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Abstract—The advancement of secure communication and
identity verification fields has significantly increased through the
use of deep learning techniques for data hiding. By embedding
information into a noise-tolerant signal such as audio, video,
or images, digital watermarking and steganography techniques
can be used to protect sensitive intellectual property and en-
able confidential communication, ensuring that the information
embedded is only accessible to authorized parties. This survey
provides an overview of recent developments in deep learning
techniques deployed for data hiding, categorized systematically
according to model architectures and noise injection methods.
The objective functions, evaluation metrics, and datasets used
for training these data hiding models are comprehensively
summarised. Additionally, potential future research directions
that unite digital watermarking and steganography on software
engineering to enhance security and mitigate risks are suggested
and deliberated. This contribution furthers the creation of a more
trustworthy digital world and advances Responsible AI.

Index Terms—Artificial intelligence, Cybersecurity, Software
engineering.

I. INTRODUCTION

SERIOUS concerns are raised about the ability of Artifi-
cial Intelligence to make responsible decisions or behave

responsibly, such as generating unfair outcomes, causing job
displacement or insufficient protection of privacy and data
security. In response, Responsible AI aims to address these
issues and create accountability for AI systems.

Data hiding is considered a promising method to achieve
data security towards Responsible AI. Typically, data hiding
involves concealing information in a specific form within
another type of media. It can take different forms, such as
encoding confidential information into an existing text piece
or embedding audio files into a digital image. As digital
assets become more diverse and ubiquitous, the importance
and scope of data hiding applications will only continue to
grow [1]. In today’s digital age, as digital communication and
multimedia data become increasingly prevalent, the data hiding
process has become crucial. Ensuring responsible AI, such as
machine learning as services, per requisite, necessitates secure
communication across all mediums, and the accountability of
responsible AI, such as digital intellectual property, neces-
sitates protection against theft and misuse. In its traditional
form, the data hiding process can be categorized into three
types: watermarking, steganography, and cryptography [2].

This survey focuses on the former two (watermarking and
steganography), as both have demonstrated superior capability
in safeguarding sensitive data for AI systems learning.

Digital watermarking utilizes data hiding techniques to em-
bed an identification (ID) into digital media that communicates
with the owners of the intellectual property (IP) to prevent
unauthorized copying or alteration. Thus, in case of any
attempt to copy or modify the original media, the ID can
be extracted to identify the owners. The primary application
of digital watermarking is for the authentication of digital
assets, however, the process has also been used for licences and
identification [3], digital forensics [4], and data protection in
smart cities [5], [6]. Digital watermarking is not only useful for
marking images and documents, but also for real-time audios
and videos [7], [8], languages [9], as well as chip and hardware
protection in electronics [10].

Steganography and watermarking share similarities in that
both involve embedding data into a piece of media. However,
while watermarking aims to identify the creator of an artifact,
steganography embeds secret messages in a way that avoids
detection, interception, or decoding. Unlike cryptography,
which is designed to secure data by taking advantage of
complexity, steganography’s primary goal is to keep the cover
media’s format readable and not distorted after data hiding.
The public should still be able to see the original cover media
without noticing the embedded messages. Steganography is
applied in various industries, including medicine, defense, and
multimedia fields, wherever confidentiality is crucial for secure
communication [11].

Historically, data hiding has been accomplished using spe-
cialized algorithms that are classified based on the domain
in which they operate, either spatial or frequency. Spatial
domain techniques directly embed data into the cover media
by manipulating bit streams or pixel values. They are compu-
tationally simple compared to other techniques, and hence are
more susceptible to removal and distortion from adversaries.
Frequency domain techniques rely on the manipulation of
frequency coefficients in the signal medium. These techniques
achieve a higher degree of robustness to attacks, but are more
computationally complex [1].

The drawback of these traditional algorithms is that their
applications are narrow, and the creators of these algorithms
require expert knowledge of the embedding process. Particular
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Fig. 1: A hierarchical diagram showing different methods for classifying deep learning-based data hiding techniques. Blindness
refers to the functionality of the data hiding method, further explained in Section II.

techniques are useful for certain limited tasks, and the growing
sophistication of watermark removal and degradation attacks
means that the effectiveness of these algorithms may be
compromised in the near future [12], [13].

New advancements in the field of deep learning span many
industries due to the strong representation abilities of deep
neural networks. In the field of data hiding, deep learning
models provide adaptable, generalized frameworks that can
be used for a variety of applications in watermarking and
steganography. Currently, most works in this area concentrate
on image-based data hiding, and these are the works that
will be compared in this survey. These machine learning
models are able to learn advanced embedding patterns that
are able to resist a much wider range of attacks with far more
effectiveness than traditional watermarking or steganography
algorithms [12]. Further research on [9], [14]–[16] estab-
lished the potential and criticality of developing generalized
frameworks for data hiding that can work with a range of
cover media types to robustly embed data and provide highly
secure content authentication and communication services.
The advantage of the deep learning approach is that networks
can be retrained to become resistant to new types of attacks,
or to emphasise particular goals such as payload capacity
or imperceptibility without creating specialised algorithms for
each new application [16]. An additional advantage of deep
data hiding techniques is that they can enhance the security
of the embedded messages. The high non-linearity of deep
neural models makes it virtually impossible for an adver-
sary to retrieve the embedded information [12]. Compared
to traditional methods, deep learning-based methods are not
only more secure and adaptable to different applications, but
they also offer enhanced robustness to adversarial attacks and
distortions. They are also able to achieve more imperceptible
forms of data embedding.

The process of data hiding, comprising message embedding
and extraction, can be naturally mapped onto an encoder-
decoder network architecture. This approach involves parti-
tioning the learning model into two networks: the encoder

network, which learns to embed input messages into images,
and the decoder network, which extracts the original message
from the distorted image after subjecting it to various forms
of attacks, such as blurring, cropping, compression, etc. The
network is trained by minimizing an objective function that
accounts for the differences between the cover image (i.e., the
data carrier) and the encoded image, as well as the differences
between the embedded and extracted input message.

The first papers exploring the capabilities of neural network
technology for data hiding were released in 2017, and were
based on convolutional neural networks [12], [17]. In recent
years, GAN-based approaches have gained traction, popu-
larised by the HiDDeN model [16], which was the first end-to-
end trainable model for digital watermarking and steganogra-
phy. These deep learning models employ different message
embedding strategies in order to improve robustness, such
as using adversarial examples, attention masks, and channel
coding. The continued development of deep learning-based
data hiding models will greatly improve the effectiveness and
security of digital IP protection, and secure secret communi-
cation.

Since this is a relatively new area of research, current
surveys on data hiding primarily concentrate on traditional
algorithms. There are existing works examining deep learning-
based techniques for steganography and cryptography [18],
[19], but there is a lack of works examining deep water-
marking techniques. There is an existing survey looking at
deep learning-based watermarking and steganography [20];
however, a comprehensive survey regarding deep data hiding
models unifying digital watermarking and steganography is
still lacking. To the best of our knowledge, ours is the first
survey to examine deep learning techniques for deep learning-
based digital watermarking and steganography that includes
the most extensive range of recent works. As this research
area continues to expand, it is important to summarise and
review the current methods. The survey aims to systematically
categorise and discuss existing deep learning models for data
hiding, separated based on applications in either watermarking
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or steganography, as well as present future directions that
research may take. The key contributions of the survey are
listed as follows:
• This survey systematically categorises and compares deep

learning-based models for data hiding in either water-
marking or steganography based on network architecture
and noise injection methods.

• We comprehensively discuss and compare different objec-
tive strategies, evaluation metrics, and training datasets
used in current state-of-the-art deep data hiding tech-
niques.

• We also outline a broad spectrum of potential research
avenues for the future development of deep learning-
based data hiding.

Paper Collation. Our survey involved the collection, analysis,
and discussion of over 30 papers retrieved from Google
Scholar1 and DBLP2, using the search keywords data hiding,
digital watermarking, steganography, deep neural networks,
and generative adversarial networks (GANs). Those papers
were selected from a plethora of top-tier Security and Privacy,
Computer Vision and Machine Learning conferences and
journals.
Organization of the Survey. In the following sections,
our survey will cover recent advanced deep learning based
data hiding methods in two forms: digital watermarking and
steganography. Section II gives the problem formulation of
data hiding. Section III highlights the architecture of data
hiding and offers a comprehensive review of deep learning
based data hiding techniques. This survey also summarises
noise injection techniques in Section IV, objective functions
in Section V, evaluation metrics in Section VI, and existing
datasets in Section VII. Finally, open questions and future
work for deep learning based data hiding tasks are discussed
in Section VIII. Section IX concludes the paper.

II. PROBLEM STATEMENT

When we evaluate the effectiveness of data hiding tech-
niques, there are many factors that should be considered. The
three most important are capacity, how much information can
be embedded into the cover media, imperceptibility, how easy
the data is to detect, and robustness, how resistant the data
is to attacks. Here, attacks refer to any alterations made to
the embedded media with the intent to degrade or remove the
embedded data. There is an implicit trade-off between these
three aforementioned characteristics. For instance, if there is
a high payload capacity, then the message will be easier to
detect, resulting in a lower level of imperceptibility. Similarly,
improving robustness against attacks can potentially decrease
both payload capacity and imperceptibility, since there is
added redundancy to the encoded image that allows it to resist
distortions.

In digital watermarking, robustness is generally favoured
over secrecy because the ability to resist attacks and distortions
is more important than the watermark’s imperceptibility. Con-
versely, in steganography, imperceptibility is favoured since

1https://scholar.google.com/
2https://dblp.org/
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Fig. 2: A figure showing the trade-off between the three
primary data hiding properties; robustness, imperceptibility,
and capacity, as well as which data hiding applications favour
each property over the others.

the highest priority is that the message remains a secret. This
relationship is illustrated in Figure 2. Due to the adaptable na-
ture of deep learning-based approaches, the trade-off between
these metrics can be explicitly controlled by the user, and the
key properties of robustness and imperceptibility underpin the
objective of the deep learning system.

A. Digital Watermarking and Steganography Terminology

The basic data hiding process consists of an encoding and
decoding process. The encoder E receives the cover media
C and message to be hidden M , and outputs the encoded
media C ′ such that: E(C,M) = C ′. Then the decoder receives
the encoded media as input and extracts the message M ′,
such that: D(C ′) = M ′. In a robust implementation, M and
M ′ should be as similar as possible in an effective strategy.
Similarly, maximising the imperceptibility property is done by
minimising the difference between C and C ′. Types of data
hiding can be classified based on a variety of properties as
follows [1]:
• Blindness: related to how much information is required

to extract the original data from the encoded media. Blind
techniques do not require the original cover media or
original data to extract the embedded data, and are the
most practically useful. Semi-blind techniques require
only the original data, whereas Non-blind techniques
require both the original cover media and data in order
to perform data extraction.

• Fragility: related to how the embedded data reacts to
attacks and distortions applied to it. Fragile data are
designed to show all attacks applied to it so that, when
extracted, it is possible to verify which attacks have been
applied to the media. This is useful when verifying the
integrity of the media. Semi-fragile data are not robust
against intentional distortions such as warping and noise
filtering that attempt to degrade the embedded data, but
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Fig. 3: A hierarchical diagram showing the classification of
deep learning-based data hiding models presented in this
survey. ‘Adversarial training’ refers to attack simulation during
training, which includes noise-based attacks generated by a
trained CNN.

are robust against content-preserving distortions such as
compression and enhancement. Therefore, it can be used
to trace any illegal distortions made to the media.

• Visibility: whether the embedded data is visible to the
human eye.

• Invertibility: whether the embedded data can be removed
from the cover media once embedded. Invertible data can
be removed and non-invertible ones cannot.

• Robustness: the ability of the embedded data to remain
unchanged when attacks are applied to it.

• Security: determines how difficult it is for an adversarial
party to extract the data from the cover image.

III. DEEP LEARNING-BASED DATA HIDING TECHNIQUES

Deep learning-based data hiding models utilise the encoder-
decoder network structure to train models to imperceptibly
and robustly hide information. They present an advantage
over traditional data hiding algorithms because they can be
retrained to become resistant to a range of attacks, and be
applied to different end-use scenarios. Deep learning methods
negate the need for expert knowledge when crafting data
hiding algorithms, and improve security due to the black-box
nature of deep learning models.

The following section discusses deep learning-based data
hiding techniques separated into techniques focused on wa-
termarking and steganography. The detection and removal
mechanisms are then discussed at the end of this section. The
classification of deep learning-based data hiding techniques
detailed in this section is outlined in Figure 3. It should
be noted that CNNs incorporating adversarial training are
different to GAN-based methods. Adversarial training in this
instance refers to the use of trained CNNs for noise injection
during the attack simulation stage, while GAN-based methods
incorporate a discriminator to scrutinise encoded and cover
images to improve embedding imperceptibility [21].

Currently, the majority of new watermarking models use
an encoder-decoder architecture based on Convolutional Neu-
ral Networks (CNNs). A simple diagram showing the deep
learning-based data hiding process can be found in Figure 4.

In these models, the encoder embeds data in a piece of cover
media; this encoded media is subjected to attack simulation,
and then the data is extracted by the decoder network. Through
the iterative learning process, the embedding strategy becomes
more resistant to the attacks applied during simulation, and the
extraction process improves the integrity of the extracted data.
The advantage of this technique over previous traditional al-
gorithms is that they require no expert knowledge to program,
and can simply be retrained for different applications and
attack types instead of needing to be designed from scratch.
The system exists as a black box with high non-linearity
where the intricacies of the embedding system are unknown
and impossible to ascertain. This makes deep learning-based
methods highly secure, as well as adaptable to different end-
use scenarios. Some variations of the simple CNN encoder-
decoder approach shown above include convolutional auto-
encoders, and CNNs with adversarial training components.
The U-Net CNN architecture is common in steganography
applications due to image segmentation abilities.

Many models adopt the Generative Adversarial Network
(GAN) structure [22]. The GAN framework consists of a gen-
erative model and a discriminative model. In deep data hiding,
the discriminator network is given a mixture of encoded and
unaltered images and must classify them as such. Throughout
the learning process, the generative model improves in its
data embedding capabilities, producing highly imperceptible
examples, while the discriminative model improves at identi-
fying encoded images. The end point of training is reached
when the discriminator can only identify legitimately encoded
images 50% of the time – it is making random guesses.
The use of discriminative networks can greatly increase data
imperceptibility, and is therefore useful for steganography as
well as watermarking applications.

There are also further variations of the GAN framework,
including Wasserstein GANs (WGANs) and CycleGANs. The
CycleGAN architecture is useful for image-to-image trans-
lation, and includes two generative and two discriminative
models. The primary benefit of CycleGANs is that the model
can be trained without paired examples. Instead, the first
generator generates images from domain A, and the second
from domain B, where each generator takes an image from the
other domain as input for the translation. Then, discriminator
A takes as input both images from domain A and output
images from generator A, and determines whether they are
real or fake (and vice versa for discriminator B). The resulting
architecture is highly useful for translating between images.

A. Deep Learning-based Watermarking Techniques
In this section, current deep learning models for digital wa-

termarking are categorised based on their network architecture
design.

1) Encoder-decoder Framework: Due to the encoding and
decoding tasks central to the data hiding process, the encoder-
decoder deep learning framework is well suited for data hiding
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Fig. 4: A diagram showing a general encoder-decoder architecture for digital watermarking.

models. The encoder and decoder networks incorporate CNNs,
which are used in a variety of applications such as detection,
recognition, and classification due to their unique capabilities
in representing data with limited numbers of parameters. The
layers in the CNN learn non-linear, complex feature sets, rep-
resenting the inputs and outputs to the network using weight-
sharing mechanisms. The following deep watermarking mod-
els adopt the encoder-decoder framework without including
a discriminator, which characterises GAN-based architectures
[12], [21], [23]–[26]. A simple diagram of the encoder-decoder
deep watermarking structure can be found in Figure 4.
Auto-encoder based Model. The encoder-decoder archi-
tecture is a general framework and auto-encoder is a spe-
cial case of the encoder-decoder structure. However, auto-
encoder is usually used in unsupervised-learning scenarios by
reconstructing the inputs. The potential of the CNN-based
encoder-decoder frameworks for digital image watermark-
ing was first explored in [12], which uses two traditional
Convolutional Auto-Encoders for watermark embedding and
extraction. Auto-encoder based CNNs were chosen based on
their uses in feature extraction and denoising in visual tasks,
such as facial recognition and generation, and reconstructing
handwritten digits. The intuition was that the auto-encoder
CNN would be able to represent the watermark input in a
form that was highly imperceptible when encoded within the
cover image. This early CNN-based method applies two deep
auto-encoders to rearrange the cover image pixels at the bit
level to create a watermarked image. The technique was found
to outperform the most robust traditional frequency domain
methods in terms of both robustness and imperceptibility.
Although promising for the future of deep watermarking, this
technique is non-blind, and therefore not practically useful.

Robust and blind digital watermarking results can be
achieved using a relatively shallow network, as was shown
by WMNet [24]. The watermarking process is separated into
three stages: watermark embedding, attack simulation, where
the CNN adaptively captures the robust features of various
attacks, and updating, where the model’s weights are updated
in order to minimise the loss function and thereby correctly
extract the watermark message. Embedding is achieved by
increasingly changing an image block to represent a watermark
bit. The model is trained to extract watermark bits from the
image blocks after attack simulations have been applied.

The back-propagation embedding technique utilised in WM-
Net [24] used only a single detector network, which was found
to cause performance degradation if the gradient computa-
tion in the backpropagation operation was affected by batch
normalisation (BN). This deficiency was improved by adding
an auto-encoder network as well as visual masking to allow

flexible control of watermark visibility and robustness. The
auto-encoder network was added to the encoder, and subse-
quently shorted time taken for both embedding and detection
at the encoder because the feed-forward operation is generally
much faster than back-propagation. These improvements were
established in their follow-up work.
Robustness Controls and Input Preprocessing. Subsequent
works after the aforementioned early techniques in [12], [24]
focused on generalising the watermarking process for multiple
applications. Mechanisms such as robustness controls to influ-
ence the robustness/imperceptibility trade-off was introduced
to gear models toward both watermarking and steganography
applications, and mechanisms such as host and watermark
adaptability were developed to pre-process inputs.

A blind and robust watermarking technique was achieved
using the CNN-based system [23]. The aim of this model is to
generalise the watermarking process by training a deep neural
network to learn the general rules of watermark embedding
and extraction so that it can be used for a range of applications
and combat unexpected distortions. The network structure is
characterised by an invariance layer that functions to tolerate
distortions not seen during network training. This layer uses a
regularisation term to achieve sparse neuron activation, which
enhances watermark robustness and computational efficiency.
The layer also includes a redundancy parameter that can be
adjusted to increase levels of redundancy in the resulting
image, giving the model a higher tolerance of errors and
increasing robustness. The primary aim of these features
is to generalise watermarking rules without succumbing to
overfitting. The model was compared with two auto-encoder
CNN methods [12], [24], and was found to achieve greater
robustness due to the new features it adopted.

ReDMark [25] uses two Full Convolutional Neural Net-
works (FCNs) for embedding and extraction along with a
differentiable attack layer to simulate different distortions,
creating an end-to-end training scheme. ReDMark is capable
of learning many embedding patterns in different transform
domains and can be trained for specific attacks, or against
a range of attacks. The model also includes a diffusion
mechanism based on circular convolutional layers, allowing
watermark data to be diffused across a wide area of an image
rather than being confined to one image block. This improves
robustness against heavy attacks, because if one image block is
cropped out or corrupted, the watermark can still be recovered.
The trade-off between robustness and imperceptibility can be
controlled via a strength factor that can influence the pattern
strength of the embedding network.

The watermarking model developed by Lee et al. [26] uses a
simple CNN for both embedding and extraction, without using
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any resolution-dependent layers. This allows for host image
resolution adaptability – meaning that images of any resolution
can be used as input to the system to be watermarked.
There is an image pre-processing network that can adapt
images of any resolution for the watermarking process. There
is also watermark pre-processing, meaning the system can
handle user-defined watermark data. This is achieved by using
random binary data as the watermark that is updated at each
iteration of training. The model also adopts a strength scaling
factor, which allows for the controllability of the trade-off
between robustness and imperceptibility. The method showed
comparable, if not better, performance compared to ReDMark
[25], and two generative adversarial-based models [16], [27].
Adversarial Training. A further improvement to the CNN-
based encoder-decoder framework was made by adopting
trained CNNs for attack simulation. While many other works
use a fixed pool of attacks or a differentiable attack layer,
using a trained CNN to generate attacks can greatly improve
robustness, and introduces an adversarial component to model
training. The focus of the Distortion Agnostic (DA) model [21]
was to directly improve the HiDDeN model [16], primarily
through adding robustness to the watermarking system in
situations where the model is trained on a combination of
distortions rather than one predetermined type. Instead of
explicitly modelling different distortions during training from
a fixed pool, the distortions are generated via adversarial
training by a trained CNN. This technique was found to
perform better in terms of robustness than HiDDeN [16] when
distortions not seen during training were applied to images.
The DA framework also incorporates channel coding, a means
of detecting and correcting errors during signal transmission,
to add an additional layer of robustness to images by injecting
extra redundancy. The watermark message is initially fed
through the channel encoder to add redundancy before being
input into the encoder model. Similarly, prior to extraction the
redundant watermark message is input to a channel decoder
to retrieve the final message.

2) Generative Adversarial Networks: The second primary
approach for deep watermarking uses GANs, building upon
the aforementioned techniques. Current models that adopt the
GAN framework include [16], [27]–[30]. Many of the follow-
ing models also use CNNs within their network architecture,
but their use of the generative and discriminative components
of the GAN framework set them apart from the aforementioned
implementations.

The first end-to-end trainable framework for data hiding
was a model called HiDDeN [16], which uses an adversar-
ial discriminator to improve performance. It was a highly
influential paper that has informed the development of deep
watermarking models since its release. The model consists of
an encoder network, trained to embed an encoded bit string
in a cover image whilst minimising perceptual perturbations,
a decoder network, which receives the encoded image and
attempts to extract the information, and an adversary network,
which predicts whether or not an image has been encoded.

HiDDeN [16] uses a novel embedding strategy based on
adversarial examples. When neural networks classify image
examples to a particular target class, invisible perturbations

in the image can fool the network into misclassifying that
example [31]. These perturbations have been shown to remain
preserved when exposed to a variety of image transformations
[32]. Adversarial examples are ordinarily a deficiency in neural
networks since they reduce classification accuracy. However,
since meaningful information can be extracted from imper-
ceptible image perturbations, it was theorised that in a similar
fashion meaningful information could be encoded in adversar-
ial distortions and used as a watermark embedding strategy.
This embedding technique, paired with the GAN framework,
is able to achieve a higher payload capacity (measured in bits
per pixel) than other common data hiding mechanisms such
as Highly Undetectable Steganography (HUGO) [33], Wavelet
Obtained Weights (WOW) [34], and S-UNIWARD [35]. One
drawback of HiDDeN [16] was that loss between encoded
and decoded messages was minimised when trained only on a
specific kind of attack compared to a combination of different
attack types. This shows that the model is best when trained
specifically to combat one type of attack, but not as effective
when trained on a variety.

This shortcoming was improved in the model ROMark [28],
which builds upon the framework from HiDDeN [16] by
using a min-max formulation for robust optimisation. This
was done by addressing two main goals; first, to obtain the
worst-case watermarked images with the largest decoding
error, and second, to optimise the model’s parameters when
dealing with the worst-case scenario so that decoding loss is
minimised. The idea of this technique is to minimise decoding
loss across a range of attacks, rather than training the model
to resist specialised attacks, creating a more versatile and
adaptable framework. Due to the optimisation for worst-case
distortions in ROMark [28], it performed better when trained
on a combination of attacks, particularly on those that had not
been seen during training. ROMark [28] was also more robust
in some specialised attack categories, though HiDDeN [16]
had higher accuracy in these categories.

Additional improvements were made to the framework from
HiDDeN [16] by Hamamoto et al. [36]. This work uses
a neural network for attack simulation rather than a single
differentiable noise layer. There is a rotation layer followed by
an additive noise layer, allowing the model to learn robustness
against geometric rotation attacks. It also features a noise
strength factor to control the robustness/imperceptibility trade-
off. It was tested against HiDDeN [16] and found to achieve
greater image quality after watermark embedding, as well as
greater robustness against JPEG compression. This model was
the first to be trained to meet the Information Hiding Criteria
(IHC) for robustness while simultaneously resisting geometric
rotation attacks. It is suggested for future work to combine the
architecture with a Scale Invariant Feature Transform (SIFT)
detector [37], which is able to detect image features that
are robust for embedding to withstand geometric attacks in
traditional watermarking algorithms.

A novel embedding strategy using Inverse Gradient Atten-
tion (IGA) [30] was adopted recently. Similar to Attention-
based Data Hiding [29], the focus is on identifying robust
pixels for data hiding by using an attention mask. In the IGA
method, the attention mask indicates the gradient values of the
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input cover image, which shows the robustness of each pixel
for message reconstruction. It builds on the idea of adversarial
examples first used for digital watermarking in HiDDeN [16],
and uses the attention mechanism to locate the worst-case
pixels for perturbation. By identifying robust pixel regions, this
method further improves the payload capacity and robustness
of watermarked images in tests against the following papers
[16], [21], [38].

A novel two-stage separable deep learning (TSDL) frame-
work for watermarking is introduced by Liu et al. [27], which
addresses the problems with one-stage end-to-end training
(OET) such as slow convergence leading to image quality
degradation, and having to simulate noise attacks using a
differentiable layer. Instead of relying on differentiable approx-
imations, the TDSL framework can use true non-differentiable
noise attacks such as JPEG compression during training. This
is because, in OET models, the encoder and decoder are
trained using a differentiable noise layer, which means the
noise must support backpropagation. The TDSL framework
consists of noise-free end-to-end adversary training (FEAT),
which is used to train an encoder that autonomously encodes
watermarks with redundancy and without reference to any
noise. Noise aware decoder only training (ADOT) is used
to train the decoder so that it is robust and able to extract
the watermark from any type of noise attack. The model was
tested against HiDDeN [16] and ReDMark [25], and found
to achieve superior robustness for all but one attack category
(crop). However, the two-stage training method is also robust
against black-box noise attacks that are encapsulated in image
processing software, which have not been tested in previous
works.
Wasserstein GAN. A popular variation of the traditional
GAN technique is the Wasserstein GAN (WGAN) [39]. This
technique improves the model stability during training, as well
as decreases the sensitivity of the training process to model
architecture and hyperparameter configurations. The WGAN
framework also provides a loss function that correlates with
the quality of generated images. This is particularly useful for
watermarking and steganography in the image domain, since
image quality must be effectively optimised. Instead of the
discriminator component of the network, WGANs include a
critic. Rather than predicting the probability that a given image
is real or fake, as is the discriminator’s goal, the critic outputs
a score denoting the ‘realness’ of the input image. In a data
hiding scenario, the encoder’s aim is to maximise the score
given by the critic for real instances – which corresponds
to an encoded image. Current papers adopting the WGAN
framework for their watermarking models include [38], [40]–
[42].

Zhang et al. [38] introduced SteganoGAN. Three variants
of encoder architecture are explored, each with different con-
nectivity patterns. The basic variant applies two convolution
blocks, where the encoded image is the output of the second
block. Residual connections have been shown to improve
model stability [43], and in the residual variant, the cover
image is added to the encoder outputs so that it learns to
produce a residual image. The third variant uses a method
inspired by DenseNet [44], in which there are additional

feature connections between convolutional blocks that allow
the feature maps generated by earlier blocks to be concatenated
to those generated by subsequent blocks.

Using adversarial training, this model achieves a relative
payload of 4.4 BPP, 10 times higher than competing deep
learning methods. Although both works [16], [38] have mech-
anisms in place for handling arbitrarily-sized cover images as
input, the higher payload capabilities of [38] means it can
support a greater range of watermark data. The paper also
proposes a new metric, Reed Solomon Bits Per Pixel (RS-
BPP), to measure the payload capacity of deep learning-based
data hiding techniques so that results can be compared with
traditional data hiding methods. Although the primary focus
for SteganoGAN is steganography, the high payload capacity
and low detection rate of SteganoGAN produced images can
also be applied to watermarking.

Two further works by the same authors also use the WGAN
framework. Plata et al.introduced a new embedding technique
where the watermark is spread over the spatial domain of
the image [40]. The watermark message is converted into a
sequence of tuples, where the first element of each is converted
to a binary representation. The spatial message is created by
randomly assigning binary converted tuples to sections of the
message, including redundant data for increased robustness.
The paper also introduces a new technique for differentiable
noise approximation of non-differentiable distortions which al-
lows the simulation of subsampling attacks. The attack training
pool is expanded from previous works to include subsampling
and resizing attacks, and this wide range of attacks used
during training increases general robustness. However, the
spatial spread embedding technique reduces the embedding
capacity, so is only useful for applications where capacity is
not a priority. Furthermore, the training framework proposed
requires half as much time as prior methods [16], [21], [25].
The authors expand upon this work in a follow-up paper [41],
which introduces the double discriminator-detector architec-
ture. The discriminator is placed after the noise layer, and
receives both noised cover images and noised encoded images,
and thus the discriminator learns to distinguish watermarked
and non-watermarked images with attacks already applied.
In practical contexts, this is useful because it reduces the
likelihood of false accusations being made of IP theft. If the
image has already been attacked and must be proven to contain
a watermark, this training technique is useful. Crucially, it does
not degrade the overall robustness of the encoded images.

A technique for encoded image quality improvement is
introduced by Wang et al. [42] based on texture analysis.
The cover image texture features are analysed by a grey co-
occurrence matrix which divides the image into complex and
flat regions. The paper utilises the StegaStamp network [45]
for embedding the watermark in the flat texture regions. This
reduces the degree of image modification and improves the
quality, and hence imperceptibility, of encoded images. The
network in StegaStamp [45] produces higher quality images
from low contrast examples; therefore the contrast value is
used to calculate the texture complexity of the image.

Attention-based Data Hiding (ADBH) [29] introduced an
attention mechanism that helps the generative encoder pinpoint
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TABLE I: Summary table of deep learning-based digital watermarking methods.

Arch Model Domain Embedding Network Extractor Network RA RC Remarks

AE CNN [12] Frequency AE CNN AE CNN First CNN for watermarking. Blind technique
[24] Spatial AE & RB RB X Autoencoder + visual mask

CNN

[21] Spatial Channel Coding & CNN Channel coding & CNN Channel Coding & CNN for attacks
[25] Frequency CC layer & DCT layer DCT layer X X Diffusion mechanism
[23] Spatial CNN CNN X X Invariance layer and image fusion
[26] Spatial CNN & AP CNN X X Robustness against geometric attacks

GAN

[16] Spatial AL GP & CNN Adversarial examples for embedding
[30] Frequency IG attention mask & CNN CNN IG mask improves capacity and robustness
[28] Spatial AL FC layer X Min-max formulation for robust optimisation
[27] Spatial AL FC layer X X Two stage training
[36] Spatial CNN CNN + FC layers X Robust against rotation and JPEG compression

WGAN

[38] Spatial CB & ASP CNN High payload capacity
[40] Spatial CNN CNN + AP Spatial spread embedding technique
[41] Spatial CNN CNN + AP Double discriminator-detector
[42] Spatial CNN & MP CNN & MP X Uses texture analysis

AE: auto-encoder, RB: residual block, AP: average pooling, ASP: adaptive spatial pooling, AL: adversarial loss, CB: convolutional block, FC: fully
connected, IG: inverse gradient, GP: global pooling, MP: max pooling, CC: circular convolutional, RA: resolution adaptability, and RC: robustness trade-
off controls.

areas on the cover image best suited for data embedding. The
attention model is an input processing technique that allows
the network to focus on specific aspects of a complex input
one at a time. The attention model generates an attention mask,
which represents the attention sensitivity of each pixel in the
cover image. The value is regularised to a probability denoting
whether altering the corresponding pixel will lead to obvious
perceptual differences in the image that will be picked up by
the discriminator. This improves the embedding process of the
encoder network.

Rather than hiding a binary watermark message, this tech-
nique hides a secret image in the cover image. In the adopted
CycleGAN framework, there is a target image generative
model and a secret image generative model. The former
generates watermarked images which are then fed to the cover
image discriminative model, and builds on the PatchGAN
model to operate on one image patch at a time [46]. Similarly,
the secret image generative model serves as input for the secret
image discriminative model. This architecture uses adversarial
learning for both the embedding and extraction processes,
ensuring that the distributions between both the cover and
encoded images, and the encoded and extracted watermarks,
are indistinguishable. The extractor network also operates on
unmarked cover images, and inconsistent loss is used to make
sure that, when this happens, there should be no correlation
between the extracted data and the original watermark.

The three central contributions of this paper – the attention
model, the use of cycle discriminative models, and the extra
inconsistent loss objective – were all tested in isolation and
found to improve the performance of the model overall in
terms of both image quality and robustness.

3) Discussion: From the state-of-the-art deep learning
methods discussed above, it seems that the GAN framework
is the most promising in terms of robustness and secrecy
optimisation due to the inclusion of adversarial loss in the
objective calculations. To illustrate this, in HiDDeN [16], tests
were conducted without including the adversary network and

found to include perceptible alterations, whereas including the
adversary greatly improved performance to produce an invis-
ible watermarking technique. In tests comparing robustness,
GAN-based models performed well, but were improved by
techniques to target robust pixels for watermark embedding,
such as the attention mechanisms used in Attention-based Data
Hiding [29] and the IGA method [30].

It is also important for models to be robust against a range
of attacks. Papers such as those by Hamamoto et al. [36]
and Plata et al. [40] incorporate geometric rotation techniques,
and subsampling and resizing attacks respectively. Having a
wider range of attack types during training increases general
robustness. Additionally, using true non-differentiable noise, as
shown in the two stage training technique developed by Liu
et al. [27], provides better results for JPEG compression than
models that use differentiable approximations. Using a trained
CNN to generate attacks, Distortion Agnostic Watermarking
[21] is also a promising approach for diversifying the attacks
encountered during training.

To produce an adaptable, generalised framework, it is impor-
tant to include features such as host and watermark resolution
adaptability, as well as robustness controls to influence the ro-
bustness/imperceptibility trade-off. Robustness controls make
these models suitable for both watermarking and stenography,
which relies more heavily on imperceptibility. The ideal digital
watermarking model would include pre-processing networks
for any watermark data or cover image to be input, as the
framework was developed by Lee et al. [26], while also
taking advantage of an adversarial discriminator or critic. The
techniques used in [28] to improve robustness by obtaining
and optimising parameters for ROMark worst-case examples
is also a promising technique for improving robustness.

If a future model could combine these features; atten-
tion mechanisms to improve embedding, robustness against
geometric attacks, host and watermark resolution controls,
robustness controls, and handling worst-case distortions, it
could result in a highly robust and adaptable framework.
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However, the added overhead of all these added features could
be an issue in practice.

Table I shows a summary of the deep watermarking models
reviewed in the above section. It shows whether the embedding
strategy operates in the spatial or frequency domain, the nature
of the watermark embedding and extracting networks, whether
the technique supports host resolution adaptability (so that any
cover image resolution can be used), and whether it includes
controls for influencing the trade-off between imperceptibility
and robustness. The remarks column describes any important
information or novel contributions of the paper.

B. Deep Learning-based Steganography Techniques
This section classifies deep steganography techniques based

on model architecture. Most techniques adopt the encoder-
decoder structure shown in Figure 4, and are based on convo-
lutional neural networks (CNNs). Many steganography imple-
mentations differ from watermarking implementations in their
use of the U-Net structure for image segmentation [47]. Table
II shows a summary of deep learning-based steganography
methods reviewed in this section.

1) Encoder-decoder Framework: CNN-based encoder-
decoder structures have been adopted in the following papers
[17], [45], [48]–[53]. A simple diagram of the encoder-decoder
deep watermarking structure can be found in Figure 4.

A paper from Google research [17], published in 2017,
presented a deep steganography technique for hiding images
inside other images. The structure contains three components
in total. The first being the prep network, which serves two
purposes; to adjust the size of a smaller secret image to fit
into the cover image, and to transform the colour-based pixels
to recognisable features to be encoded into the cover image.
The second layer of the encoder is called the hiding network.
As the name suggests, this layer creates the final stego-
image. The final layer is the reveal network which is used
to decode the output from the second layer. The experiments
in the work [17] were mainly conducted to show that it was
possible to completely encode a large amount of data with
limited visual disturbances in the cover media. However, such
a technique lacked robustness, security, and was not of high
quality. It was possible for attackers to recover both the cover
and secret image with a trained network.

Another image encoding technique called StegNet [48] was
released in 2018. StegNet used structures from both auto-
encoders and GANs to set up the encoding network. The
cover image and the secret image were concatenated by a
channel prior to the CNN encoding structure. Variance loss
was included in loss calculations for the encoder and decoder.
It was found that including the variance loss helped the neural
network distribute the loss throughout the image rather than
having concentrated areas of perceptual loss, improving the
overall imperceptibility of embedding. The presented tech-
nique was highly robust against statistical analysis and when
used against StegExpose [54], a commonly used steganalysis
tool, it was also resistant against those attacks. Although
robust, there were still some limitations to this method. Secret
images and cover images must match in size and noise is still
somewhat prominent in smoother regions.

Comparing the method of Baluja et al. [17] and StegNet
[48], there has been a vast improvement in image hiding.
The inclusion of components adapted from GANs and auto-
encoders in StegNet [48] increased the robustness of the stego-
images and was therefore more resistant to StegExpose [54].
Though StegNet [48] is quite robust, it is still lacking in some
areas such as quality, image size restrictions and noise.

A faster R-CNN (region-based CNN) method was intro-
duced in [49]. Firstly, the cover image is passed through
a region proposal network, which makes the selection for
feature extraction faster. Softmax loss is used to box these
regions and then specific existing steganographic algorithms
are selected and assigned to the boxed regions. Since [49] uses
a technique of selecting different steganography algorithms,
using a combination of HUGO [33], S-UNIWARD [35] and
WOW [34] algorithms, it is able to achieve highly impercep-
tible embedding. Being able to select effective areas on the
cover image also allows Meng et al. [49] to maintain a high
level of robustness.

The adaptation of the fusion technique [49] allows for
minimal distortion in the extracted stego-image. When looking
at StegNet [48], there is a concern for noise in smoother
areas of the cover photo. Although [48] has been shown to
be robust, it could be further improved in this area with the
box selection the fusion method [49] has. This does lead to
a capacity dilemma if there was a method combining both
StegNet [48] and the fusion method [49], since the latter would
naturally be using less cover image area and therefore have a
smaller capacity compared to StegNet [48].

A unique approach for steganography is shown by Sharma et
al.in [50]. In this paper, both the encoder and decoder consist
of two layers. In the first layer, the prep layer, smaller images
are increased in size to correctly fit the cover image, there is
a reconstruction of colour-based pixels to create more useful
features, and the pixels are scrambled and then permutated.
The second layer, the hiding layer, produces the stego-image
with the output of the first layer and the cover image inputted.
The decoder consists of the reveal layer and the decrypt layer.
The reveal layer removes the cover image and the decrypt
layer decrypts the output of the reveal layer. The advantage of
this technique is that the first layer and its encryption method
are similar to cryptography practices, allowing for a more
secure embedded stego-image. Even when the cover media
is known to the attacker, it is far more secure and difficult for
the attacker to decode the secret image. This technique can
also be applied to audio.

A reversible image hiding method was introduced by Chang
et al. [53]. The structure relies on a concept called long short
term memory. To encode, the cover image goes through a
neural network in order to get a prediction, called the reference
image. By subtracting the cover image from the reference
image, the cover residuals (prediction errors) are calculated.
Using histogram shifting (HS) on the cover residuals then
produces stego residuals, along with an overflow map that is
later used for the decoder. The stego-image is then created by
adding the stego residual to the reference image. Where there
is a pixel intensity flow, the overflow map is pre-calculated
to flag these pixels. The decoder is essentially the reverse
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TABLE II: Summary table of deep learning-based steganography methods.

Arch Model Embedding Network Extractor Network Remarks

CNN

[17] CNN CNN Embeds coloured image in coloured cover image
[48] CNN CNN Concatenating channel for embedding
[49] R-CNN & CNN N/A Uses multiple techniques-based on selected regions
[50] CNN CNN Embeds by scrambling and permutating pixels
[53] LSTM w/ CNN & HS LSTM w/ Conv. layers & HS Uses HS for reversibility
[55] CNN & Adversarial Emb N/A Trains stego-images with steganalysers

CNN w/ Adv. Training [56] CNN with ReLU CNN with ReLU Several models for different priorities

U-Net CNN [51] U-Net CNN w/ BN & ReLU CNN w/ BN and ReLU Can withstand high and low frequencies
[45] CNN U-Net CNN Embeds hyperlinks in images

[52] U-Net from Cycle-GAN CNN Improvement on [16] for diverse use

GAN
[57] CNN CNN Hides data in Y channel of cover image
[58] GAN & CNN N/A Generates a textured cover image
[59] CNN CNN Improvement on [38] in capacity and security

of the encoder, where the stego-image goes through a neural
network to get a reference image, and the rest follows in
reverse. This technique creates high quality, high capacity
images that contain minimal noise. Its invertible feature to
recover the cover image is unique to many other CNN based
steganography.

Tang et al. [55] produced a steganography technique that
uses adversarial embedding, called ADV-EMB. The network
is able to hide a stego-message while being able to fool a
CNN based steganalyser. The encoding network consists of
a distortion minimalisation framework that adjusts and min-
imises the costs of the image according to features (gradients
backpropagation) from the CNN steganalyser. The focus of
ADV-EMB [55] is to prevent steganalysers from being able to
detect the stego-image. This shows in their results, with a high
security rate and also increased imperceptibility. They are also
able to train the system to counter unknown steganalysers by
using a local well-performing CNN steganalyser as the target
analyser, allowing for diverse applications. Although ADV-
EMB [55] is able to decrease the effectiveness of adversary-
aware steganalysers, it has a weak pixel domain. However, an
increase in payload capacity would increase the detection rate
of steganalysers.

U-Net CNN. U-Net CNNs are used to facilitate more nuanced
feature mapping through image segmentation. This is useful
in image steganography applications because a cover image
can be broken up into distinct segments based on a certain
property (for example, [51] uses a heatmap to score suitable
embedding areas).

A U-Net CNN technique for reversible steganography was
developed by Ni et al. [51]. This technique is capable of
directly encoding the secret image into the cover image by
concatenating the secret image into a six-channel tensor. Its
decoder is formed from six convolution layers, each of which
is followed by a batch normalisation and a ReLu activation
layer. The embedding technique is not easily affected by
excessively high or low frequency areas. It is also able to
produce a high-quality image with a capacity that is in general
better than other cover-selection and cover-synthesis based
steganography techniques. Even with its high capacity capa-

bilities, like other steganographic techniques that do not focus
on robustness, too high of an embedding rate will increase
the distortion rate more dramatically compared to robustness
based steganography.

Universal Deep Hiding (UDH) is a model proposed for
uses in digital watermarking, steganography, and light field
messaging [52]. The encoder uses the simplified U-Net from
Cycle-GAN [60], and a dense CNN for the decoder. The
encoder hides the image in a cover-agnostic manner, meaning
that it is not dependent on the cover image. UDH is an effective
method due to the high-frequency discrepancy between the
encoded image and the cover image. This discrepancy makes
embedding robust in low-frequency cover images. UDH is
also less sensitive to pixel intensity shifts on the cover image.
The UDH method was compared with cover-dependent deep
hiding (DDH). Since the encoding of the secret image was
independent of the cover image, there was no method to adapt
the encoding mechanism according to the cover image. The
cover image may have some smoother areas which may not be
ideal to embed data into, but with UDH there was no method
of finding out this type of information. UDH is also unable to
work well with severe uniform random noise.
CNN with Adversarial Training. The inclusion of adversarial
attack networks during training can be used to help improve
against steganalysis and promote robustness. Adversarial train-
ing helps the system distinguish small perturbations that an
untrained steganography method may bypass. This is an im-
portant feature to have in steganography, since its main focus
is to protect message security. Chen et al.developed a model
that incorporates a trained CNN-based attack network that
generates distortions [56], similar to the technique used in the
watermarking framework used by Xiyang et al.in Distortion
Agnostic Watermarking [21]. The encoding structure is based
off of a simple model that hides a secret grey-scale image
into channel B (blue) of a coloured cover image, where both
must have the same resolution. From this basic model, the
paper was able to add two other enhanced models, a secure
model and a secure robust model. The secure model inserts a
steganalysis network into the basic model where its goal is to
increase security against steganalysis. The secure and robust
model uses the secure model and inserts an attack network to



11

increase the robustness of the system. The separation of each
model allows the framework by Chen et al. [56] to be used
in several different scenarios, allowing the user to adjust to
their needs. A downside is that users are unable to send RGB
pictures and are limited to just grey-scale images.

The secure model was shown to have the best invisibility
against all models and was still the best when compared to the
following methods [17], [61]. The secure and robust model
did not perform as well as the secure model but was still able
to improve. The basic model and the secure model showed
increased visual results in this comparison, with the secure
model having the best visual results. The visual results of the
secure and robust model were similar to ISGAN [57].

2) Generative Adversarial Networks based models: Gen-
erative Adversarial Networks (GANs) are used extensively
in deep steganography. Various new structures have allowed
the simple GAN structure to be improved, increasing the
effectiveness of steganography. It has brought up interesting
techniques such as coverless steganography, and the ability
to generate cover images. GAN-based architectures have been
used in the following papers [57]–[59], [62], [63].

ISGAN is a steganography technique that uses the GAN
structure [57]. Similarly to the secure technique developed by
Chen et al. [56], ISGAN is only able to send a grey-scale
secret image. The encoder first converts the cover image into
the YCrCb colour space where only the Y channel is used to
hide the secret image since it holds luminance but no colour
information. This colour space conversion does not affect
backpropagation. The encoder also uses an inception module,
which helps to fuse feature maps with different receptive
field sizes. To aid the speed of training, the technique also
adds a residual module and batch normalisation. A CNN is
used to decode with batch normalisation added after every
convolutional layer excluding the final layer. The results of
this model showed that it was able to achieve a high level
of robustness, with low detectability when scrutinised using
steganalysis tools.

In comparison to [61], ISGAN residuals were less obvious,
showing that the extracted secret image of ISGAN is much
closer to the original than [61]. ISGAN is also able to achieve
higher levels of invisibility since ISGAN uses a grey scale
image. Thus, there is a trade-off between the complexity of the
image (i.e. RGB values) and the imperceptibility of embedded
information.

Two separate designs are introduced by Li et al.in [58],
which studies embedding data into texture images. The first
model separates the texture image generation and secret image
embedding processes. The texture image is generated using
a deep convolutional generative neural network. The output
of this is then used as the input for the concealing network
for image hiding. The second model integrates the concealing
network with the deep convolutional generative network. This
second network should be able to generate the texture image
while simultaneously embedding another image. The first
model is easier to train and can be used in more diverse
applications than the second model. Detection rates from
steganalysis tools are almost 0 in both cases. These models
provide high security, but with a few limitations. Firstly, the

cover images generated are only textures and other subjects
are not considered. Colour distortions also occur in the second
model when the cover and secret images differ too much.

Coverless steganography is possible because of the features
of GAN. The general encoding idea of the proposed coverless
method [59] was that at first convolutional blocks were used
to process the cover image to get a tensor, a. The secret
message was then concatenated to a and processed through
another convolutional block to get b which was the same size
as a. The paper details two different models, one called the
basic model and the dense model. The basic model uses the
aforementioned encoding scheme, whereas the dense model
includes a skip connection to increase the embedding rate.
The decoder for both models uses Reed Solomon algorithms
on the tensor produced from the stego-image. The aim of
this model was to improve the capacity and quality that other
coverless steganography has not been able to achieve. Encoded
image quality and payload capacity of the stego-images were
improved when compared to [38]. The basic model introduced
by Quin et al. [59] was able to perform significantly better in
these aspects while the dense model was able only to match
SteganoGAN [38]. The decoding network used in the coverless
method [59] was also more accurate than the one proposed
for SteganoGAN [38]. But there is a difference in the media
encoded, where the coverless method [59] encodes a string of
binary messages while SteganoGAN [38] is able to encode an
image.

Many steganography techniques have not been invertible
and leave the cover image distorted after removing the secret
piece of media. With the method proposed by Chang et al.
[63], the model was able to achieve invertible steganography.
The method used is based on the Regular-Singular (RS)
method. RS realises lossless data embedding through invertible
noise hiding. There are three discriminate blocks used in this
technique – regular, singular and unusable – in order to get the
RS map. The adversarial learning component serves to capture
the regularity of natural images. The model uses conditional
GAN to synthesise, where the generator uses a U-Net structure
and a Markovian discriminator is used. The use of GAN in
conjunction with the RS method greatly improved upon the
results of previous RS-based models.

Currently, the paper [51] uses a basic GAN structure and
could be further improved or diversified with the adaption of
other GAN structures. This could lead to further improvements
in cover media recovery in terms of quality. Overall, the
adversarial learning adopted in GAN-based models leads to
greater robustness in steganography applications.
CycleGAN. CycleGAN is a variation of the GAN architecture
for image-to-image translation. The CycleGAN framework
was adopted for steganography in S-CycleGAN [62]. Within
the model, there were three discriminators, two of which used
the same function as the original CycleGAN framework. The
third was an increased steganalysis module used to distinguish
the stego-image from the generated images. The training cycle
consists of three stages. First is the translation of the image
from the X-domain to the style of the Y-domain. Second is
the use of an LSB matching algorithm to embed the secret
message into the output of the first stage. The third stage is
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where the stego-image is reconstructed to the input image of
the first generator to the second generator. The full objective
function included adversarial loss for all discriminators, as
well as cycle consistency loss for the generative models.
The advantage of S-CycleGAN is its ability to produce high
quality images that are also robust against steganalysis. Overall
S-CycleGAN [62] showed results that were more resistant
to detection, increasing the invisibility of embedded stego-
images.

When S-CycleGAN [62] is compared against SGAN [64],
the quality of the image is much higher, with 2.6x the Incep-
tion Score and 7x the Frechet Inception Distance of SGAN.
In general, the results of S-CycleGAN [62] showed that it was
much more robust than SGAN, and the combined use of the
original CycleGAN framework and traditional steganography
algorithm S-UNIWARD [35].

C. Data Hiding Detection and Removal Mechanisms

Improved data hiding techniques have led to the develop-
ment of more advanced strategies for detecting and removing
hidden data. In the context of steganography, the field of
steganalysis is devoted to identifying and extracting covert
messages. Unlike steganography, watermarking is primarily
intended for identifying the owner of the media rather than
hiding secret messages. As a result, preventing the detection
of data in watermarking is less critical, as long as the data
cannot be modified or removed from the cover media. In
watermarking, adversaries are more concerned with removing
or degrading the watermark without altering the original cover
media. It is important to understand the goals and methods of
adversaries in data hiding depending on the application, since
these scenarios should be mitigated by the data hiding strategy.

1) Steganlysis: Steganalysis refers to the process of detect-
ing covert steganographic messages from the perspective of
an adversary. These techniques involve analyzing the media
to identify any flaws in the embedding process and determine
whether it has been encoded. There are two main categories of
steganalysis techniques: signature steganalysis and statistical
steganalysis, as noted in reference [11].

Signature steganalysis is comprised of two types called
specific signature steganalysis and universal signature ste-
ganalysis. In specific signature steganalysis, the adversary is
aware of the embedding method used, whereas universal sig-
nature steganalysis does not require this knowledge. Therefore,
universal signature steganalysis can be used to detect several
types of steganographic techniques [11], [65].

The development of steganalysis, along with new steganog-
raphy techniques, is crucial since it shows how robust new
embedding techniques are to ever-improving detection tech-
nologies.

2) Watermark Removal Strategies: Watermark removal
techniques can be separated into three categories [66]. The
first, blind watermark removal, is the technique that deep learn-
ing methods can defend against through varied attack simula-
tion strategies. In blind removal techniques, the adversary has
no knowledge of the watermarking process and attempts to de-
grade the watermark through attacks such as compression and

geometric distortions. In key estimation attacks, the adversary
has some knowledge of the watermarking scheme, and is then
able to estimate the secret key used for embedding. Similarly,
in tampering attacks the adversary has perfect knowledge of
the watermarking scheme, resulting in a complete breakdown
of the watermarking system where the secret key is explicitly
obtained. In deep learning-based watermarking, the system
is a black box even to its creators, hence the watermarking
scheme cannot be uncovered by adversaries. Deep learning-
based strategies only need to protect against the first type of
attack, which is blind attacks. However, as watermark removal
techniques improve through deep learning methods of their
own, this is likely to change [13].

D. Results

In this section, the robustness and imperceptibility of var-
ious deep data hiding models are presented and compared.
Although there is no universally accepted standard dataset
for testing deep data hiding models, COCO [67] is the most
widely used dataset. Hence, the results achieved using this
dataset were compared. Bit Error Rate (BER) and Peak
Signal-to-Noise Ratio (PSNR) are the two commonly recorded
metrics, although some papers only report one. It is important
to note that the tests were conducted using different cover
images and watermark dimensions, as indicated in the tables.
Moreover, some papers employed a fixed pool of attacks dur-
ing testing. Therefore, the results are not directly comparable
but provide a general indication of the relative performance of
the models.

Table III compares deep data hiding models based on Bit
Error Rate (BER), a measure of robustness. All models were
tested using the COCO [67] dataset. The BER for all models
is not directly comparable due to the different resolutions of
cover images and the size of watermark payload. For example,
a watermark embedded in a higher-resolution image can retain
integrity without sacrificing encoded image quality, therefore
improving robustness. Conversely, a smaller watermark pay-
load can be embedded with less of a degradation in cover
image quality, also improving robustness.

Table IV compares deep data hiding models based on Peak
Signal-to-Noise Ratio (PSNR), a measure of encoded image
quality. All models were tested using the COCO [67] dataset.

IV. NOISE INJECTION TECHNIQUES

Apart from model architecture, deep learning-based data
hiding techniques can also be categorized based on the type
of noise injection methods used. These methods are employed
during training to simulate attacks and improve the robustness
of the final model.

Several techniques have been utilized to enhance the ro-
bustness of deep learning-based data hiding models through
attack simulation. The most frequently used approach involves
employing a pre-defined set of attacks, which are simulated
using a differentiable noise layer and subsequent geometric
layers. Other methods include using a trained Convolutional
Neural Network (CNN) to generate novel noise patterns, as
discussed in references [21] and [56], and adopting a two-stage
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TABLE III: Comparing deep learning-based watermarking models based on their robustness, as measured by Bit Error Rate
(BER). The ‘Results Origin’ column indicates the source paper for each BER result.

Model Results Origin Architecture Cover Image Dimensions Watermark Bits BER (%)
HiDDeN [16] [30] GAN 128 x 128 30 20.12

IGA [30] [30] GAN 128 x 128 30 17.88
DA [21] [30] GAN 128 x 128 30 20.48

ReDMark [25] [25] GAN 128 x 128 30 18.18
Rotation [36] [36] GAN 64 x 64 8 8.0

DNN [23] [23] CNN 128 x 128 32 20.12
Double Detector-Discriminator [41] [41] GAN 256 x 256 32 5.53

Spatial-Spread [40] [41] GAN 256 x 256 32 8.38
Two-Stage [27] [27] GAN 128 x 128 30 8.3

TABLE IV: Comparing deep data hiding models based on encoded image quality, measured using PSNR. The ‘Results Origin’
column shows the paper which the PSNR result is taken from.

Model Results Origin Architecture Cover Image Dimensions Watermark Bits PSNR (dB)
Two-Stage [27] [27] GAN 128 x 128 30 33.51

ABDH [29] [29] CycleGAN 512 x 512 256 31.79
ISGAN [57] [29] GAN 512 x 512 256 24.08

DA [21] [21] GAN 128 x 128 30 33.7
HiDDeN [16] [21] GAN 128 x 128 30 32.3

DNN [23] [23] CNN 128 x 128 32 39.93
WMNET [26] [23] CNN 128 x 128 32 38.01
ROMark [28] [28] GAN 128 x 128 30 27.80

IGA [30] [30] GAN 128 x 128 30 32.80
SteganoGAN [38] [30] GAN 128 x 128 30 30.10

training process to increase the complexity of the simulated
attacks, as described in reference [27]. The following section
provides an overview of various noise injection techniques,
along with their respective strengths and weaknesses.

A. Identity

Some earlier deep learning-based data hiding techniques
[12] did not involve attack simulation and were primarily in-
tended as proof-of-concept demonstrations. Subsequent mod-
els generally include a control training scenario where no noise
is added, such as the ”Identity” layer in HiDDeN [16]. It is
unsurprising that techniques without attack simulation during
training result in significantly lower levels of robustness. For
instance, when subjected to JPEG and Crop distortions, the
HiDDeN model trained exclusively with the Identity layer had
only a 50% success rate in successfully extracting watermarks
and performed considerably worse when exposed to other
types of attacks.

B. Pre-defined Attack Pool

The most common technique for noise injection is to use a
fixed pool of pre-defined attack types. Then, during training,
the model can be exposed to one, multiple, or the entire range
of attack types. Each attack includes an intensity factor that
can be adjusted in order to vary the strength of the attack
during training. In an ideal scenario, the model would be just
as effective with all attack types when trained against the
entire range as when trained with one specific attack. In most

scenarios, the model uses a differentiable noise layer, meaning
that all noise-based attacks must support back-propagation to
cohesively work with the neural network [16]. Since non-
differentiable noise attacks such as JPEG compression are
common in real attack scenarios, they are incorporated into
training using differentiable approximations [16]. The accu-
racy of these approximations is crucial to creating models that
are robust against non-differentiable noise, therefore efforts
have been made to revise and improve these approximations
[40].

Further improvements to the pre-defined attack pool include
a greater range of attacks. For example, a rotation layer
was added to the framework by Hamamoto et al. [36], and
subsampling and resizing attacks were incorporated by Plata
et al. [40]. Various techniques have been introduced to improve
the performance of models on a combined range of attacks,
since early techniques using this method [16] showed im-
proved performance when trained with specific attacks rather
than a range. For instance, ROMarK [28] adopts a technique
wherein distortions that generate the largest decoding error are
generated and used to optimise the model’s parameters during
training.

C. Adversarial Training
Another technique for noise injection does not use a fixed

set of pre-defined attacks, but rather uses a separately trained
CNN to generate novel noise-based distortions [21], [56]. The
Distortion Agnostic model [21] generates distortions based
on adversarial examples, using a CNN to generate a diverse
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set of image distortions. The Distortion Agnostic model was
tested against HiDDeN and exposed to a number of distortions
not seen during training, such as saturation, hue, and resizing
attacks, and was found to be more effective. Although the
Distortion Agnostic model could not surpass HiDDeN’s ef-
fectiveness against a specific attack when trained only with
that type, but this is not a practical training setup for an end
use scenario. Using a trained CNN for attack generation can
greatly improve robustness since distortions are generated in
an adversarial training scenario. This means that distortions
are generated explicitly to foil the decoder network throughout
training.

D. Two-stage Training for Noise Injection

A novel training method developed by Liu et al. [27]
improves noise injection techniques in two ways. Firstly, a
training method dubbed Two-Stage Separable Deep Learning
(TSDL) is used. This second stage of training is adopted for
the decoder so that can work with any type of noise attacks,
improving practicality. Because of this novel training scenario,
this model can be trained using true non-differentiable dis-
tortion, rather than differentiable approximations. Aside from
this distinction, a fixed pool of pre-defined attacks is still used
during training. The use of true non-differentiable noise during
training improved robustness against such attacks, including
GIF and JPEG compression, but it is unclear from this work
whether the increased overhead of the TDSL framework is
a suitable trade-off for this improved performance, given the
relative accuracy of differentiable approximations.

V. OBJECTIVE FUNCTIONS

Objective functions are used when training machine learning
models to optimise their performance. The function measures
the difference between the actual and predicted data points.
By optimising the loss function, the model iteratively learns
to reduce prediction errors. The loss functions used for the
discussed data hiding models fall into the regression category,
which deals with predicting values over a continuous range,
rather than a set number of categories.

The aim of data hiding models is to optimise both robustness
and imperceptibility, finding a balance between these two
properties depending on the application’s needs. The most
common architecture for deep data hiding models is the
encoder-decoder architecture where the model is partitioned
into two separate networks for encoding and decoding. A
common method for evaluating loss is to have two separate
equations, one for the encoder and one for the decoder, and
compute the total loss across the system as a weighted sum.
Architectures that include an adversarial network also include
adversarial loss in this sum. When optimising imperceptibility,
the loss between the initial cover image and the final encoded
image must be minimised. When optimising robustness, the
loss between the initial secret message or watermark infor-
mation and the final extracted message must be minimised.
This is the bases for the encoder-decoder loss method. This
section will go through some common objective functions
utilised in deep learning models for data hiding, as well as

novel strategies that do not follow the encoder-decoder loss
framework.

A. Mean Squared Error (MSE)

A function used to compute the difference between two
sets of data. It squares the difference between data points in
order to highlight errors further away from the regression line.
In image-based data hiding, it can be used to compare the
cover image to the encoded image by taking the square of
the difference between all pixels in each image and dividing
this by the number of pixels. The equation’s sensitivity to
outliers makes it useful when pinpointing obvious perceptual
differences between two images. For example, a cluster of
pixels that are obviously different from the original is per-
ceptually obvious, but a change distributed over all image
pixels is harder to spot. The equation is also used to compute
the difference between the original and encoded watermark in
some applications. For two images X and Y of dimensions W
× H, the mean square error is given by the following equation:

MSE(X,Y ) =
1

WH

W∑
i=1

H∑
j=1

(Xi,j − Yi,j)2. (1)

MSE is used in these works [26], [36], [38], [40], [41], [57]–
[59] to calculate loss at the encoder, while many works [16],
[21], [25], [27], [42], [45], [48], [50], [51], [56] use it to
compute both encoder and decoder loss. MSE is used in
conjunction with SSIM 17 to calculate perceptual difference
at the encoder [57], [58]. The papers [42], [45] also use LPIPS
perceptual loss [68] to evaluate loss at the encoder, which is
discussed in Section VI-B. The Distortion Agnostic Model
[21] incorporates additional adversarial loss into its Euclidean
Distance functions. Loss at the encoder incorporates GAN loss
with spectral normalisation to further control the quality of the
encoded image. It is similar to the adversarial loss function
used in [16] in Equation (6), but is incorporated into the
encoder loss function rather than being weighted separately
in the overall weighted sum.

B. Mean Absolute Error (MAE)

Similar to MSE, MAE is used to compute the difference
between two sets of data, but instead takes the absolute
value of the difference between data points. Therefore, it does
not highlight errors further from the regression line or give
any special significance to outliers. It is used to compute
loss at the decoder in [26]. Since the secret message or
watermark consists of binary values, it is more suitable to
use MAE, which is suited to discrete values, to compute the
difference to ensure balanced training of both the encoder and
decoder networks. Additionally, it is used to calculate encoder
and decoder loss in [48], [52], [53], [63]. For two binary
watermarks M and M ′ of dimensions X x Y , the mean square
error is given by the following equation:

MAE(M,M ′) =
1

XY

X∑
i=1

Y∑
j=1

|M(i, j)−M ′(i, j)| (2)
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C. Cross Entropy Loss

This function is used to measure the difference between two
probability distributions for a given variable, in this case the
initial and extracted binary watermark message. The equation
takes in p(x), the true distribution, and q(x), the estimated
distribution. In digital watermarking this corresponds to the
original watermark and the extracted watermark respectively,
where q(x) is the output of the decoder network representing
the probability of watermark bits. Cross entropy loss takes the
log of the predicted probability, therefore, the model will be
‘punished’ for a making a high probability prediction further
from the true distribution. Cross entropy loss is given by the
following equation:

H(p, q) = −
∑
x

p(x)log(q(x)). (3)

This technique is used for measuring loss at the decoder in
[25], [36], [38], [42], [45], and used to compute adversarial
loss in [55], [63]

D. Mean-Variance Loss

Variance loss is used to calculate how loss varies across
an entire distribution. Using variance loss in conjunction with
mean calculations leads to loss being distributed throughout
an image rather than concentrated in certain areas. When
calculating loss at the encoder, it is important that there are
no concentrated areas of difference, since this will be easily
perceptible. The paper [48] adopts variance loss and MAE loss
for both encoder and decoder loss calculations.

A similar technique is applied by [40], [41], but for a
different reason. Variance loss is used to calculate loss at the
decoder rather than MSE since the redundant data used to
create the watermark message means the original watermark
and extracted watermark need not be identical. Rather than
extract this redundant data, as was done in [26], the loss
function was modified to a joint mean and variance function.
For original message M and extracted message M ′, the mean
and variance are given by:

Lm = (M,M ′) =
b2

HW (n+ k)
||M −M ′||1, (4)

Lv = (M,M ′) =
b2

HW

Hb∑
h=0

Wb∑
w=0

V ar(|M −M ′|), (5)

where b is the number of times every ‘slice’ of M is replicated
across the image in the spatial spread embedding technique
[40], and k relates to the number of tuples in the sequence
created in this technique.

E. Adversarial Loss

For deep learning models that use a discriminator network
for adversarial learning, an additional loss function is added to
the overall optimisation that accounts for the discriminator’s
ability to detect an encoded image. Adversarial loss can be
combined with loss at the encoder, since the encoder is the
generative network, to improve the imperceptibility of the

encoded watermark. The discriminator takes in an image X
that is either encoded or unaltered, and predicts A(I)ε[0, 1],
denoting the probability that X has been encoded with a water-
mark. The discriminator optimises the function for adversarial
loss from its predictions given by the following equation:

la(X,Y ) = log(1−A(Ic) + log(A(Y )), (6)

where X is the cover image, Y is the encoded image. This
equation is combined with the loss function for encoder loss
in [16], [28], [36].

F. KL Divergence

KL divergence is used to quantify the difference between
probability distributions for a given random variable, for
instance, the difference between an actual and observed prob-
ability distribution. It is often used in Generative Adversarial
Networks to approximate the target probability distribution.
This equation was used in [59] to calculate adversarial loss,
where it is used in conjunction with JS divergence. This
method for calculating adversarial loss can be represented in
the following way:

KL(P ||Q) =
∑
cεC

P (c)log
P (c)

Q(c)
, (7)

JS(P ||Q) =
1

2
KL(P ||P +Q

2
) +

1

2
KL(Q||P +Q

2
), (8)

where c is the cover image, P is the probability distribu-
tion function for all cover images, and Q is the probability
distribution function for the generated steganographic images.

G. Cycle Consistency Loss

This function is often used for CycleGAN implementations.
The function performs unpaired image-to-image translation
and is useful for problems where forward and backwards
consistency between mapping functions is important. In both
[29], [62], there are two generative and two discriminative
models used, therefore the framework needs to learn the
bijective mapping relationship between two image collections,
where the first contains the original cover images and the
second contains the secret images that serve as watermarks.
The generative model needs to learn to transform from one
source image domain to another, and this mapping relationship
cannot ensure that the extracted watermark is the same as
the original. Cycle consistency loss is detailed in [62] as an
equation for the transformation of an X-domain style image to
a Y-domain style image, where the generator models for both
domains satisfy backward cycle consistency. Cycle adversarial
loss is abstracted as the following:

DM (M,M ′) = GS(Ge(X,M,A)), (9)

where DS represents the cycle discriminative network judging
the extracted watermarks, M is the original secret watermark,
M ′ is the extracted watermark, GS is the generative model
that generates secret images to use as watermarks, X is the
cover image, and A is the attention mask.
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H. Wasserstein Loss

The following models [38], [40]–[42], [45] use a WGAN
framework, therefore using a critic network rather than a
discriminator to train the encoder. Rather than classifying an
example as ‘real’ or ‘fake’, the critic outputs a number. The
aim is to maximise this number for ‘real’ instances, which in
this case are images that have been encoded with a message.
Wasserstein loss is given by the following equation:

lw = C(X)− C(E(X,M)), (10)

where C(X) is the critic output for the initial cover image,
and C(E(X,M)) represents the critic output for the encoded
image E consisting of the cover image and watermark message
M .

I. Novel Approaches

Certain approaches to performance optimisation do not
follow the above framework for optimising at the encoder and
decoder, along with a third possible adversarial component.
Image Fusion. The technique developed in [23] differs from
many other deep learning techniques for digital watermarking
by approaching the process as an image fusion task, aiming to
maximise the correlation between the feature spaces of images.

The previous techniques focus on preserving certain parts
of the cover image in the resulting encoded image. Different
optimisations are applied to control embedding and extraction,
and weights are used to control watermarking strength. Con-
versely, [23] takes 2 input spaces, C denoting the cover image,
and W denoting the watermark. W is mapped onto one of its
latent feature spaces Wf . Watermark embedding is performed
by the function {Wf , C} →M , where M denotes the fusion
feature space of the watermark and cover image, creating an
intermediate latent space. In this system, the loss is computed
using the correlation function given by:

ψ(mi, w
i
f ) =

1

2
(||g(f1(wif )), g(f1(mi))||1+

||g(f2(wif )), g(f2(mi))||1),
(11)

where mi and wif are examples of the spaces M and W
respectively. g denotes the Gram matrix of all possible inner
products and f represents the convolutional blocks in the
encoder network. A similar image fusion approach developed
independently is utilised in [49]
Distortion Minimisation Framework. The steganography
model is detailed in [55], steganography is formulated as an
optimisation problem with a payload constraint:

minSD(X,Y ), ψ(Y ) = k, (12)

where X is the cover image, Y is the encoded stego-image,
and D(X,Y ) is a function measuring the distortion caused by
modifying X to create Y . ψ(S) represents the data extracted
from Y and k is the number of bits that make up the data.
Different additive distortion functions may be used for D that
measure the cost of increasing each pixel value in the cover
image by 1. Large cost values are assigned to pixels more
likely to cause perpetual differences in the final stego-image,

and will therefore have a low probability of being modified
during embedding.
Inconsistent Loss. The CycleGAN model is introduced in
[29], there is an additional loss function called inconsistent
loss that ensures that a secret watermark image can only be
extracted from an encoded image. Since the second generative
model GS that extracts the watermarks also receives unen-
coded cover images as input, any data it extracts should be
completely different from the real secret watermark image.
This is given by the following equation:

maxGS
(GS ,M

′) = maxGS
|GS(X)−GS(Y )|, (13)

where M ′ is the extracted watermark image, X is the
original cover image, and Y is the encoded ‘target’ image.
[29] combines this with adversarial loss and cycle adversarial
loss to evaluate the model’s overall performance.

VI. EVALUATION METRICS

Evaluation metrics for data hiding techniques can be divided
into two primary categories; those evaluating robustness and
those evaluating encoded image quality. Additionally, there are
metrics for measuring information capacity.

A. Robustness

The following metrics are used to evaluate the robustness of
the embedded data. After attacks are applied to the encoded
image and the data is extracted, these metrics are applied to
compute the difference between the original message data and
the data extracted from the image to judge how well that data
survived distortions applied to it.

1) Bit Error Rate (BER): is the number of bit errors divided
by the total number of bits transferred over a certain time
frame. It therefore gives the percentage of erroneous bits
during the transmission. It is used to compare the extracted
message and the initial message, each converted into binary.
The BER between the original message X and extracted
message Y is given by the following equation:

BER(X,Y ) = 100
# Bits in error

#Total Bits transmitted
(14)

2) Normalised Correlation (NC): is a measure of the simi-
larity between two signals as a relative displacement function.
Normalised correlation gives values in the range [0,1] with
a higher value denoting a higher similarity between images.
The normalised correlation between the original message X
and extracted message Y is given by the following equation:

NC(X,Y ) =
1

WH

W−1∑
i=0

H−1∑
j=0

δ(Xi,j , Yi,j), (15)

where

δ(X,Y ) =

{
1, if X = Y

0, otherwise

B. Quality

The following metrics are used to evaluate the quality of
the encoded image. It is linked to the property of impercepti-
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bility since embedded data should not produce any detectable
perturbations in the image.

1) Peak Signal to Noise Ratio (PSNR): computes the dif-
ference between two images by taking the ratio between the
maximum power of the signal and the power of corrupting
noise that affects the signal. In data hiding, it is used to eval-
uate the difference between the cover image and the encoded
image, showing the effectiveness of the embedding technique.
PSNR is expressed in decibels (dB) on a logarithmic scale,
with a value of above 30dB generally indicating that the image
difference is not visible to the human eye. Therefore, PSNR
can be used to quantify data imperceptibility. PSNR is defined
by taking the Mean Square Error (MSE) of two images (cover
image Ic and watermarked image Iw) using the following
equation.

PSNR(Ic, Iw) = 10 log10

(
2552

MSE(Ic, Iw)

)
(16)

2) Structural Similarity Index (SSIM): a perception-based
model that measures image degradation as perceived changes
in structural information. It considers variance and covariance,
which measure the dynamic range of pixels in an image.
Unlike MSE and PSNR, which measure absolute error, SSIM
considers the dependencies between spatially close pixels,
incorporating luminance and contrast masking. SSIM is given
in the range [-1.0,1.0], with 1 indicating two identical images.
The SSIM of two images is denoted as follows, where the
mean of the two images is given by µx and µy , and their
variances are given by σ2

x and σ2
y .

SSIM(x, y) =
(2µxµy + k1)(2σxσy + k2)

(µ2
x + µ2

y + k1)(σ2
x + σ2

y + k2)
(17)

The constants k1 and k2 exist to stop a 0/0 calculation. In the
default configuration, k1 = 0.01 and k2 = 0.03.

3) Learned Perceptual Image Patch Similarity (LPIPS):
is another type of perceptual loss. The aim of LPIPS [68] is
to measure human perceptual capabilities by going beyond
the simpler SSIM 17 and PSNR 16 metrics, studying the
deeper nuances of human perception. It is a model that
evaluates the distance between image patches. The model uses
a large set of distortions and real algorithm outputs. There is
consideration of traditional distortions, noise patterns, filtering,
spatial warping operations and CNN-based algorithm outputs.
LPIPS is able to perform better due to a larger dataset used
compared to other datasets similar to this kind, as well as
being able to use the outputs of real algorithms. LPIPS has
a scoring system where the lower the score, the more similar
to the compared image while a higher score indicates a larger
difference between the images.

4) Frechet Inception Distance (FID): is a model that mea-
sures the quality of a synthetic image. It was mainly developed
to check the quality and performance of images generated
by GAN structures. FID uses the inception v3 model [69]
where in the last layer of FID, it is used to get the computer-
vision-specific features of an input image. They are calculated
for the activations for all images, real and generated. These
two distributions are then calculated using FID. The score
compares the quality of synthetic images based on how well

inception v3 classifies them as one of the 1,000 known objects.
Essentially the generated images are not compared to real
images, instead, they are compared to other synthetic images
that have already been compared to real images and scoring
their similarity. A low FID score indicates a higher quality
image while a high FID score indicates a lower quality image.

C. Capacity

Capacity is a measure of the amount of information that can
be included in the data payload and subsequently embedded
into the cover media.

1) Bits Per Pixel (BPP): The number of bits is used
to define the colour value of a pixel. A higher BPP value
denotes a higher number of possible colour values for a pixel.
Therefore, a higher BPP value for payload capacity shows
that more identifying data can be embedded in the pixels of
an image. BPP is used to calculate data payload capacity in
[38].

2) Reed Solomon Bits Per Pixel (RS-BPP): The paper [38]
introduces a new metric RS-BPP based on Reed-Solomon
codes. In deep data hiding models, measuring the number of
bits that can be embedded per pixel depends on the model, the
cover image, and the model itself, and is therefore non-trivial
to measure just in BPP. Given an algorithm that returns an
erroneous bit with probability p, the aim is to have a number
of incorrect bits that is less than or equal to the number of bits
that can be corrected. This can be represented by the equation:

pn ≤ n− k
2

, (18)

where the k
n ratio is the number of data bits that can be

transmitted for each bit of the message. RS-BPP allows deep
data hiding techniques such as [38] to be directly compared
to traditional algorithms in terms of capacity.

VII. DATASETS

This section presents a table that displays the image
databases utilized to train the deep data hiding models dis-
cussed in this survey.
Describable Textures Dataset (DTD): The DTD dataset
includes multiple kinds of labelled texture images, totalling
5640 images, and was used to train [58].
COCO: COCO is a large-scale object detection, segmentation,
and captioning dataset [67]. The dataset contains 330 thou-
sand images of complex, everyday scenes including common
objects. The goal of the dataset was to advance AI scene
understanding by combining the more narrow goals of image
classification, object localisation, and semantic segmentation.
Since the dataset consists of relatively cluttered images pic-
turing multiple objects, there are more surfaces and variations
in textures in which to embed watermarking data, making it
useful and popular for data hiding applications. COCO was
used to train [16], [21], [29], [30], [36], [38], [40], [41], [49],
[58] and to test [23], [25], [27], [28].
DIV2K: Div2K is a single-image super-resolution dataset of
1000 images of different scenes. The dataset consists of low
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TABLE V: Summary table of datasets used to train deep learning-based data hiding models.

Name Trained Description
COCO [67] [16], [21], [29], [30], [36], [38], [40], [41], [49], [58] 330 images of everyday scenes. Cluttered images useful for DH
DIV2K [70] [30], [38], [59] 1k low resolution images. Includes open scenery difficult for DH

CIFAR-10 [71] [23], [25] 60k 32x32 images of singular objects
Pascal VOC [72] [25], [57] 15k images of singular objects
BOSSBase [73] [24], [26], [53], [55], [63] 9k 512x512 greyscale images in PGM format
ImageNet [74] [17], [23], [45], [48], [51], [52], [55]–[57], [62] 14mil images organised based on WordNet hierarchy

MIRFLICKR [75] [42], [45] 1mil Flickr images under Creative Commons license
Flickr30k [76] [50] 31k images from Flickr under Creative Commons license

Labeled Faces in the Wild (LFW) [77] [57] 13k images of faces from the web
Describable Textures Dataset (DTD) [78] [58] 5k labelled texture images

resolution images with different types of degradations applied.
Compared to COCO, it contains more images of open scenery,
which can present a challenge for data embedding. Therefore,
it is used to train [30], [38] in conjunction with [67] to ensure
the model is trained on a variety of different types of images.
On its own, it is used to train [59].

CIFAR-10: CIFAR-10 is a labelled subset of the 80-million
Tiny Images Dataset [71], and contains 60 thousand small
32x32 images. They mostly picture single objects such as
animals or vehicles, and are separated into 10 classes depend-
ing on the subject, though these are ignored for data hiding
applications. CIFAR-10 was used to train [23], [25].

Pascal VOC: Similar to [71], the Pascal VOC dataset [72]
includes pictures of objects such as vehicles and animals rather
than full scenes with multiple objects. This dataset has been
widely used as a benchmark for object detection, semantic
segmentation, and classification tasks. It was used to train [25],
[57].

BOSSBase: This dataset contains 9074 512x512 greyscale
images in PGM format [73]. It is widely used for training
steganography algorithms. The dataset was used to train [24],
[26], [53], [55], [63].

ImageNet: ImageNet contains 14 million images organized
according to the WordNet hierarchy [74]. Images are classified
into ‘synsets’ based on their subjects, all sorted and labelled
accordingly. It was used to train [17], [23], [45], [48], [51],
[52], [55]–[57], [62].

MIRFLICKR: The MIRFLICKR dataset [75] contains 1
million Flickr images under the Creative Commons license.
It is used to train [42], [45].

Flickr30k: The Flickr30k dataset [76] contains 31,000 images
collected from Flickr, together with 5 reference sentences
provided by human annotators. It was used to train [50].

Labeled Faces in the Wild (LFW): The LFW dataset [77]
public benchmark for face verification, contains more than
13,000 images of faces collected from the web. The dataset
was used to train [57].

VIII. OPEN QUESTIONS AND FUTURE WORK

Deep learning for data hiding is a new and evolving
research field, and there remain many different avenues to
consider moving forward. This section will discuss some
open questions that we believe warrant further research and

consideration including expanding the applications of digital
watermarking to other media domains, pursuing deep learning-
based language watermarking, improving robustness against
deep learning-based watermark removal attacks, watermarking
machine learning models, combating the use of watermarking
to launch backdoor attacks on machine learning models,
and exploring the applications of watermarking for detecting
and identifying synthetic media. Finally, future directions for
steganography are discussed, including its potential use for
spreading malware.

A. Expanding Applications for Deep Learning Digital Water-
marking Models

While the deep watermarking models discussed in this
survey were primarily focused on image watermarking, there
is significant potential for applying watermarking to other
types of media. Although there are many traditional algo-
rithms focused on watermarking video, audio, 3D models,
and electronics, there is yet to be any deep learning models
focusing on these areas. For instance, various techniques have
been proposed for watermarking 3D models [79], including
new promising methods for watermarking vertices data [80].
There are also existing works concerning GANs generating 3D
models [81], [82]. Furthermore, a recent paper from Google
[15] details a promising deep learning technique of embedding
watermark messages into simple 3D meshes which can then
be decoded from 2D rendered images of the model from
multiple angles and lighting configurations. It is noted in this
work that robustness and capacity will need to be improved
before practical application, particularly robustness to non-
differentiable 3D attacks. More complex models and lighting
arrangements could be explored with a better-quality renderer.
A paper from Google research by Innfarn et al. [15] sets the
precedent for watermarking 3D models using deep learning,
but more work is required before a generalised, practically-
applicable framework for 3D watermarking can be developed.

Similarly, audio watermarking faces a comparable situation.
While there are existing traditional methods for audio water-
marking, and GAN-based frameworks for audio generation
[83], [84], there is currently a lack of exploration of deep
learning frameworks specifically designed for audio water-
marking. This suggests that machine learning models have the
potential to learn audio embedding techniques and apply them
to audio databases. As far as we are aware, there are currently
no works that investigate deep learning frameworks for audio
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watermarking. However, given the growing interest in this
field, it is likely that there will be forthcoming contributions.

In addition to image and audio watermarking, video wa-
termarking is another promising direction for research. There
are existing traditional algorithms for video watermarking [8],
and deep learning techniques are also being considered, for
example in [85]. This paper introduces RIVAGAN, a new
architecture for robust video watermarking. The attention-
based architecture is robust against common video processing
attacks such as scaling, cropping, and compression. In the
framework, a 32-bit watermark is embedded into a sequence
of frames, and the watermark can be extracted from any
individual or collection of frames. The framework uses an
attention mechanism to identify robust areas for embedding,
and produces watermarked footage that is nearly indistinguish-
able from human observers (approximately 52% detection
accuracy). There is also DVMark [14] from Google Research,
which employs a multiscale design where the watermark
is distributed across multiple spatial-temporal scales. It was
found to be more robust than traditional video watermarking
algorithms (3D-DWT) and the deep learning-based image
watermarking framework from HiDDeN [16] against video
distortions, while retaining a high level of quality. A 3D-CNN
that simulates video compression attacks was used during
training to achieve high levels of robustness. The framework
in DVMark [14] also includes a watermark detector that
can analyse a long video and locate multiple short instances
of copyrighted content. This could be useful for reliably
identifying copyright infringement on online video platforms
such as YouTube.

B. Text Watermarking for Combating Misinformation
Another promising application for deep watermarking is in

watermarking text. As natural language generation technology
improves, machine learning models are capable of generating
highly fluent language that can fool human detectors [86].
There is growing concern that such models will be used to
spread misinformation and ‘fake news’ online. The Adver-
sarial Watermarking Transformer (AWT) developed by Sahar
et al. [9] is the first end-to-end deep learning model for
language watermarking. Language watermarking is inherently
more complex than image, video, and audio watermarking
because the language itself must be altered, which can cause
drastic syntactic and semantic changes. Previous techniques
include synonym replacement and altering sentence struc-
ture, which rely on fixed rule-based techniques. The aim
of such techniques is to achieve high effectiveness, secrecy,
and robustness, while sustaining only subtle changes to the
text, preserving correct structure and grammar, as well as
language statistics. The deep learning model AWT [9] uses
an attention mechanism and adversarial training to achieve
robustness against attacks such as denoising, random changes,
and re-watermarking. The model undergoes human evaluation
and achieves better results than the state-of-the-art synonym
substitution baseline. This technique only works effectively
for long pieces of text such as news articles, whereas shorter
pieces would require longer relative watermarks, thereby no-
ticeably degrading the original text. For practical scenarios, it

is suggested to combine this AWT technique with automated
or human fact-checking to reduce the likelihood of false
positives. Further research into deep learning-based models for
language watermarking is highly important as text-generating
models continue to improve and become widely available
to potentially malicious actors. This will help to identify
misinformation and differentiate generated from genuine text.

C. Mitigating Watermark Removal Attacks

As technology for watermark embedding improves, so too
does technology for attacking and removing those watermarks.
Thus, the process can be regarded as an ever-evolving, adver-
sarial game between content owners and attackers. Currently,
deep learning-based techniques for watermark removal exist
that are able to remove information robustly embedded using
the top frequency domain algorithms [13]. This technique uses
a simple CNN to perform denoising removal attacks, and is
able to not only remove the watermark, but also recover the
original cover images without significant quality degradation.
It was tested on a dataset of watermarked images created using
state-of-the-art DCT, DWT, and DFT traditional algorithms in
a black-box setting. Although this technique is focused on
traditional algorithms, as deep learning techniques for digital
watermarking evolve, it is inevitable that adversarial tech-
niques will continue to be developed that aim to remove these
watermarks. Therefore, it is important to continue to improve
the robustness of watermarking techniques so they can resist
these emerging, deep learning-based removal methods.

Current deep watermarking strategies have been tested
against a range of attacks including cropping, pixel dropout,
compression, and blurring. However, in most models these
attacks are encapsulated by a differentiable attack layer, as
was implemented in [16], [25], [28], meaning that they must
support backpropagation, which is not representative of many
real-world attack scenarios. However, it should be noted that
these models can still simulate JPEG compression, which
is non-differentiable, by using differentiable approximations.
Promising techniques for improving the scope of attacks used
during training include generating attacks using adversarial
examples from a trained CNN [21], and the use of black-
box noise [27], which are from algorithms encapsulated in
the image processing software that is difficult to simulate.
To achieve optimal robustness, it is important to train models
on attacks generated from an adversarial network to improve
results, rather than generating attacks from a fixed pool of
differentiable attacks, as was done in earlier implementations.

D. Watermarking for Protecting Machine Learning Models

Another important application for digital watermarking is
protecting machine learning models as intellectual property.
Although the survey has discussed watermarking digital media
such as images, audio, and video, machine learning models
themselves require increasingly large amounts of computa-
tional resources and private training data to train and operate.
Therefore, there is a growing need to protect machine learning
models as intellectual property. Digital watermarking is just
one of many tasks that were once done using traditional
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algorithms, but are now being offloaded to the effectiveness of
machine learning strategies. As this happens, it is important
to protect these models from theft and misuse, not only
because of the resource expenditure by the owners in cre-
ating these models, but because their immense computational
capabilities could be used for malicious activities. There are
many techniques currently being researched for watermarking
machine learning models, most of which rely on embedded
identifying information into training datasets [87]. However, as
was learned through the concept of adversarial examples, even
small perturbations in training instances can cause extreme
degradation in the model’s performance. Therefore, many wa-
termarking strategies also sacrifice the model’s classification
accuracy.

A famous example is DeepSigns [88], an end-to-end IP
protection framework that inserts digital watermarks into deep
learning models by embedding the watermark into the proba-
bility density function of the activation sets in different layers
of the network. It is robust against a range of attacks, including
model compression, fine-tuning, and watermark overwriting,
which proved challenging for previous model watermarking
techniques.

One recent and promising technique for watermarking train-
ing datasets is Entangled Watermarking Embeddings [89].
Instead of only learning features sampled from the task dis-
tribution, the defending model also samples data that encode
watermarks when classifying data. Therefore, watermark data
is entangled with legitimate training data, so an adversary
attempting to remove the watermarks cannot do this without
damaging the training data itself, and thereby sacrificing
performance. The method uses Soft Nearest Neighbour Loss to
increase entanglement, a new loss function. And the method
is evaluated in the image and audio domains, showing that
with this method an owner can claim with 95% confidence
that model extraction has taken place to produce a similarly
performing model by extracting prediction vectors. This tech-
nique notably shows robustness against adaptive adversaries,
meaning the adversary has knowledge of the watermarking
technique being used.

As machine learning models become more ubiquitous across
a range of industries, it is important to implement digital
watermarking strategies within the models themselves so that
the owner’s private information remains secure. However,
there will inevitably be technology developed to remove
watermarks, even from machine learning models. For example,
REFIT is a recent unified watermark removal framework
based on fine-tuning. It does not require knowledge of the
watermarks being removed, and is effective against a wide
range of current watermarking techniques [90].

E. Watermarking for Launching Backdoor Attacks
Deep neural networks have been proven vulnerable to

backdoor attacks, where triggers can be embedded into DNNs
through data hiding and they can trick the model into produc-
ing unexpected behaviour with crafted triggers. For instance,
watermarks can be embedded into the training examples of
machine learning models in order to cause inaccurate classifi-
cations when the model is deployed. Many third-party cloud

computing providers, such as Google, Microsoft, Azure, and
Amazon, provide Machine Learning as a Service (MLaaS) to
train machine learning models. A malicious party can embed
watermarks into training data images and train the model to
misclassify such examples, either randomly (random target at-
tack), or mislabel as a different example (single target attack).
As more third-party providers offer MLaaS, and machine
learning models become more ubiquitous, backdoor attacks on
neural networks are certain to become more common. There-
fore, it is important to be able to detect triggers embedded
in training examples. As digital watermarking technologies
become more advanced through deep learning as discussed
in this survey, this will become more difficult. In this case,
the improving watermark removal techniques as discussed
could be pursued for a benign rather than malicious purpose.
Although existing works discuss visible watermarks embedded
in training images [91], [92], there are growing efforts to
construct invisible backdoor attacks that cannot be detected
by a human moderator, or by automated backdoor detection
techniques [93], [94]. Although the techniques presented in
this survey are promising for digital IP protection purposes,
they will inevitably be utilised for malicious purposes such
as embedding undetectable, invisible backdoors in machine
learning models.

F. Deepfake Detection and Identification

Synthetic media technologies are rapidly advancing, and it
is more painless to generate media such as images, audios,
and videos that look and sound increasingly realistic. Since
deepfakes often present a person saying or doing something
they have not done or said, people need to be able to identify
the original source of the media that has been manipulated.
Similarly, it is important to be able to identify a piece of
media as synthetic in the first place, without malicious parties
removing this identifying tag and presenting the synthetic
media as genuine. To this end, the identification and detection
of synthetic media become a promising application for digital
watermarking.

A recent paper presents DeepTag, an end-to-end deep water-
marking framework that includes a GAN simulator that applies
common distortions to facial images [95]. The watermark can
be recovered to identify the original unaltered facial image.
In future, as regulations surrounding deepfakes arise, water-
marking techniques that are robust to GAN-based distortions
will become increasingly important. A connected application
is embedding watermarks into synthetic media so that they can
be easily identified as such.

G. Malware using Steganography

Digital steganography can be used maliciously to spread
malware to victim technology. The ability to hide an exe-
cutable file within an image or audio file gives attackers an
easy attack vector to target unaware users. There have also
been known cases of attackers using steganography to pass
data through unsuspecting platforms. They can easily set a
time for the receiver and either upload or update an image
temporarily. At this set time the receiver can download and
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save the photo, decode the message, and then the attacker can
restore the image to the original or delete the image. This could
be almost impossible to detect when third parties are unaware
of where the attack will take place, and would be even more
unlikely to catch the act if the stego-image used was highly
imperceptible. These high levels of imperceptibility can now
be achieved easily through modern deep learning approaches.

Steganalysis could be implemented into antivirus software
that not only scans images but scans sites before entering.
Though this would be a difficult task due to the large amount
of power it would require, constantly scanning almost every
website or item on the web page just in case there is malware
present. There could be a filter that decides when steganalysis
could be used such as situations when users decide to continue
onto an already scanned suspicious website. Currently, the
possibilities are limited, but the implementation of steganal-
ysis in antivirus software may be essential in the future as
steganography techniques both improve in performance and
become more widely accessible to the public.

IX. CONCLUSION

This survey has provided an extensive overview of cur-
rent deep learning techniques for data hiding, encompassing
watermarking and steganography methods. Through analysis
of network architecture and model performance, the survey
has demonstrated how digital watermarking and steganography
share a common goal of embedding information in digital me-
dia, and how both can benefit from deep learning techniques.
Additionally, the survey explored future research directions
and highlighted the potential for this field to revolutionize the
protection of digital IP and communication security in Re-
sponsible AI software industries. As deep learning techniques
continue to advance, they are expected to surpass traditional
algorithms in all types of media, ultimately enhancing the
accountability and safety of AI. This promising field holds
great potential and is expected to have a significant impact on
digital security.
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[73] P. Bas, T. Filler, and T. Pevný, “”break our steganographic system”:
The ins and outs of organizing boss,” in Information Hiding, T. Filler,
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