappeared (offset). In clinical
studies, the experiment in [48] focused on gait initiation in
patients with Parkinson’s disease and the patients were asked
to make an initial step with their preferred legs after the image
offset and to keep walking at their self-selected pace.

Studies mentioned above revealed that an individual’s emo-
tion can affect gait initiation. When the participants encounter
emotional conflicts, they seemed to pose a defensive response
for the IC tasks leading to longer reaction time (RT) and
shorter step length compared to CO tasks shown in Table
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This is inspiring because these features learned from gait
initiation show significant differences between people with
positive and negative emotions. The analysis of gait initiation
may become a potential method to recognize human’s emotion
in the future.

B. On Gait Cycle

In this subsection, a few studies would be shared for
showing the performances and characteristics of emotive gaits
(see Table [I). In Montepare’s investigation[50], ten female
observers viewed the gaits of five walkers with four various
emotions (i.e., sadness, anger, happiness, and pride) in order
to determine the walkers’ emotions and report specific gait
features observed. Note that the walkers’ heads were not
recorded in the gaits to prevent the facial confusion of emotion
perception. The investigation showed that gait patterns with

different emotions could be identified better than chance level
with mean accuracy of 56%, 90%, 74%, 94% for pride, anger,
happiness, and sadness respectively. As for the gait features
which differentiated emotions, the angry gaits were relatively
more heavyfooted than the other gaits, while the sad gaits had
less arm swing compared with the other gaits. It also turned
out that proud and angry gaits had longer stride lengths than
happy or sad gaits. Finally, happy gaits performed faster in
pace than the other gaits.

Similarly, thirty observers used Effort-Shape method [51]]
to rate the qualitative gait movements of sixteen walkers
expressing five emotions (i.e., joy, contentment, anger, sadness,
and neutral) in Gross’s work [52]]. The Effort-Shape analysis
involved four factors evaluating the effort in the walker’s
movements (i.e., space, time, energy, flow) and two factors
described the shape of the body (i.e., torso shape and limb



TABLE I

RESEARCHES ON IMPACTS OF EMOTION ON GAIT INITIATION.

Ref  Number of participants CO tasks IC tasks Results
Longer RT in IC than CO trials
(@] 15 (age 20-32, Initiate gait after Initiate gait after and the amplitude of early
9 females) pleasant image onset unpleasant image onset postural modifications
was reduced in IC trials.
Approach after Approach after Unpleasant images caused
@3] 30 (mean age 22.3 years, pleasant image onset unpleasant image onset an initial “freezing” response with
16 females) or withdraw after or withdraw after analyses of the preparation,
unpleasant image onset pleasant image onset initiation,and execution of steps.
Initiate gait once Initiate gait once
19 (age 18-26 years the word “go” the word “go” Motor responses were faster for
[46] 11 females) ’ appeared 500 ms appeared 500 ms pleasant pictures than unpleasant ones
) or 3000 ms after or 3000 ms after in the short delay of 500 ms.
pleasant image onset unpleasant image onset
Initiate gait after Initiate gait after Gfm was mltla}ted faster
27 (mean age 28.7 years, . . with pleasant images at onset and
[47] pleasant image onset or unpleasant image onset . .
16 females) unpleasant image offset or pleasant image offset faster with unpleasant images
at offset with analyses of COP and COG.
For PD patients and healthy older adults,
26 patients - . - ) threatening pictqres speedeq the G¥
(age 55-80 years,3 females) Initiate gait and walk Initiate gait and walk and approach-oriented emotional pictures,
[48] 25 normals ’ after approach-oriented after withdrawal-oriented compared to withdrawal-oriented pictures,

(age 55-80 years,3 females) emotional picture onset

emotional picture onset

facilitated the anticipatory postural
adjustments of gait initiation with analyses
of RT and COP.

CO: Congruent. IC: Incongurent. RT: Reaction time. COP: Center-of-pressure. COG: Center-of-gravity. GI: Gait initiation. PD: Parkinson’s disease.

shape) which are shown in Table Each factor was rated
from 1 to 5. For the instance of flow, the left anchor was
“free, relaxed, uncontrolled” and the right anchor was “Bound,
tense, controlled”. The three intermediate points in the scale
acted a transition between the left and right anchor qualities.
Results revealed that the sad gait was featured as having a
contracted torso shape, contracted limb shape, indirect space,
light energy, and slow time. The angry gait was regarded as
having expanded limb shape, direct space, forceful energy, fast
time, and tense flow. The joy gait had common characteristics
with the angry gait in limb shape, energy, and time, but there
was a more expanded torso shape and more relaxed flow for
the joy gait than the anger gait. The content gait might look
like the joy gait but the former one had more contracted limb
shape, less direct space, lighter energy and slower time than
the latter one. When it came to the gait pattern in neutral
emotion state, it was similar to the sad gait, however, it had
a more expanded torso and limb shapes, more direct space,
more forceful energy and faster time than the sad gait.

Another report from human observers for perceiving walk-
ers’ emotions showed that there were significant differences
in gait patterns among people with various emotions such as
happiness with a bouncing gait, sadness with a slow slouching
pace, anger with a fast stomping gait and fear with fast and
short gait [53].

Through data analytics, the features in gaits carrying various
emotions could be studied through kinematic analysis based on
the gait data. In [54], two types of features, 1) posture features
and 2) movement features, had been explored to determine
which features were the most important in various emotional
expression through analyzing the gait trajectory data. For both

types of features mentioned above, flexion angles of eleven
major joints (head, spine, pelvis and left and right shoulder,
elbow, hip and knee joints) have been averaged over the gait
cycle. In terms of the posture features, the evident results were
the reduced head angle for sad walking, and increased elbow
angles for fear and anger while walking. As for movement
features, the happy and angry gaits were linked to increased
joint amplitudes whereas sadness and fear showed a reduction
in joint-angle amplitudes. In addition, the study compared the
emotional gaits with neutral gaits whose speeds were matched
to the former ones (with overall velocity difference < 15%)
and it figured out that the dynamics of the emotion-specific
features cannot be explained by changes in gait velocity. In
Barliya’s study [55], the gait speed was shown to be a crucial
parameter that would be affected by various emotions. The
amplitude of thigh elevation angles differed from those in
the neutral gait for all affections except sadness. Anger was
showing more frequently oriented intersegmental plane than
others.

Through the kinematic analysis of emotional (i.e., happy,
angry, fearful, and sad ) point-light walkers, Halovic and Kroos
[53] found out that both happy and angry gaits showed long
strides with increased arm movement but angry strides had a
faster cadence. Walkers feeling fear were with fast and short
strides. Sad walkers had slow short strides gaits representing
the slowest walking pace. The fearful and sad gaits both had
less arm movement but the former one mainly moved their
lower arms whilst the latter one had the entire arms movement.

Studies [56], [S7] applying eight-camera optoelectronic
motion capture system focused on smoothness of linear and
angular movements of body and limbs to explore the emotive



TABLE I

QUALITIES ASSOCIATED WITH EFFORT-SHAPE FACTORS[S52].

Effort-Shape factor

Left-anchor qualities®

Right-anchor qualities?

Torso Shape

Contracted, bowed, shrinking

Expanded, stretched, growing

Limb Shape Moves close to body, contracted  Moves away from body, expanded
Space Indirect, wandering, diffuse Direct, focused, channeled
Energy Light, delicate, buoyant Strong, forceful, powerful

Time Sustained, leisurely, slow Sudden, hurried, fast

Flow Free, relaxed, uncontrolled Bound, tense, controlled

@ Score = 1.

b Score = 5.

impact on gaits. In the vertical direction, the smoothness of
movements increased with angry and joyful emotions in the
whole body center-of-mass, head, thorax and pelvis compared
to sadness. In the anterior-posterior direction, neutral, angry,
and joyful emotions only had increased movement smoothness
for the head compared to sadness. In angular movements,
anger’s movement smoothness in the hip and ankle increased
compared to that of sadness. Smoothness in the shoulder
increased for anger and joy emotions compared to sadness.

Research in [18]], [58] further analyzed the gaits of patients
with depression compared wtih the control group. It found that
depressed patients showed lower velocity, reduced limb swing
and less vertical head movements.
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V. GAIT ANALYSIS FOR EMOTION RECOGNITION

There is a long way to go towards the ultimate goal,
namely, automated emotion recognition through gait patterns.
However, there are important observations based on previous
studies [59], [60], [61]]. Automated process may be possible
by aggregating data from previous observations supported by
big data analysis and machine learning. In this subsection, we
discuss some details of current research on gait based emotion
recognition.

A. Gait Data Collection

Gait can be captured in digital format (i.e. by cameras,
force plates) for data analysis. As the technology is advancing,
digital devices have increased sensing quality and become
more intelligent. In the field of emotion detection based on
gait, the force platform was very useful for recording the
anteroposterior velocity and displacement of center of foot
pressure[62]. The infrared light barrier system functioned as
well for measuring gait velocity [58], [62]. More prevailing
was the motion analysis systems (e.g., Vicon and Helen Hayes)
that could capture precise coordinates information of markers
by taping them over people [54], [S3], [63], [L8], [52], [64],
[65], [66]]. As another convenient and non-wearable device,
Microsoft Kinect, showed up. It was first for interactive games,
and then it could be used for motion analysis due to its
representation of human skeleton [67]], [68]. Fig. 4 shows an
individual’s skeleton consisting of marking 25 joints, which
were displayed by Kinect V2 device. The joints were figured
out based on the three dimension coordinates derived from
depth image. In addition, Kinect can provide other types of
video, such as RGB video and infrared video [69], [70].
In recent years, intelligent wearable devices got a lot of
attention not only in the market, but they could be used in
gait pattern analysis for identifying people’s emotion since the
accelerometer in the devices collect movement data [[71]], [[72]],
[73]. In the work of Chiu [74], the mobile phone was used for
capturing the gait of people and then the video data was sent
to a server for pose estimation and emotion recognition.

B. Preprocessing

Before feeding data to the classifiers or performing corre-
lation analysis, the raw data should be preprocessed to obtain
significant and concise features for computation efficiency
and performance. Data preprocessing is a crucial step that
may include many substeps such as information filtering that
helps to remove noise artifacts and burrs and to perform data
transformation, feature selection, and so on. In the following
paragraph, we will present some of the preprocessing tech-
niques.

1) Filtering

To smooth the data and get rid of the noise for the
marker trajectories of an individual’s walking, studies
[S6ll, 1571, [52), [64] used low-pass Butterworth filter
with a cut-off frequency of 6 Hz. Butterworth filter is
considered as a maximally flat magnitude filter [75]



TABLE III

RESEARCHES ON IMPACTS OF EMOTION ON GAIT CYCLE.

Ref Emotion

Number of walkers

Methods

Performances

Happiness,sadness,
anger,and pride

1301

10 females

5 female observers

Mean accuracy: 56%,90%, 74%, 94%

for pride, anger, happiness, and sadness respectively
Anger: heavyfooted.

Sadness: less arm swing.

Proud and anger: longer stride lengths.

Happiness: faster.

Joy,contentment,
[52]] sadness,anger,
and neutrality

11 females and 5 males

30 (15 females) observers
with Effort-Shape method

Sadness: contracted torso shape,
contracted limb shape, indirect space,
light energy, and slow time.

Anger: expanded limb shape,

direct space, forceful energy,

fast time, and tense flow.

Joy: more expanded torso shape

and more relaxed than anger.
Content: more contracted limb shape,
less direct space,lighter energy

and slower time than the joy.
Neutrality: more expanded torso

and limb shapes, more direct space,
more forceful energy and faster time than sadness.

Happiness,sadness,

34 (19 females) observers

Happiness and anger: long strides
with increased arm movement

but angry strides had a faster cadence.
Fear: fast and short strides.

. 36 act 17 femal . . . - .
(53] anger,fear,and neutrality actors (17 females) and the kinematic analysis Sad: slowest short strides gaits.
Fear and sadness: less arm movement
but fear mainly moved their lower arms
whilst sadness had the entire arms movement
Posture features were the
reduced head angle for sad walking,
Happiness.sadness Average flexion angles, and increased elbow angles for fear and anger.
154 PpINeSS,s o 11 males and 12 females nonlinear mixture model, Movement features were increased joint amplitudes
anger,fear,and neutrality . .
and sparse regression for happiness and anger, and
a reduction in joint-angle amplitudes
for sadness and fear.
Speed was affected by emotions.
The amplitude of thigh elevation angles
. R . differed from those in neutral gait
Happiness, sadness, 13 university students The intersegmental .
53] . . - for all emotions except sadness.
anger,fear,and neutrality and 8 professional actors law of coordination .
Anger was showing more
frequently oriented intersegmental
plane than others.
In the VT direction, angry and joyful movement
smoothness increased compared to sadness.
. . In the AP direction, neutral, ,
Measuring spatiotemporal n the irection, neutral, angry
Joy, sadness gait parameters and joyful gaits had increased movement
371 ’ ? . 7 males and 11 females smoothness for the head compared to sadness.
anger,and neutrality and smoothness of , .
- In angular movements, anger’s smoothness in
linear movements : .
the hip and ankle increased compared to sadness.
Smoothness in the shoulder
increased for anger and joy compared to sadness.
Analysing
. 14 inpatients forward/backward . .
Depression . . . Depression: reduced walking
(18] . with major depression movements, VT movements, . .
and non-depression speed, arm swing, and vertical head movements
and 14 healthy people and lateral movements
of all body segments
Depression 16 inpatients Measuring spatiotemporal Depression: lower gait velocity,
[58) -CPret with major depression & sp P reduced stride length,

and non-depression

and 16 healthy people

gait parameters

double limb support and cycle duration.

VT: Vertical. AP: Anterior-posterior.



2)

3)

since the frequency response in the passband has no
ripples and rolls off towards zero in the stopband [76].
Sliding window Gaussian filtering is another common
way to eliminate some noises or high-frequency compo-
nents like jitters. Mathematically, a discrete Gaussian
filter transfers the input signal by convolution with
a Gaussian function in which there is a significant
parameter called standard deviation and the standard
deviation is key to designing a Gaussian kernel of fixed
length. In studies [67], [68], the Gaussian kernel was
%[17476,4, 1] for filtering three dimensional coordi-
nates of joints of walkers .
Data Transformation
Processing the data in the time domain may not be
the most effective method. In most of the time, data
transformation to other domains, like the frequency
domain or time-frequency domain, is favorable, which
can make the understanding of the data more thorough.
One classical and popular method is the discrete
Fourier transform (DFT) [77]]. Discrete Fourier trans-
form derives frequency information of the data, provid-
ing the Fourier coefficients that can feature the data. This
transform can be applied in three dimensional gait data
recorded by Microsoft Kinect devices[67], [68], [[78]
Another method outweighing discrete Fourier trans-
form is the discrete wavelet transform (DWT) that
represents the frequency and location (location in time)
information, which has been applied in gait studies [79],
[80], [81]. In DWT, selecting a wavelet that best suited
the analysis is crucial and the choice of the best wavelet
is generally based on the the signal characteristics and
the applications. For example, for data compression,
the wavelet is supposed to represent the largest amount
of information with as few coefficients as possible.
Many wavelets have been proposed ranging from the
Haar, Daubechies, Coiflet, Symmlet, and Mexican Hat
to Morlet wavelets and they possess various properties
that meet with the needs of the work. For instance, the
Daubechies 4 (Db4) is for dealing with signals that have
linear approximation over four samples whereas Db6
aims at quadratic approximations over six samples [82].
Feature Selection
Investigations have been conducted to provide quali-
tative and quantitative evaluations of multiple features
in the human gait. The way to choose the parameters
of interest depends on specific application domain. As
an example in sports, Electromyography (EMG) signal
recorded from muscles was exploited to build a model
for determining muscle force-time histories when an
individual was walking[83]].

« Spatiotemporal Features
The gait cycle contains many useful spatiotemporal
quantities such as gait velocity, stride and step
lengths, step width, single/double support and swing
period, phases, rthythm (number of steps per time
unit), foot placement through the measurement of
time and scale.

« Kinematic Features

Gait data of the joints or skeleton collected by
marker trajectories, Kinect cameras or video-based
pose estimation, are helpful for the measurements
of kinematic features, which are not limited to joint
angles, angular range of motion, displacement and
velocity on basis of various axes[S5]. Research in
[54] explored the crucial kinematic features related
to emotion from gait. It indicated that limb flexion is
a key feature for expression of anger and fear on gait
whereas head inclination corresponded to sadness
dominantly. More specific adoption of kinematic
features could be found in the next section.

C. Emotion Recognition

There have been several efforts to classify a walker’s
emotion through their gait data (see Table [[V). In [62],
Janssen et al. used the Kistler force platform to record the
ground reaction forces of walkers who were sad, angry or
happy through recalling specific occasion when they felt the
corresponding emotion. After a short period of elicitation of
various emotions, volunteers were asked to walk about 7m at a
self-determined gait velocity on the force platform. The ground
forces of gait after normalization by amplitude and time were
separated into two parts, training set and test set. The training
part was put into a supervised Multilayer Perceptrons (MLP)
with 200-111-22 (input-hidden-output) neurons (one output
neuron per participant). The test part was for the validation
that MLP model achieved 95.3% accuracy of recognizing
each individual. With the help of unsupervised Self-organizing
Maps (SOM), the average emotion recognition rate was 80.8%.

Omlor et al. [63]] tried to classify emotions expressed by
walkers with attached markers upon joints. They presented an
original non-linear source separation method that efficiently
dealt with temporal delays of signals. This technique showed
superiority to PCA and Independent Component Correlation
Algorithm (ICA). The combination of this method and sparse
multivariate regression figured out spatio-temporal primitives
that were specific for different emotions in gait. The stunning
part is that this method approximated movement trajectories
very accurately up to 97% based on three learned spatio-
temporal source signals.

In [65]], [84], feature vectorization (i.e computing the auto-
correlation matrix) has been applied in gait trajectories. Four
professional actors feeling neutral, joy, anger, sadness, and
fear respectively repeated five times walks in a straight line
with joint-attached 41 markers of a Vicon motion capture
system. In the vector analysis, the angles, position, velocity,
and acceleration of joints have been explored for detecting
emotions. The study found out that lower torso motion, waist,
and head angles could significantly characterize the emotion
expression of walkers whereas the leg and arm biased the
detection. More importantly with the utilization of the weight
on vector, the emotion recognition has been improved to a
total average accuracy of 78% for a given volunteer.

Karg et al. studied thoroughly affect recognition based on
gait patterns [60]. Statistical parameters of joint angle trajec-
tories and modeling joint angle trajectories by eigenpostures



were two ways to extract features in the research. The former
consists of three parts. The first part was calculating the
velocity, stride length and cadence (VSC). The second part
was figuring minimum, mean, and maximum of significant
joint angles (i.e., neck angle, shoulder angle, thorax angle)
including VSC whereas the third part applied the same method
as the one in the second part to all joint angles. These
latter two parts were processed independently by PCA, kernel
PCA (KPCA), linear discriminant analysis (LDA), and general
discriminant analysis (GDA) respectively. The other way based
on eigenpostures was to establish the matrix W that contained
the mean posture, four eigenpostures, four frequencies and
three phase shifts (later referred to as PCA-FT-PCA) as shown
in Fig. E} Given two kinds of features above, for recognition,
the next step was to feed them to the classifiers Naive Bayes,
Nearest Neighbor (NN) and SVM respectively. The essence
of this research was to further explore the interindividual and
person-dependent recognition as well as the recognition based
on the PAD (pleasure, arousal, dominance) model[[85)]. The
best accuracy of affect recognition was achieved, 93%, based
on the estimated identity as shown in Table
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Fig. 5. Component description of WJ. It consists of the mean posture Prrean,
four eigenpostures P;, four frequencies f;, and three phase shifts ¢;. [66]

Research in [[67], [68] both used Microsoft Kinect v2 sensor,
a low-cost and portable sensor to recognize emotional state
through people’s 1-minute gaits in straight line walking back
and forth after they watched a 3-minute video clips that may
cause various emotion elicitation. There were 59 actors experi-
encing happiness, anger, and neutral state respectively. Kinect
camera captured the gait data in the format of 3D coordinate
of 25 joints. After data preprocessing (data segmentation,
low-pass filtering, coordinates translation and coordinate dif-
ference), the selected joints were then featured in the time
and frequency domain. After that they were finally fed into
classifiers including the LDA, Naive Bayes, Decision Tree and
SVM respectively[67] (see Fig. [6). The distinct improvements
were achieved by PCA with selecting the useful major features
that the highest accuracy were 88% using SVM for happiness
between happiness and neutral, 80% using Naive Bayes for
neutral between anger and neutral and 83% using SVM for
anger between happiness and anger whilst Li et al. [68] used
Naive Bayes, Random Forest, SVM and SMO respectively to
the skeletons data and the highest accuracy were 80.51% ,
79.66%, 55.08% with Naive Bayes (for anger and neutral) ,
Naive Bayes (for happiness and neutral) , Random Forests (for

happiness and anger) accordingly.
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Fig. 6. Procedure of emotion recognition based on Kinect. Joints selections
includes 2 wrists, 2 knees and 2 ankles coordinates. Features in time domain
were mean and variance of stride, period, velocity, and height whereas
frequency features were the amplitudes and phases of top 20 frequencies.

In [71], gait pattern was tracked by a customized smart
bracelet with built-in accelerometer, which recorded three di-
mensional acceleration data from different body positions such
as right wrist and ankle. In order to remove unexpected waking
vibrations and reduce data redundancy, they preprocessed the
time series data by using moving average filter and sliding
window. Then, with the calculation of skewness, kurtosis and
standard deviation of each one of three axes, the temporal
domain features were selected. What is more, they used Power
Spectral Density (PSD) and Fast Fourier Transform (FFT) to
extract temporal and frequency domain features. After this
part, the final number of features was 114 (38 features on
each axis), and they were fed into 4 different algorithms
(Decision Tree, SVM, Random Forest, and Random Tree)
respectively. In the eventual result, SVM achieved the highest
accuracy of classification, 88.5 %, 91.3%, 88.5%, respectively
for happiness and neutral, anger and neutral, happiness and
anger. Results indicated that it was efficient to recognize
human emotions (happiness, neutral and angry) with gait data
recorded by a wearable device.

In the investigation by Juan et al. [72], the accelerometer
data from the walker‘s smart watch has been used to identify
emotion. Fifty participants were divided into groups to perform
three tasks: 1)watch movies and walk 2)listen to music and
walk 3) listen to music while walking. Movies or music were
for eliciting participants happiness or sadness for the later
tasks. Either after stimulation or engaging in it, volunteers
walked in a 250m S-shaped corridor in a round trip while
wearing a smart watch . When it comes to feature selection, the
accelerometer data would be divided by sliding windows and
features came from each window as a vector. Then Random
forest and Logistic Regression handled the classification for
happiness and sadness based on the feature vectors, and the
majority of accuracies ranged from 60% to 80% compared to
the baseline 50%.

Chiu et al. aimed at emotion recognition using mobile
devices[74]. Eleven male undergraduate students were re-
cruited to show emotive walks feeling five emotions (i.e.,
joy, anger, sadness, relaxation, and neutrality) with about
ten seconds for each walk when a mobile phone camera
was recording from the left side of the subject. After data
collection, videos were fed into OpenPose model to extract 18



joints positions in pixel xy-coordinate format for each frame.
Then three main features 1) euclidean features 2)angular
features and 3) speed were calculated. They were euclidean
distances between joint positions (i.e., two hands, left hand
and left hip, two knees, left knee and left hip, two elbows,
two feet) normalized by the height of the bounding box
surrounding subject in pixels and angles of joint positions (i.e.,
two arms, left and right elbow flexion, two legs, left and right
knee flexion, vertical angle of the front thigh, angle between
front thigh and torso, vertical angle of head inclination, angle
between the head and torso) as well as several types of speed
(i.e., average total speed, average each step speed, standard
deviation of each step speed, maximum and minimum of each
step speed). Then features were used for training six models
respectively (i.e., SVM, Multi-layer Perceptron, Decision Tree,
Naive Bayes, Random Forest, and Logistic Regression). All
the computations were done in a server and the result would
be sent back to the client side, the mobile phone. Evaluation
results presented that single SVM achieved the highest accu-
racy of 62.1% in classification compared with other classifiers,
while human observers achieved 72% accuracy.

In another research of gait based emotion recognition[86],
seven subjects’ five emotive gaits (i.e., happiness, sadness,
anger, fear, neutrality) with 20 seconds duration in each
walking sequence were recorded in skeleton format by Kinect
v2.0 camera. Geometric and kinematic features were cal-
culated using Laban Movement Analysis (LMA) [51] and
those features acted as LMA components from four aspects
Body, Effort, Shape, and Space. Then the binary chromosome
based genetic algorithm was adopted to determine a subset
of features that gained the maximum accuracy of four clas-
sifiers (i.e., SVM, KNN, Decision Tree, LDA) for emotion
recognition. Furthermore, the four classifiers were combined
with Score-level and Rank-level Fusion algorithms to boost
the overall performance. At last the Score-level Fusion method
helped to achieve 80% emotion recognition accuracy, which
outperformed any single one of those four models.

More recently, Shao et al. [87] claimed that detecting
people at risk of depression in a non-contact and effective
method is important. For this purpose, they designed a multi-
modal gait analysis-based depression detection method that
considers both skeleton modality and silhouette modality. In
their method, a skeleton feature set including spatiotemporal
features and kinematics features are adopted for depression
description. Similarly, Lu et al. [88]] proposed an integrated
gait assessment framework to assess the risk of depression
based on the collection and analysis of multimedia data.
Specifically, they represented the rigid body based on kinetic
energy and potential energy. Then, the fast Fourier transform
is used to analyze these two energies based on the frequency
domain. To improve the efficiency of the gait-based method,
Rao et al. explored the person re-identification issue via gait
features within 3D skeleton sequences using a new self-
supervised learning paradigm [89]], [90], [91]].

VI. FUTURE DIRECTIONS

In this paper, we have gained insight into how emotions
may influence on gaits and learned different techniques for

emotion recognition. The development of this field has a lot
of potentials, especially with the advancement of intelligent
computation. Based on the current research, we highlight and
discuss the future research directions as below.

Non-contact Capturing. Different gait-based analyses de-
pend on different devices that capture and measure relevant
gait parameters. There are lots of capturing systems and they
might be divided into three subsets: wearable sensors attached
onto human body, floor sensors and sensors for image or
video processing[92]. It is no doubt about the validity of these
types of sensors used in gait detection and measurement as
numerous investigations have already demonstrated. Although
wearable sensors are very precise to record the trajectories of
motion because of their relatively large number of markers
and the high sampling rate, they may lead to uncomfortable
feeling and unnatural motion as they have to be directly
attached to subject’s body. Secondly, force platform requires
to be paved on the ground which means it is not advisable
to upgrade to large scale due to the expense. On the other
hand, as the number of the surveillance cameras increase in
various public places such as streets, supermarkets, stations,
airports and offices, the advantage of using non-contact gait
measuring based on image or video becomes so tremendous.
It can achieve big data for training comprehensive models to
identify the walkers’ emotion in order to avoid the overfit-
ting problem [93]. In addition, it is a more natural way to
record people’s gaits because there is no disturbance to their
emotional representation compared to putting markers on their
body. Another new technology, depth sensor [94]] which can
be integrated into RGB sensor, has become popular. It is a
remarkable way to measure the distance of things with x,y, z
coordinates data. The studies for identifying emotion on the
basis of gait through RGB-D information are still rare, which
presumably will become one of breakthrough in the future.

Intelligent Classification. From Table [[V] we find that there
is no study in the field of gait-based emotion recognition
that takes advantage of deep learning techniques, which prob-
ably would become one of the future breakthroughs. Deep
learning algorithms help to achieve great success in artificial
intelligence. In particular, the convolutional neural networks
(CNN) have gained massive achievements for image-based
task and the recurrent neural networks (RNN) is able to deal
with sequence-based problems [95]. As for gait recognition,
deep CNNs can help a lot in classification as well as dealing
with cross-view variance [96] whereas RNN can tackle with
the temporal pattern of the people’s gait. Furthermore, the
combination of different deep neural networks may yield
better outcome since only one single network could not
ensure comprehensive solution. For instance, The network
C3D+ConvLSTM is hybrid type that fuses CNN and LSTM
together. It can lead to good performance for motion recogni-
tion [97]]. As the gait based emotion recognition is intrinsically
a classification task, it should take full advantage of the
fusion of various deep neural networks. Furthermore, if the
process is supposed to be achieved massively based on RGB
or RGB-D information like surveillance in public, there will
be some problems to be handled. For example, many subjects
will be captured simultaneously in the view which leads to



TABLE IV
STUDIES ON EMOTION RECOGNITION BASED ON GAIT.

Ref Emotions Features Method/Classifier Accuracy/Approximation
Ground reaction force:
62 Happiness,Sadness, 176 gait patterns of 22 actors; Multilayer Perceptron,  80.8%
. Anger,Normality The force in x,y, and z dimensions Self-organizing Maps for all emotions recognition
normalized by amplitude and time
Marker trajectories: Original non-linear
63 Happiness,Sadness, 195 gait trajectories from 13 lay actors; source separation, 97% for describing original data
221 Anger,Fear,Neutrality Flexion angles of the hip,knee,elbow, Sparse with only 3 source signals
shoulder and the clavicle Multivariate Regression
Marker trajectories:
100 gait trajectories from
Joy,Sadness, 4 professional actors; RPI 78% for all emotions recognition
[63] Anger,Fear,Neutrality ~Angles,position,velocity,and acceleration Similarity index of an individual
of 34 joints and generalized coordinates
of lower torso
Highest accuracy for interindividual:
Marker trajectories: 69% (SVM for all joint angles + PCA);
. - - . Highest avg accuracy
520 gait trajectories of 13 male actors; .
. Velocity, stride length , cadence KNN for person-depender}tz
Happiness,Sadness, S ’ ’ . 95% (SVM for all joint angles + PCA);
166] . statistical parameters Naive Bayes, .
Anger,Neutrality . . . Highest accuracy based on
of joint angle trajectories, SVM . . o
AR . . the estimated identity: 92%
and modeling joint angle trajectories . ) R .
by cigenpostures (Nawe Bayes for all joint a.ngles + PCA),
y Highest accuracy for affective dimensions:
97% for Arousal(KNN for all joint angles)
Highest accuracy:
Kinect skeletons: 88% (SVM for Happiness
. LDA, .
. 59 actors experience . between Happiness and Neutral),
Happiness,Anger X . i Naive Bayes, .
671 Neutralit each emotion respectively; SVM 80% (Naive Bayes for Neutral
y 6 joints on arms and legs with PCA features between Anger and Neutral),
in the time and frequency domain 83% (SVM for Anger
between Happiness and Anger)
Highest accuracy:
Kinect skeletons: . 80.51% (Naive Bayes for
A Naive Bayes,
. 59 actors experience Anger and Neutral),
Happiness,Anger X . i Random Forest, .
[68] - each emotion respectively; 79.66% (Naive Bayes for
Neutrality . . SVM, .
42 main frequencies and SMO Happiness and Neutral),
42 corresponding phases of 14 joints 55.08% (Random Forest for
Happiness and Anger)
Accelerometer data recorded
by smart bracelet: Decision Tree, Highest accuracy:
Happiness.Anger 123 actors experience SVM, 88.5% (SVM for Happiness and Neutral),
[ 71] Neg E‘alit »ANger, each emotion respectively; Random Forest, 91.3% (SVM for Anger and Neutral),
¥ 3D acceleration data recorded Random Tree 88.5% (SVM for Happiness and Anger),
on right wrist and ankle with PCA features 81.2% (SVM for three emotions)
in the time and frequency domain
Accelerometer data recorded
by smart watch:
. 50 people divided into . .
Happiness,Sadness, . Random Forest, Accuracies mainly range 60% to 80%
172] . three task groups experienced . .
Neutrality . Logistic Regression for three groups
happiness and sadness;
Feature vectors extracted
from sliding windows
Estimated joint positions from video: SVM’.
. Decision Tree,
11 male walkers experienced . .
[74] Joy,Anger,Sadness, cach emotion respectively: Naive Bayes, Highest accuracy:
Relaxation,Neutrality . P Y Random Forest, 62.1% using SVM
Euclidean features,angular features .
of joints,and speed Log1§tlc Regression,
’ Multilayer Perceptron
Kinect skeletons: KNN,SVM,LDA,
Happiness. Sadness 7 walkers experienced Decision Tree, Highest accuracy:
186] PP i : each emotion respectively; Genetic algorithm, 80% using score-level fusion

Anger,Fear,Neutrality

Geometric and kinematic
features using LMA framework

Score-level Fusion,
Rank-level Fusion

of all four models

KNN: K Nearest Neighbor. SVM: Support Vector Machine. LDA: Linear Discriminant Analysis. LMA: Laban Movement Analysis



chaos of targeting. The key solution is to do parallel target
segmentation [98]. At the same time, the segmentation should
be intelligent enough to figure out if the target remains the
same identity from the beginning, which still depends on
intelligent computation. Apparently, how to make full use
of computational intelligence for boosting the classification
accuracy is becoming momentous.

Large-scale Data Sets. Along with the development of
computation intelligence, big data is desperately required for
deep network training in order to facilitate the generalization
and robustness of the models. To establish a large and com-
prehensive data set for gait based emotion recognition, several
elements should be taken into account. Firstly, the number of
participants should be large enough. The second point is the
variety of participants. They should include different genders,
wide range of age, various height and weight, with or without
carrying things etc. The next point would be the emotion
elicitation by volunteers. Participants producing approximate
emotion expression is quite important because it leads to clear
and fine labels for model training. Thus, finding an appropriate
way to elicit volunteers’ emotion naturally is a significant
aspect. Getting volunteers to walk in various spatial contexts
is another requirement, since walking on different contexts
such as on sand or lawn may influence the gait. Last but not
least, it is advisable to collect data through different views of
cameras and in different formats for enriching the information
and training more generalized models. The HumanID Gait
Challenge data set may act as great template to learn for
establishing the emotion-gait related data set. It consists of
1,870 sequences from 122 subjects spanning five covariates in-
cluding change in viewing angle, change in shoe type, change
in walking surface, carrying or not carrying a briefcase, and
elapsed time between sequences being compared [99]]. These
requirements discussed above are not easy to accomplish but
are necessary for building a large scale and comprehensive
data set.

Online Emotion Prediction. If the requirements above are
fulfilled, as an ultimate goal, online emotion prediction based
on human gait is possible. However, online prediction requires
data analysis to be run in a continuous way. Different from
object detection which can be achieved almost real-time [[100],
online emotion prediction based on gait has to consider the
historic steps since the gait cycle has a duration. Therefore,
there is a high demand on computation capability. It is usually
time-consuming if the neural network is deep, so real-time
recognition could be hard to be ensured. Thus, to develop more
efficient methods for online emotion recognition with less
computing resources would be a challenging and important
task.

VII. CONCLUSIONS

This survey paper has provided a comprehensive study
on the kinematics in emotional gaits and reviewed emerging
studies on gait-based emotion recognition. It has discussed
technical details in gait analysis for emotion recognition,
including data collection, data preprocessing, feature selection,
dimension reduction, and classification. We want to conclude

that gait is a practical modality for emotion recognition, apart
from its existing functions of motion abnormality detection,
neural system disorder diagnosis, and walker identification
for security reasons. Gait analysis is able to fill the gaps in
automated emotion recognition when neither speech nor facial
expression is feasible in long-distance observation. The tech-
nique of gait analysis is of great practical value even though
it still has a lot of research challenges. Fortunately, there are
more and more non-invasive, cost-effective, and unobtrusive
sensors available nowadays, like surveillance cameras installed
in public, which make the collection of big data possible.
Coupling with the development of intelligent computation,
gait-based emotion recognition has great potential to be fully
automated and improved to a higher level to support a broader
range of applications.
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