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Abstract—Competitive Influence Maximization (CIM) has been
studied for years due to its wide application in many domains.
Most current studies primarily focus on the micro-level opti-
mization by designing policies for one competitor to defeat its
opponents. Furthermore, current studies ignore the fact that
many influential nodes have their own starting prices, which may
lead to inefficient budget allocation. In this paper, we propose
a novel Competitive Bidding Influence Maximization (CBIM)
problem, where the competitors allocate budgets to bid for the
seeds attributed to the platform during multiple bidding rounds.
To solve the CBIM problem, we propose a Fairness-aware Multi-
agent Competitive Bidding Influence Maximization (FMCBIM)
framework. In this framework, we present a Multi-agent Bidding
Particle Environment (MBE) to model the competitors’ interac-
tions, and design a starting price adjustment mechanism to model
the dynamic bidding environment. Moreover, we put forward a
novel Multi-agent Competitive Bidding Influence Maximization
(MCBIM) algorithm to optimize competitors’ bidding policies.
Extensive experiments on five datasets show that our work has
good efficiency and effectiveness.

Index Terms—Social networks, competitive bidding influence
maximization, influence diffusion, fairness, multi-agent reinforce-
ment learning.

I. INTRODUCTION

AS a fundamental task, Influence Maximization (IM) [1]
has been investigated for nearly two decades owing to the

continued prosperity of social networks, where social influence
is used to quantify the overall impact of each individual
user within the social network [2]. IM has already been
widely applied to many domains, e.g., viral marketing [3],
[4], social recommendation [5]–[7], information diffusion [8]–
[11], etc. The objective of IM is to identify a group of K
influential nodes (i.e., seed nodes) such that they can activate
the maximum number of network nodes given a specific
diffusion model.

As a variant of the IM problem, Competitive Influence Max-
imization (CIM) considers a more complicated and relatively
realistic scenario where multi-party with conflicting interests
diffuse their influence simultaneously in the network [12]–
[14]. However, the main preoccupation of existing studies
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Fig. 1. An example of the CBIM scenario in one bidding round. The number
in each node indicates its starting price. Blue/green nodes are users activated
by company A/B. Influential nodes {s1, s2, s3} are attributed to the platform.

is the micro-level optimization of a specific party’s benefit
[14]–[16]. It may lead to a serious disparity across different
parties and an unhealthy competitive atmosphere. Moreover,
few studies consider the starting prices of influential nodes
during budget allocation [17]–[19], while the starting price
plays an important role in many realistic competitive scenarios.
For example, many influential bloggers on Facebook and Twit-
ter have a quotation for advertisements, and the competitors
need to bid to strive for those bloggers. The bloggers will
choose the highest bidder to promote its product. Similarly,
in viral marketing, many competitors allocate budgets to bid
for influential nodes that also have their own starting prices.
Thus the flexible budget allocation policy is critical for the
competitors to bid for influential nodes in the market.

The above two factors motivate us to simulate an even
more realistic scenario by taking into account both multi-party
benefits and budget allocation with starting prices.

Example. As shown in Fig. I, suppose there are two
companies A and B with budgets 5 and 5 respectively, and
three influential nodes {s1, s2, s3} with starting prices [2, 2, 1]
attributed to the platform, and the bidding is carried out in
a fixed order (s1, s2, s3). Both companies intend to allocate
their budgets to bid for {s1, s2, s3} so as to promote their
new products, and only the winner needs to pay, which
explains why the sum of each competitor’s bidding prices
exceeds its own budget. After one bidding round, company A
obtains {s1, s3} as seed set and gets 10 users activated, while
company B obtains {s2} as seed set and gets only 5 users
activated. There is a significant disparity in the promotion
effect (e.g., A actives twice as many users as B) though they
spend the same cost (i.e., 4), which is unfair for company B.

As illustrated by the Example, it is essential to consider fair-
ness and budget allocation in the bidding scenario. However, if
we only consider a single-round bidding scenario, it is difficult
for the competitors to learn an effective bidding policy. Thus,
we propose a novel Competitive Bidding Influence Maximiza-
tion (CBIM) problem, where the competitors keep bidding the
same seeds to optimize their bidding policies in multi-round
bidding. In addition, the platform will adjust the starting prices
of seeds in each bidding round to model the dynamic bidding
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environment. The goal of CBIM is to achieve a win-win
situation where both the revenue of platform and the rewards
of competitors are maximized while preserving fairness among
competitors in the competitive bidding environment.

Challenges. For the proposed CBIM problem, there are
two main challenges: (1) Simulate the interaction of the
competitors. The competitors interact with both the bidding
environment and themselves most critically. One competitor’s
change on its policy will inevitably affect the other competi-
tors’ policies, and vice versa. (2) Design an effective algorithm
to optimize the competitors’ policies to safeguard their benefits
and preserve fairness among them. Since each competitor is
self-interested, optimizing one competitor’s interest may be
harmful to other competitors.

Recently, there is a strong assumption in most statistical
solutions of bidding optimization, which assumes the bidding
policy is stationary [17]–[19] (i.e., the competitors’ policies
do not change during bidding). To address it, we leverage
Multi-agent Reinforcement Learning (MARL) to simulate the
dynamic changes of the bidding environment and the com-
petitors’ interactions, and constantly optimize all competitors’
bidding policies. Our motivation is twofold: (1) It enables each
agent to strategically update its own policy to cope with the
change of other agents. (2) It enables all bidding agents rather
than an individual to maximize their own benefits.

The main contributions of our work are summarized below:
• We propose a novel Competitive Bidding Influence Max-

imization (CBIM) problem and show that the problem is
proven to be NP-hard.

• We propose a Fairness-aware Multi-agent Competitive
Bidding Influence Maximization (FMCBIM) framework.
The framework includes two modules: (1) A competition
module where we develop a Multi-agent Bidding Particle
Environment (MBE) for the competitors to bid and interact
in a dynamic bidding manner. (2) A training module where
we propose a practical Multi-agent Competitive Bidding
Influence Maximization (MCBIM) algorithm for the com-
petitors to optimize policies. The FMCBIM framework
enables both the platform and the competitors to achieve
a win-win situation on the premise of fairness.

• We conduct a great number of experiments based on
five real-world datasets. The experimental results show that
our proposed algorithm can effectively address the CBIM
problem. Moreover, the effectiveness of cooperation with
the platform in our method shows that learning to cooperate
in competition is more conducive to building a healthy
competitive atmosphere in the market than pure competition.
The remainder of this paper is organized as follows. Section

II summarizes related work. Section III formalizes the CBIM
problem and prove its NP-hardness. Section IV elaborates our
proposed FMCBIM framework. Section V shows evaluation
results. We conclude our work in Section VI.

II. RELATED WORK

CIM. The CIM problem is firstly proposed by [15] and
[12]. They address the CIM problem by assuming that the
opponent’s policy is known. Zuo et al. [14] introduce a

variant of CIM, which is called Online Competitive Influence
Maximization (OCIM). Its goal is to maximize the cumulative
reward (i.e. influence spread) of one competitor with unknown
influence probabilities on edges. However, the scenarios in
which the opponent’s choice is known and fixed are unrealistic
in the real world. Therefore, some researchers begin to explore
the CIM problem by abandoning the above assumption. Li
et al. [16] model the scenario of multi-party simultaneous
selection of seed sets as a game, and put forward a framework
that is more sensible compared with [20], and it needs no
information about the opponents.

The above studies are conducted from the perspective of
competitors. Besides, some studies attempt to investigate from
the host’s (i.e., platform) perspective [21]–[23]. Lu et al. [21]
aim to allocate, rather than identify, influential nodes to max-
imize all competitors’ influence spreads from the platform’s
perspective while ensuring fairness among all competitors.
Gao et al. [23] consider a scenario where the seed selection
happens in event-based social networks (offline social events).
They propose a RACE algorithm to select seeds for each event,
which optimizes the solution by iteratively updating the seed
selection probability via Cross Entropy (CE) method.

Different from the above studies, we take both perspectives
of the platform and the competitors into account, and focus
on achieving a win-win situation between the platform and
the competitors on the premise of fairness. Moreover, few
studies in the budget allocation task take into account the
starting prices of influential nodes. The budget allocation task
is first proposed by [17]. They use game theory to compute the
Nash equilibrium of two competitors with equal budgets in the
discrete voter model. Varma et al. [18] consider the situation of
two competitors with different budgets in the continuous voter
model. Ansari et al. [19] consider a scenario where the com-
petitors allocate budgets to compete for the given influential
nodes, and they put forward a framework to compute the Nash
equilibrium. Niknami et al. [24] propose a Max-Influence-
Independent-Set (MIIST) algorithm to select the influential
nodes, and then use the Colonel Blotto game to find the
optimal investment policy (i.e., budget allocation scheme) for
two competitors with equal budgets. In comparison, our work
can apply to a general multi-competitor scenario. Moreover,
the consideration of the influential nodes’ starting prices can
avoid the low final transaction price of high-impact seed by
adjusting the starting price over multi-round bidding. Conse-
quently, existing approaches cannot well address our proposed
CBIM problem in the competitive bidding environment.

In CBIM, we not only need to treat competitors equally,
but also balance the interests between competitors and the
platform. Meanwhile, the competitors should cooperate with
the platform to provide their observations for high-grade
seeds. Therefore, considering multi-interest at the same time
motivates us to build a framework, where we leverage MARL
to explore the problem.

MARL. In MARL, the type of task can be classified into
fully cooperative setting, fully competitive setting and mixed
setting by the designed reward structure [25]. In the fully
cooperative setting [26], the agents having the identical reward
function aim to maximize the mutual discounted reward by
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TABLE I
MAIN NOTATIONS IN THIS PAPER

Notation Description

G = (V,E) A graph G with node set V and edge set E
n The number of nodes in G
Tb The number of total bidding rounds
C The set of competitors, |C| = k
Θ The set of bidding seeds, |Θ| = l
ci, sj The i-th competitor and the j-th seed
bi The budget of competitor ci
coti The cost of competitor ci in the t-th bidding round
pt
j The starting price of seed sj in the t-th bidding round

St
i The seed set of competitor ci in the t-th bidding round

GE The fairness index of the competition
CDt

j The contribution degree of seed sj in the t-th bidding round
sctj The bidding result of seed sj in the t-th bidding round
σ(St

i ) The reward of competitor ci in the t-th bidding round
Inf(St

i ) The activated nodes set of seed set Si in the t-th bidding round∑k
i=1 σ(St

i ) The revenue of platform in the t-th bidding round

either communication protocol learning [27] or parameters
sharing [28]. In contrast, a competitive setting encourages
agents to maximize their own rewards and minimize the
rewards of others at the same time [29]–[31]. The above
MARL algorithms designed for fully cooperative or fully
competitive scenarios are difficult to apply to our CBIM
which aims to achieve a win-win situation. Unlike the settings
of fully cooperative or fully competitive, the reward of an
agent in the mixed setting is usually different and interrelated
[32]. Lowe et al. [33] adopt the framework of centralized
training with decentralized execution (CTDE), which enables
the incorporation of extra information to facilitate training, and
propose MADDPG, a multi-agent deep deterministic policy
gradient algorithm that can be adapted to different settings
by redesigning the reward structure. However, it is applied
in a toy simulation environment and cannot handle dynamic
bidding environments.

III. PROBLEM STATEMENT AND DIFFUSION MODEL

A. Problem Definition

In a social network denoted by a directed graph G = (V,E),
each node v ∈ V represents a user and has its own activation
threshold ξv ∈ [0, 1], each edge euv (direction from u to v)
denotes that the node u can activate node v with an influence
probability wuv ∈ (0, 1]. Let C = {c1, ..., ck} be a set of
competitors with budgets [b1, ..., bk], and Θ = {s1, ..., sl} be
a set of seeds (influential users) attributed to the platform with
initial starting prices [p11, ..., p

1
l ], where k ≥ 2 and l > 0. In

the t-th bidding round, for each competitor ci, St
i denotes its

seed set and coti denotes its cost. The main notations in this
paper are shown in TABLE I.

Before giving the definition of our problem, we first present
some important concepts.

Definition 1 (Influence spread). Given a seed set S in a social
network G with n nodes, the number of nodes activated by S
represents the influence spread and it can be calculated by
σ(S) =

∑n
j=1 ςj , where ςj = 1 when the node vj is activated

by S, otherwise ςj = 0.
Definition 2 (Reward of competitor). Given k seed sets
{St

1, ..., S
t
k} of k competitors in the t-th bidding round, the

reward of competitor ci is proportional to the benefit gained

by St
i ’s promotional activities, i.e., the influence spread of St

i .
Therefore, the reward of competitor is defined as σ(St

i ).
Definition 3 (Revenue of platform). Given a set of bidding
seeds Θ = {s1, .., sl} attributed to the platform, and k seed
sets {St

1, ..., S
t
k} of k competitors, the revenue of platform in

the t-th bidding round is defined as
∑k

i=1(σ(S
t
i )).

Definition 4 (Fairness index). Given k competitors with
[cot1, ..., co

t
k], we choose Generalized Entropy [34] as the

fairness index to measure the fairness among competitors, i.e.,

GE =
1

k · ω(ω − 1)

k∑
i=1

((
Rt

i

R̄t
)ω − 1), (1)

where GE denotes the fairness index, Rt
i = σ(St

i )/co
t
i denotes

the unit cost of competitor ci, and R̄t = 1
k

∑k
i=1 R

t
i denotes

the expected unit cost of all competitors in the t-th bidding
round, ω is a constant. The closer GE is to 0, the fairer the
competition is. (When coti = 0, we set Rt

i = 0).
To ensure smooth bidding, we follow the convention and

present a series of business rules that all competitors have to
obey and the competitors are not allowed to bid if they break
the rules [35].

Definition 5 (Business rules). Suppose that there is a real-
time bidding without reserve, given l bidding items (seeds)
with starting prices, k bidders (competitors) with budgets, and
a bidding master (platform), all competitors have to obey the
following business rules:

• No denying and no bargaining.
• Starting prices are confidential for the competitors.
• Seeds are auctioned off in a fixed order.
• Each competitor has only one chance to bid for all seeds.
• Rewards are returned only after all competitors have bid.
• The effective bidding price of the competitor must be higher
than the starting price of the seed and should not exceed
its remaining budget.

• The bidding payment mechanism employs the second price
sealed-bid auction [36].

Based on all the above definitions, we formally define our
problem as follows:

CBIM Problem. (Competitive Bidding Influence Maxi-
mization). In a social network G, there is a seed set Θ =
{s1, ..., sl} attributed to the platform with the initial starting
prices [p11, ..., p

1
l ] and k competitors with budgets. The total

number of bidding rounds is Tb, and in each round, each
competitor ci follows the business rules to bid l seeds simulta-
neously, and then gets seed set St

i at the end of current round.
The starting prices of seeds are not fixed as the platform will
adjust them based on the bidding results in the current round.
The CBIM problem is to maximize the revenue of platform
on the premise of fairness in the Tb bidding rounds, i.e.,

S∗ = arg
t∈[1,Tb],St

i⊆Θ

max

k∑
i=1

σ(St
i ),

s.t. (i)St
i ∩ St

j = ∅, ∀i,∀j ∈ [1, k], i ̸= j,

(ii) Inf(St
i ) ∩ Inf(St

j) = ∅, ∀i,∀j ∈ [1, k], i ̸= j,

(iii)GE ≤ ρ, ρ ∈ (0, 1), (2)
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where S∗ indicates the optimal solution, Inf(St
i ) denotes the

node set activated by St
i , ρ is the fairness threshold. Constraint

(i) indicates seed sets of any two competitors are disjoint.
Constraint (ii) indicates the sets of activated nodes of any two
competitors are non-overlapping. Constraint (iii) indicates the
fairness index should be less than a threshold to keep fairness.

As discussed, maximizing the revenue of platform is to
maximize the total rewards of competitors. Meanwhile, the
fairness among competitors should also be guaranteed. There-
fore, maximizing the revenue of platform is equivalent to
maximizing the reward of each competitor. Then we can
achieve a win-win situation not only between the platform
and competitors but also among the competitors.

B. The Diffusion Model

In our influence diffusion environment, the influence diffu-
sion of each bidding round is independent and the influence
spreads raised from different competitors’ seed sets are as-
sumed to propagate at one time. In this paper, we illustrate
our framework with the Competitive Linear Threshold (CLT)
model [20] as an example. Because of the low coupling be-
tween the diffusion model and other modules, this framework
is also applicable to the Competitive Independent Cascade
(CIC) model [37]. In addition, considering that we mainly
focus on competitive bidding influence maximization instead
of influence propagation process in this paper, we specifically
concentrate on the situation that each node cannot be activated
more than once. We leave the study of multi-time activation
situations as future work.

Definition 6 (Competitive Linear Threshold (CLT) model).
It is a multi-competitor diffusion model. In each bidding
round t, like LT model, node v will be activated by seed
set St

i of competitor ci when
∑

u∈Nin
i (v) wuv > ξv , where

wuv is the probability that v is activated by u, N in
i (v) is

the set of v’s in-neighbors activated by St
i , and ξv denotes

v’s threshold of being activated. Node cannot be activated
more than once. When multiple competitors are eligible to
activate node v simultaneously, it will be activated by ci
who has the highest overall influence probability upon v, i.e.,
∀j ̸= i,

∑
u∈Nin

i (v) wuv >
∑

u′∈Nin
j (v) wu′v . Seeds with failed

bids can no longer be activated by any nodes or activate other
nodes. Finally, when no more nodes being activated or the
total propagation time ends, the diffusion process terminates.

C. Properties of CBIM Problem

Lemma 1. The CBIM problem is NP-hard.

Proof. To prove it, we reduce from Set Cover (SC) problem,
a well-known NP-complete problem.

Set Cover (SC) Problem. Given an integer h > 0, a
universal set U = {e1, ..., eM} and a collection of subsets
Y = {Y1, ..., YZ}, the SC problem asks if there are h subsets
whose union is U?

Given a directed weighted graph G = (V,E), k competitors,
l bidding seeds, the total bidding rounds Tb, the seed set of
each competitor in the t-th bidding round St

i , and an integer χ,
to simplify the analysis, here we assume Tb = 1 and then we

demonstrate that if SC has a solution Y of size h, CBIM has
a solution S of k seed sets S1

1 , ..., S
1
k where

∑k
i=1 |S1

i | ≤ l,
such that

∑k
i=1 σ(S

1
i ) ≥ χ.

Reduction. Given two instances P and P ′ of SC problem
defined as U = {e1, ..., eM}, Y = {Y1, ..., YZ} and h, and
U ′ = {e′1, ..., e′M ′}, Y ′ = {Y ′

1 , ..., Y
′
Z′} and h′, respectively,

where U = U ′, Y = Y ′ and h = h′, then we make an instance
L for CBIM problem. Let |V | = 2(M + Z), k = 2, |S1

1 | =
h, |S1

2 | = h′ and χ = 2(M + h). Elements ei ∈ U (e′i ∈ U ′)
in P (P ′) are equivalent to nodes vi ∈ V (v′i ∈ V ) in L. The
activation threshold is 0.5 for both vi and v′i. Subsets Yi ∈
Y (Y ′

i ∈ Y ′) in P (P ′) are equivalent to seeds si ∈ V (s′i ∈ V
) in L. For each ei ∈ Yj(e′i ∈ Y ′

j ) in P (P ′), there is an edge
connected from sj(s′j) to vi(v′i) with influence probability 1
in L, i.e., sj(s′j) can activate vi(v′i) in G. For the instance L,
CBIM problem has a solution with double seed sets S1

1 and
S1
2 , including h and h′ seeds, respectively, and

∑2
i=1 σ(S

1
i ) ≥

2(M + h), if and only if SC problem has a solution.
(⇐): Suppose there are h(h′) subsets whose union equals

U(U ′). Since h(h′) subsets are equivalent to h(h′) seeds in
G and M(M ′) elements e1, ..., eM (e′1, ..., e

′
M ′) in U(U ′) are

equivalent to M(M ′) nodes v1, ..., vM (v′1, ..., v
′
M ′) activated

by these h(h′) seeds,
∑k

i=1 σ(S
1
i ) = 2(M+h) is no less than

χ = 2(M + h).
(⇒): Suppose there are h(h′) seeds of competitor c1(c2)

and they activate M(M ′) nodes v1, ..., vM (v′1, ..., v
′
M ′) such

that
∑k

i=1 σ(S
1
i ) = χ = 2(M + h). Thus, there are h(h′)

subsets whose union equals U(U ′).
Therefore, the problem of CBIM is NP-hard.

Lemma 2. The CBIM problem is monotone.

Proof. Given a graph G = (V,E), supposing there are two
competitors c1 and c2 bidding for a seed set Θ in Tb bidding
rounds, then the objective function of CBIM can be converted
as σ(St

1)+σ(St
2), where St

1 ⊆ Θ is the seed set of competitor
c1 in the t-th bidding round, St

2 ⊆ Θ is the seed set of
competitor c2. As [15] shows in the proof of lemma 1, σ(St

1)
and σ(St

2) are both monotone. According to the addition
principle, we have σ(St

1)+σ(St
2) ≤ σ(T t

1)+σ(T t
2) for subsets

St
1 ⊆ T t

1 ⊆ V , St
2 ⊆ T t

2 ⊆ V . Since the influence diffusion
in each bidding round is independent, the above conclusions
are valid in all bidding rounds. Thus the objective function of
CBIM is monotone.

D. Illustrative Example

As Fig. 2 shows, in this illustrative social graph, the
numbers on nodes and directed edges denote the activation
thresholds and influence probabilities, respectively. We con-
sider a scenario where two competitors c1 and c2 with budgets
[b1 = 3, b2 = 3] plan to find influential nodes to promote their
new products, in order to achieve the maximum number of
activated users who buy their products. Θ = {s1, s2, s3} is the
seed set with starting prices [p11 = 1, p12 = 1, p13 = 1] attributed
to the platform and the seeds’ bidding order is (s1, s2, s3). We
set the fairness threshold as ρ = 0.1 and the constant as ω = 2.

Fig. 2a shows the initial graph. A possible result of the first
bidding round is shown in Fig. 2b: c1 bids for Θ with bidding
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Fig. 2. An illustrative example of CBIM. Yellow nodes {s1, s2, s3} are bidding seeds. Green nodes are users activated by c1. Blue nodes are users activated
by c2. Grey node is the seed of bidding failure. Dashed arrows indicate blocked edges.

prices [2.0, 0.0, 1.0] and gets {s1} as seed set and achieves 5
activated users (including seed s1 itself). c2 bids for Θ with
bidding prices [1.5, 0.0, 2.0] and gets {s3} as seed set and
achieves 4 activated users. s2 is not auctioned off successfully.
The rewards of both c1, c2 and the revenue of platform are as
follows: σ(S1

1) = 5 and σ(S1
2) = 4 and σ(S1

1) + σ(S1
2) = 9.

Although the bidding results satisfy the fairness constraint, i.e.,
GE = 0.059 < 0.1, the revenue of platform is not maximized.

Then the platform adjusts the seeds’ starting prices to
[p21 = 1.1, p22 = 0.9, p23 = 1.1] based on the bidding results
illustrated in Fig. 2b. A possible result of the second bidding
round is shown in Fig. 2c: c1 bids for seeds with bidding prices
[2.0, 1.0, 0.0] and gets {s1} as seed set and achieves 5 activated
users. c2 bids for seeds with bidding prices [1.8, 1.5, 1.5]
and gets {s2, s3} as seed set and achieves 6 activated users.
The results are as follows: σ(S2

1) = 5 and σ(S2
2) = 6 and

σ(S2
1) + σ(S2

2) = 11. The bidding results satisfy the fairness
constraint, i.e., GE = 0.059 < 0.1 and then the revenue of
platform is further optimized.

IV. METHODOLOGY

We put forward a Fairness-aware Multi-agent Competitive
Bidding Influence Maximization (FMCBIM) framework to
deal with the CBIM. As shown in Fig. 3, FMCBIM makes
up of two modules: (1) A competition module, in which we
present a bidding environment MBE for agents (competitors)
to compete and interact. (2) A training module, in which we
leverage the MARL technique for agents to optimize their
own policies. During the training period, the agents keep
interacting with each other and MBE to learn the connection
among actions, states, and rewards, and then update policies
for choosing actions independently. In addition, the platform
resets the MBE for the next round by adjusting the seeds’
starting prices at the end of current round. To develop the
FMCBIM framework, we first introduce MBE, the bidding
environment, and then present the details of policy optimiza-
tion.

A. Multi-agent Bidding Particle Environment

In CBIM, since the competitors compete with each other but
cooperate with the platform, we develop a mixed virtual envi-
ronment MBE based on MPE [33] to model the competitors’
interactions in bidding. In MBE, there are 3 kinds of objects,
i.e., the platform, the seeds, and the competitors. We suppose

that the competitors’ budgets are predefined. The platform first
identifies the influential nodes as bidding seeds in the network
and sets the initial starting prices of seeds before training as:

p1j = (

k∑
i=1

bi)/l, ∀j ∈ [1, l], (3)

where p1j is the initial starting price of seed sj ,
∑k

i=1 bi is the
total budgets of all competitors. Since identifying influential
nodes is not the focus of our work, we choose the degree
heuristic algorithm [38] to select seeds. Then the competitors
bid over l seeds to strive for their seed sets. After one bidding
round, the platform returns rewards (i.e., the influence spreads
under the CLT diffusion model) to the competitors, and adjusts
the seeds’ starting prices according to the bidding results of
the current bidding round.

As we know, the bidding scenario in CBIM is a repeated
process where the platform adjusts the seeds’ starting prices
by their influence spreads in each bidding round. The bidding
results of seeds in each round are thus not independent. For
the platform, the adjustment mechanism of seeds’ starting
prices affects the competitiveness of seeds during bidding,
which in turn affects the association established between the
platform and competitors. For each competitor, myopically
utilizing a fixed bidding policy may not be able to cope with
the dynamic and changeable bidding environment. On the
contrary, in the long term, the competitors should take into
account the potential impact of the seed bidding results at the
current round. Therefore, it is significant for us to design a
reasonable adjustment mechanism over starting prices.

We define CDt
j =

σ(stj)

σ(Θ)t/l as the seed sj’s contribution
degree to the total influence spreads of l seeds in the t-th
bidding round, where σ(stj) denotes the influence spread of
seed stj , and σ(Θ)t/l denotes the average influence spread of l
seeds. Then considering the competitors’ demands of gaining
high influence spreads, we design the following adjustment
principles for starting prices: (1) Depress the starting prices of
bidding failed seeds. (2) Remain the starting prices unchanged
for those seeds with successful bidding but lower contribution
degree. (3) Raise the starting prices for those seeds with suc-
cessful bidding and higher contribution degree. The adjustment
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Fig. 3. The overview of FMCBIM framework. Solid lines indicate data flows in the current bidding round while dotted lines indicate data flows input to the
next bidding round.

formula is given as follows:

pt+1
j =


ptj · (1− κ), if sctj = 0,
ptj , if sctj = 1 ∧ CDt

j < 1,
ptj ·min(1 + κ,CDt

j), if sctj = 1 ∧ CDt
j ≥ 1,

(4)
where pt+1

j is the starting price of seed sj in the (t + 1)-
th bidding round, the value of sctj is 1 if seed sj is bid
successfully in the t-th bidding round, otherwise it is 0, and
κ ∈ (0, 1) is a parameter.

B. Policy Optimization with MARL

As a machine learning paradigm, MARL is primarily based
on Markov Game (MG). In MARL, multi-agent simultane-
ously interact with each other in a shared environment. Their
goal is to learn the optimal policy and get the maximum
expected rewards from a long-term perspective. MARL defines
the iterative process as a MG and utilizes dynamic program-
ming to address the optimization problem for each agent.

1) Markov Game: We formulate the bidding scenario in
CBIM as an MG, where k agents on behalf of k competitors
bid for l seeds attributed to the platform. A MG is denoted
by a group of all agents’ possible states O, and a group of
actions A1, ...,Ak where Ai indicates the agent i’s action
space. The actions of each agent i are calculated by using a
policy πi : Oi → Ai according to the t-th bidding round state
oti, and the action here is a bidding price aij ∈ Ai, indicating
that agent i bids for seed sj with price aij . After the action
execution, agent i transfers to the next state ot+1

i according to
the state transition function Γ : O ×A1 × ...×Ak 7→ Ω(O),
where Ω(O) denotes the set of probability distributions on the
state space. Each agent i owns an associated reward function
ri : O ×A1 × ... ×Ak 7→ R that provides a reward rti , i.e.,
influence spread in the t-th bidding round. We present detailed
descriptions of several important concepts.

Agent: In MBE, k competitors are denoted as c1, ..., ck
and l seeds are denoted as s1, ..., sl. Each bidding round t is
launched by the platform and all agents bid over these seeds
based on their starting prices [pt1, ..., p

t
l ]. During bidding, all

agents have to obey the business rules defined in Sec. III-A.

State: The agent i’s remaining budget rbti in the t-th
bidding round can be used to characterize its budget spent
status for the next round. Meanwhile, the variation tendency
on agents’ effective bidding prices can indirectly reflect the
changing trend of seeds’ starting prices with the contribution
degree. Therefore, we define the state oti of each agent i
in the t-th bidding round as oti = [gt−1

i , rbt−1
i ], where

gt−1
i = [gt−1

i1 , ..., gt−1
il ] indicates the effective bidding prices

of agent i in the (t − 1)-th bidding round, gt−1
ij indicates

the effective bidding price of agent i towards seed sj and
gt−1
ij = 0 when the bidding price is noneffective. Furthermore,

to ensure fairness among competitors, we adopt the CTDE
paradigm, in which the platform collects information from all
competitors and uses it to update a joint policy. Subsequently,
the platform instructs the decentralized competitors to learn
their bidding policies. In this paper, we provide all agents’
states ot = [ot1, ..., o

t
k] as the extra information for agents to

train their critic function.

Action: It is difficult for agents to explore the action space
while the action is designed as a certain value. Therefore, we
map the probabilities calculated by the neural network over a
probability distribution as actions. Furthermore, we add the
Gaussian noise to actions in order to help agents explore
the environment more effectively. Unlike stochastic policy
gradient (SPG) that outputs an action probability distribution
and selects the action with the maximum probability, we
output a specific action probability directly. In this paper,
considering that many human behaviors are regular, we assume
that the human bidding behavior satisfies normal distribution
here according to Center Limit Theorem. For each bidding
seed sj , agent i has an action aij ∈ [0, bi] (i.e., bidding price)
and we denote the agent i’s actions in the t-th bidding round
as at

i = [ati1, ..., a
t
il]. Note that the actions of agent i could be

at
i = [0, ..., 0] in theory, indicating that the agent i would like

to skip this bidding round. However, there is no incentive for
agents to skip one or more rounds, as they aim to maximize
their personal rewards by learning bidding policies from past
bidding experiences.

Reward and Transition: Each agent i aims to maximize
its own total expected reward ri =

∑Tb

t=0 γ
trti in the long run,
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where γ ∈ (0, 1] refers to a discount factor. The platform
returns the reward rti to each agent i only after all seeds
have been auctioned out. After the t-th bidding round, agent i
updates its state from oti to ot+1

i = [gt
i, rb

t
i] with the changing

of features gt
i and rbti.

2) MARL in CBIM: Considering that actions are taken from
a continuous space, so we utilize the deterministic policy
gradient (DPG) to optimize the bidding policy. In MARL,
agent i’s Q function is called critic, i.e.,

Qπt
i (ot,at) = Eπt,Γ[

t∑
j=1

γjrji |o1 = ot,at], (5)

where πt = {πt
1, ..., π

t
k} and at = [at

1,a
t
2, ...,a

t
k] are joint

policy and joint action of all agents. o1 = [o11, ..., o
1
k] is

the initial state vector. MARL exploits temporal difference
recursive relationship with the state ot+1 = [ot+1

1 , ..., ot+1
k ]

and action at+1 to solve the optimal action decision in the
(t+ 1)-th bidding round known as the Bellman equation:

Qπt
i (ot,at) = Er,ot+1

[r(ot,at)

+ γEat+1∼πt
[Qπt

i (ot+1,at+1)]].
(6)

The policy for agent i is a deterministic mapping function
φi(·) from state oti to actions at

i with a parameter θφ
t

i , and
φi(·) is usually called actor, i.e.,

at
i = φt

i(o
t
i) = φt

i([g
t−1
i , rbt−1

i ]). (7)

We substitute Eq. (7) into Eq. (6) and obtain:

Q
φt
i (ot,a

t
1, ...,a

t
k) = Er,ot+1 [r(ot,a

t
1...,a

t
k)

+ γQ
φt+1

i (ot+1, φ
t+1
1 (ot+1

1 ), ..., φt+1
k (ot+1

k ))],
(8)

where φt = {φt
1, ..., φ

t
k} is the joint deterministic policy of

all agents.
We gradually update agent i’s Q

φt
i and φt

i(o
t
i) indepen-

dently. Concretely, we train the critic Q
φt
i by means of loss

L(θQ
t

i ) minimization:

L(θQ
t

i ) = Eot,at,rti ,ot+1
[(yt −Q

φt
i (ot,a

t
1, ...,a

t
k))]

2, (9)

yt = rti + γQ
φt+1

i (ot+1, φ
t+1
1 (ot+1

1 ), ..., φt+1
k (ot+1

k )), (10)

where φt+1 = {φt+1
1 , ..., φt+1

k } is the target policy with
delayed parameter θ

φt+1

i , Q
φt+1

i is the target critic with
delayed parameter θQ

t+1

i , and (ot,at, r
t
i ,ot+1) is a transition

tuple stored in the replay memory D, where at = [at
1, ...,a

t
k].

The policy of each agent φt
i with parameter θφ

t

i is trained by

∇
θφt

i

J(φt
i) = (11)

Eot [∇θφt

i

φt
i(o

t
i)∇at

i
Q

φt
i (ot,a

t
1, ...,a

t
k)|at

i=φt
i(o

t
i)
].

C. Implementation

It is difficult to save each state transition as a transi-
tion tuple in MBE like a typical Reinforcement Learning
(RL) owing to the following reasons: (i) The states vary
so frequently that it will take needless computation to save
every bidding result of seed as a transition tuple. (ii) The
adopted CTDE paradigm requires merging all agents’ state

Algorithm 1 MCBIM
Input: Social network G, the number of competitors k, the budgets of

competitors [b1, ..., bk], the set of bidding seeds Θ = {s1, ..., sl}, the
number of iterations N , the number of bidding rounds T in one iteration,
initial states of all agents o1 = [o11, ..., o

1
k], target function update

parameter τ .
Output: The maximum revenue of platform

∑k
i=1 σ(Si).

1: For ∀ agent i, initialize critic Q
φ1
i (o1,a1

1, ...,a
1
k|θ

Q1

i ), actor

φ1
i (o

1
i |θ

φ1

i ), target critic Q
φ2
i with θQ

2

i ← θQ
1

i , target policy φ2
i with

θφ
2

i ← θφ
1

i ;
2: Initialize the replay buffer D;
3: for iteration = 1→ N do
3: Initialize a defined bidding environment ℜ for action exploration;
3: For ∀ agent i, receive an initial state o1i ;
4: for t = 1→ T do
5: For ∀ agent i, compute at

i by oti with Eq. (7) and add them into
ℜ and get seed set St

i ;
6: For ∀ agent i, save reward rti of St

i , update state to new state ot+1
i ;

7: For ∀ seed sj ∈ Θ, compute pt+1
j with Eq. (4);

8: Merge states as ot = [ot1, ..., o
t
k] and new states as ot+1 =

[ot+1
1 , ..., ot+1

k ] of all agents in the last bidding round. Store
(ot,at, rti ,ot+1) to replay buffer D. ot ← ot+1;

9: for each agent i = 1→ k do
10: Sample bs batches of samples (ot,ai, r

t
i ,ot+1) from D;

11: Update critic via optimizing loss defined in Eqs. (9-10), and
update actor by Eq. (11);

12: Update target function parameters: θQ
t+1

i = τθQ
t

i + (1 −
τ)θQ

t

i , θφ
t+1

i = τθφ
t

i + (1− τ)θφ
t

i ;
13: Store revenue of platform

∑k
i=1 σ(S

t
i );

14: end for
15: end for
16: end for
17: return the maximum revenue of platform

∑k
i=1 σ(Si).

transitions and provides the merged transitions to agents for
training. Therefore, we propose a Multi-agent Competitive
Bidding Influence Maximization (MCBIM) algorithm with
time complexity O(NT (kl+ktup+ ltup)), where tup denotes
the upper limit of diffusion step. At the beginning of the t-
th bidding round, the actor φt

i of each agent i generates l
actions at

i, then the agent i executes atij to bid for seed sj
and get seed set Si. After one bidding round, each agent i
will get a reward rti and update its state oti to new state ot+1

i .
Meanwhile, the platform will adjust the starting prices of all
seeds by the bidding results in the last bidding round. Then we
merge states and new states of all agents and store transition
tuples and update network parameters with critic and actor
update rules shown in Eqs. (9), (10), (11). More details are
given in Algorithm 1.

Note that the state updates after all agents’ actions have
been executed, which means the frequencies of critic up-
dates and actor executions are different. The critic updates
occur once per bidding round, while each round involves k
agents independently generating l actions to compete for the
seeds. Therefore, for large-scale social networks in real-world
scenarios, we can leverage existing industrial parallelization
techniques (e.g., MapReduce) to simulate the action executions
of k agents synchronously, which can greatly improve the
computing efficiency of MCBIM and enables MCBIM to solve
the real-world problem with a limited time constraint. Taking
MapReduce as an example, in the Map phase, we divide the k
agents into k sub-tasks and assign them to different computing
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nodes. Each agent independently generates actions based on
their policy and state, and executes them in parallel. In the
Reduce phase, the execution results are merged to update the
joint policies. The updated joint policies are then assigned to
each agent for parallel updating of their individual policies in
the next Map phase. Each bidding round can be accelerated
through the above process.

V. EXPERIMENTS

To evaluate the effectiveness and efficiency of MCBIM,
we compare it with four RL algorithms under the CLT
model based on five datasets collected from real world. These
algorithms are implemented using Python and the experiments
are conducted on a machine with Ubuntu 16, an Intel Xeon
Gold 6240R with 2.40GHZ CPU, 128GB memory, and an
NVIDIA RTX 2080Ti GPU.

A. Experimental Settings

Datasets. The experiments are conducted on five real-world
datasets. All datasets come from the Stanford Dataset website
[39], and their detailed statistical information is shown in
TABLE II. Facebook is a network composed of friends lists of
Facebook.com website. P2P-Gnutella09 is a snapshot of the
Gnutella P2P network taken on August 9, 2002. Cit-HepPh
is a paper citation network in Arxiv High Energy Physics
category. DBLP is extracted from the DBLP Computer Science
Bibliography, from which we select a collection of papers and
their authors in the data mining field and build a collaboration
network by connecting pairs of coauthors. Youtube is a video-
sharing social network.

TABLE II
STATISTICS OF REAL-WORLD NETWORKS

Name Type Nodes Edges

Facebook Undirected 4,093 88,234
P2P-Gnutella09 Directed 8,114 26,013
Cit-HepPh Directed 34,546 421,578
DBLP Undirected 136,260 532,484
Youtube Undirected 1,134,890 2,987,624

Parameter Settings. For CLT model, the influence prob-
ability of each edge in directed graphs is defined as wuv =

1
|Nin(v)| , euv ∈ E, while the influence probability in undi-
rected graphs is defined as wuv = 1

|N(v)| , euv ∈ E, where
N(v) is the degree of node v. The activation threshold of each
node is initialized by a random value between 0 and 1 [40],
[41]. For MCBIM, we adopt the Adam optimizer and set the
learning rate to 0.01 and τ = 0.01 to update the target critic
and target actor. γ is set to 0.95 and the size of replay buffer
is set to 106. After adding every 40 transition tuples to the
replay buffer, the target function parameters are updated. The
batch size before making an update is set as bs = 1, 024 [33].
The constant ω in Eq. (1) is set to 2 [42], and the parameter
κ in Eq. (4) is set to 0.3. We define one bidding round as an
episode in our experiment, and the total number of episodes
is equivalent to Tb = T ∗N , and N is set to 50 here.

Comparison Algorithms. We select four RL algorithms,
DDPG [43], TD3 [44], SAC [45] and PPO [46], as comparison

algorithms. All these four RL algorithms adopt distributed
training decentralized execution (DTDE) paradigm (i.e., have
no extra information for agents to train).
• DDPG: DDPG is an off-policy learning algorithm based on
DPG. It solves the continuous control problem by adopting
Actor-Critic framework. (The off-policy indicates that the
target policy and the action policy of the agent are different.)

• TD3: TD3 is an off-policy learning algorithm based on
DPG. It improves the overestimation problem in DDPG by
utilizing double Q-learning.

• SAC: SAC is an off-policy learning algorithm to maximize
the entropy-containing target. Different from DDPG and
TD3, SAC optimizes the policy based on SPG.

• PPO: PPO is an on-policy learning algorithm based on
SPG. It improves the Policy Gradient (PG) algorithm in
the policy update strength by proposing a new objective
function. (The on-policy indicates that the target policy and
the action policy of the agent are identical.)

• MCBIM (ours): MCBIM is an off-policy learning algo-
rithm based on DPG and uses the CTDE paradigm. The
critic function takes joint action as input.
In the experiments, the agents that adopted the RL algo-

rithms are self-interested. They do not cooperate with the
platform and only focus on maximizing their personal rewards
in bidding.

Performance Metrics. The main metric we use for evalua-
tion is the revenue of platform. Since CBIM has proven to be
monotone (lemma 2), the optimal solution S∗ should lie in the
situation that all seeds have been bid successfully. However,
when k, l are relatively small, even Random algorithm has a
high probability of achieving the situation that all seeds are
bid successfully during thousands of episodes. For verifying
this statement, we compare MCBIM with the above four
algorithms and Random algorithm within 104 episodes on
Facebook, and the k, l are set to 2 and 5 respectively. TABLE
III reports the results. Index REVmax indicates the maximum
revenue of platform while index REVavg indicates the average
revenue of platform in all successful episodes (i.e., the episode
that all seeds are bid successfully), and indices REi and CRi

denote the average rewards and the average cost ratios (i.e.,
the ratio of cost to budget) of agent i respectively. Index SR
indicates the ratio of successful episodes to the total episodes.

TABLE III
BIDDING RESULTS OF DIFFERENT ALGORITHMS ON FACEBOOK

Indices REVmax REV avg RE1 RE2 CR1 CR2 SR

Random 3,468.58 3,454.10 1,791.36 1,657.10 22.22% 21.40% 0.13%
DDPG 3,470.16 3,460.96 1,978.94 1,544.16 81.37% 55.47% 5.93%
TD3 3,476.12 3,455.94 1,510.01 1,945.31 32.67% 58.90% 7.79%
SAC 3,473.73 3,457.20 1,728.07 1,729.34 63.23% 63.03% 6.76%
PPO 3,470.61 3,457.61 1,676.43 1,781.08 60.10% 63.30% 6.15%
Ours 3,471.65 3,458.32 1,684.02 1,773.99 59.53% 60.87% 10.92%

As TABLE III shows, REVmax and REVavg of different
algorithms are almost identical, and the gap is the error in
calculating the influence spread. Thus, it is difficult to make
a comparison in the effectiveness of algorithms according to
the revenue of platform. However, we notice that the SR of
algorithms is quite different which can reflect the probability
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Fig. 4. SR for different number of episodes under different number of seeds.

of achieving the goal of CBIM, i.e., achieving a win-win
situation. Therefore, we utilize the SR instead of the revenue
of platform as the main metric to measure the effectiveness of
algorithms when the problem scale (i.e., k, l) is small. Whether
to use SR or revenue of platform as the main metric can be
empirically determined by observing values of both SR and
revenue of platform. When algorithms’ SRs decrease to 0 and
the revenue of platform obviously differs across algorithms
along with the scale increases, we take revenue of platform for
evaluation. In addition, we utilize the running time to evaluate
the efficiency of algorithms.

B. Results and Analyses

Comparison under Different Number of Episodes and
Seeds. In the first set of experiments, we investigate the
impact of varied amounts of episodes and seeds l by changing
episodes from 104 to 4×104 and l from 5 to 9, while fixing the
number of agents as k = 2, the fairness threshold as ρ = 0.1,
and setting the same budgets [ l+1

2 , l+1
2 ] for both 2 agents.

Fig. 4 shows the comparison results of SR on five datasets
under different episodes and different l respectively. We can
see that the SR of MCBIM surpasses the other four RL
algorithms in all cases, and MCBIM always has a much more
stable performance on different datasets compared with the
others. This observation between MCBIM and other algo-
rithms demonstrates that taking all agents’ actions and states as
input to train the critic function for each agent is better than
only taking its own actions and states as input for training.
It also shows that MCBIM’s way of cooperating with the
platform yields a higher probability of reward guarantee for
the competitors.

In addition, comparing SR on the same dataset with differ-
ent l as shown in Fig. 4(a), Fig. 4(f), and Fig. 4(k), we notice

that SR decreases as the growth of l. The reason lies in that
the possible states of an agent grows exponentially along with
l’s growth, and it is hard for the agent to learn the optimal
policy π through the state. However, this phenomenon of hard
learning is more obvious in DDPG when l = 9. The reason
lies in that DDPG focuses on calculating the maximum value
of Q function, and it might lead to the overestimation of Q
value due to uncertain accurate maximum value. Furthermore,
we observe that the SR of five algorithms on datasets with
different topologies varies significantly as shown in Fig. 4.
The SR that MCBIM can achieve on P2P-Gnutella09 is at
least twice than that of other datasets. The reason is that the
rewards returned by Youtube, Facebook, DBLP, and Cit-HepPh
are dozens or even hundreds of times greater than that on
P2P-Gnutella09, and the unit cost discrepancy of competitors
on Youtube, Facebook, DBLP, and Cit-HepPh is much more
significant than that on P2P-Gnutella09, which means the
fairness constraint is more difficult to satisfy.

TABLE IV
RUNNING TIME FOR DIFFERENT NUMBER OF EPISODES AND SEEDS ON

CIT-HEPPH (IN SECONDS)

l 5 7 9

Episodes(104) 1 2 3 4 1 2 3 4 1 2 3 4

DDPG 30 98 190 323 46 134 269 447 56 172 343 555
TD3 32 104 209 336 47 146 293 495 58 183 - 592
SAC 37 118 250 402 52 163 350 576 66 210 467 753
PPO 44 122 235 378 55 159 312 516 69 200 401 665
Ours 28 79 165 264 40 113 229 377 50 144 283 466

Since the five algorithms’ running time on five datasets are
similar, we only show the results on Cit-HepPh. TABLE IV re-
ports the results of running time under different l and episodes
on Cit-HepPh, where the empty value means the algorithm has
not trained an effective policy satisfying fairness constraint
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TABLE V
SR AND RUNNING TIME FOR DIFFERENT COMPETITOR BUDGETS ON
FACEBOOK, P2P-GNUTELLA09 (ABBREVIATED AS P2P), CIT-HEPPH

(ABBREVIATED AS CIT), DBLP AND YOUTUBE (RT IN SECONDS)

Dataset Budget SR(%) RT

DDPG TD3 SAC PPO Ours DDPG TD3 SAC PPO Ours

Facebook
[3, 2] - 4.04 4.34 5.18 8.93 - 204 239 243 197
[4, 3] - 0.10 2.02 0.56 4.17 - 394 449 421 347
[5, 4] - 0.06 0.54 1.94 1.96 - 544 666 575 495

P2P
[3, 2] 15.05 21.24 25.96 19.39 26.25 191 200 229 234 178
[4, 3] 1.60 13.25 13.99 7.67 15.69 254 271 322 310 237
[5, 4] 2.74 - 9.06 3.17 10.70 315 - 422 393 304

Cit
[3, 2] 1.08 7.84 8.07 3.54 9.44 167 191 221 220 164
[4, 3] 0.60 2.78 2.82 1.89 3.47 236 262 306 299 231
[5, 4] 0.98 0.04 0.37 0.37 1.75 331 344 411 375 305

DBLP
[3, 2] - 4.52 4.79 3.63 9.11 - 191 229 236 182
[4, 3] - 1.46 1.49 1.19 3.61 - 276 326 320 256
[5, 4] 1.14 - 0.50 1.27 1.39 341 - 433 407 328

Youtube
[3, 2] - 3.94 3.82 3.86 4.05 - 1,034 1,170 1,086 901
[4, 3] - 0.02 1.07 1.29 1.52 - 1,448 1,697 1,510 1,243
[5, 4] - - 0.45 0.30 0.67 - - 2,291 2,008 1,678

and cannot work in testing. The five algorithms’ running
time increases along with the growth of both l and episodes.
MCBIM always runs faster than other algorithms. Specifically,
compared with the second-fastest algorithm DDPG, MCBIM
runs around 7% ∼ 19% faster than DDPG. It demonstrates
that using operations with various frequencies of critic updates
and actor executions can improve the computing efficiency. In
addition, we notice that the SAC’s running speed decreases
with the growth of episodes. The reason is that SAC conducts
sampling with equal probability. Thus, the running speed of
SAC decreases when the number of samples increases with
the episodes. The results in TABLE IV show that MCBIM
strikes a good balance between efficiency and effectiveness.

Comparison under Different Budgets. In the second set of
experiments, we investigate the impact of varied budgets. We
fix k = 2, ρ = 0.1, and set episodes = 3× 104 based on the
results of above experiments, then we set 2 agents’ budgets to
[3, 2], [4, 3], [5, 4] corresponding to l = [5, 7, 9] respectively.

TABLE V reports the comparison results of SR and RT on
five datasets with different competitor budgets, where index
RT indicates the running time (in seconds). MCBIM still
surpasses the other algorithms according to the SR and RT
on five datasets. Meanwhile, comparing results in TABLE
V with results in Fig. 4 under the same settings (i.e., same
episodes, l and dataset), we observe that the differences
in the competitor budgets significantly affect SR. However,
the variation tendency of SR is different between P2P-
Gnutella09, Cit-HepPh and Facebook, DBLP, Youtube, where
SR increases on P2P-Gnutella09, Cit-HepPh but decreases
on Facebook, DBLP, Youtube. The reason also lies in the
different order-of-magnitude rewards returned on datasets. The
reward distributions on Facebook, DBLP and Youtube limit the
fitting ability of agents’ Q functions, which leads to the biased
evaluation of Q values.

Comparison under Different Number of Competitors
and Seeds. In the third set of experiments, we investigate
the impact of varied amounts of competitors k and seeds l
by changing k from 5 to 20 and changing l from 20 to 100,
while fixing episodes = 4 × 104, ρ = 0.3, and then set the

TABLE VI
RESULTS UNDER DIFFERENT NUMBER OF COMPETITORS AND SEEDS ON

P2P-GNUTELLA09 (RT IN SECONDS)

k, l Indices Algorithms

DDPG SAC PPO Ours

5, 20
SER(%) 35.09 90.47 21.40 91.97
RT 3,273 3,996 5,103 1,295
ROPmax 605.073 650.255 656.471 697.196

10, 50
SER(%) 52.87 92.09 1.15 93.64
RT 13,750 16,136 22,880 5,624
ROPmax 841.882 900.016 913.776 953.231

20, 100
SER(%) 81.80 97.62 1.59 99.04
RT 27,228 31,039 47,680 11,294
ROPmax 991.948 1,077.968 1,118.330 1,091.947

budget of each competitors as l
2 . With the expansion of the

problem scale, the SR decreases to 0, we thus utilize revenue
of platform instead of SR as the main metric to measure the
performance of algorithms.

Owing to the length constraint, we only show the com-
parison results on P2P-Gnutella09 and the results of MCBIM
on five datasets. TABLE VI reports the comparison results of
SER, RT , and ROPmax on P2P-Gnutella09 under different
k and l, where index SER refers to the ratio of the episodes
satisfying the fairness constraint to total episodes, and it can
reflect the ability of algorithm in fairness guarantee, index
ROPmax indicates the maximum revenue of platform in the
episodes while satisfying the fairness constraint. Since the
results of TD3 cannot satisfy the fairness constraint and has no
results on five datasets, we thus do not display TD3 in TABLE
VI. From the obtained results, we can see that the SER, RT ,
ROPmax of MCBIM outperform the other three algorithms
in most cases, where the high SER of MCBIM shows its
excellent capability in keeping fairness among competitors.
Meanwhile, the shortest RT of MCBIM again demonstrates
the good efficiency of the operation of critic updates and actor
executions with different frequencies. In addition, although the
ROPmax of PPO under k = 20, l = 100 is higher than that
of MCBIM, PPO’s running time is always the longest among
four algorithms. Moreover, the extreme low SER indicates
that it is hard for PPO to safeguard the fairness.

TABLE VII
RESULTS OF MCBIM UNDER DIFFERENT NUMBER OF COMPETITORS AND

SEEDS (RT IN SECONDS)

Dataset k, l
Indices

SER(%) RT ROPmax

Cit-HepPh
5, 20 90.91 1,207 6,289.162
10, 50 81.95 5,149 7,552.997
20, 100 96.79 10,398 8,579.818

Facebook
5, 20 42.16 1,562 2,024.389
10, 50 60.61 6,448 2,756.884
20, 100 52.19 13,896 3,270.420

DBLP
5, 20 94.49 1,382 3,925.268
10, 50 99.87 6,200 6,439.803
20, 100 99.97 12,725 9,141.457

Youtube
5, 20 38.06 2,815 106,842.017
10, 50 35.52 11,193 111,890.591
20, 100 30.60 22,436 119,381.433

TABLE VII reports the results of MCBIM under different
competitors and seeds on the remaining four datasets. MCBIM
still keeps high probability in keeping fairness on datasets
except Facebook and Youtube. The relatively low SER on
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TABLE VIII
RESULTS UNDER DIFFERENT RATIOS OF k : l ON P2P-GNUTELLA09 (RT

IN SECONDS)

k : l SER RT ROPmax

20 : 100 99.04 11,294 1,091.947
40 : 100 15.00 14,346 730.873
60 : 100 - - -

Facebook and Youtube is because the discrepancies of the
influence spreads among seeds on Facebook and Youtube
are significantly large, which leads to the big differences in
the unit cost distribution among competitors, and it is more
difficult to meet the fairness constraint compared to the other
three datasets. In addition, we observe that the difference
of RT among five datasets except Youtube is small. The
reason lies in that the reward computation we utilize is a
degree-centrality algorithm which can return the reward to
the environment quickly. Therefore, the time for calculating
a reward is similar for datasets other than Youtube which
is still time-consuming. Moreover, the RT increases as the
problem scale grows. The reason is that the state dimension of
competitors increases proportionally with the growth of k and
l, so that the running time spent on action computing increases
with the state dimension. In summary, the experimental results
demonstrate that MCBIM has good scalability.

Scaling Study on the Number of Competitors and Seeds.
In the fourth set of experiments, we investigate the impact
of ratio k : l on our algorithm MCBIM, and the comparison
results are shown as follows: (1) Keep k unchanged but enlarge
l. We can observe the impact of k : l on the results shown
in the first group of experiments, where we test ratios of
k : l = [2 : 5, 2 : 7, 2 : 9]. As shown in Fig. 4, we can
observe that the SR decreases as the ratio decreases. This
is because a lower ratio of k : l results in a larger gap
between competitors’ seed sets, leading to a higher frequency
of situations with serious disparities across competitors and
a lower probability of achieving fairness. (2) Keep the l
unchanged but enlarge k. We conduct experiments on ratios
k : l = [20 : 100, 40 : 100, 60 : 100] to explore the impact of
k : l, and we only show the results on dataset P2P-Gnutella09
due to the space limitation. The results are shown in TABLE
VIII, which can also reflect the performance of our proposed
model when the k value scales up. From the results shown in
TABLE VIII, we can observe that both the SER and ROPmax

decrease as the ratio (or k) increases. The decrease in SER is
due to the more intense competition resulting from the increase
of k, making the fairness among competitors more difficult to
achieve. The decrease in ROPmax is because the competitive
seed sets propagated in the networks increase with the increase
of k, making the sum of the influence probability of each
competitor’s activated nodes toward an inactive node decrease,
which reduces the reward of each competitor. Therefore, the
revenue of platform decreases accordingly. (3) Enlarge both k
and l. We can observe the impact of k : l on results shown
in the third group of experiments, where we test the ratios
of k : l = [5 : 20, 10 : 50] (or [5 : 20, 20 : 100]). As
shown in TABLE VI and TABLE VII, we can observe that
the impact of k : l on the metric SER is small. The reason is

that the increase of l effectively relieves the fierce competition
atmosphere resulting from the growth of k.

VI. CONCLUSIONS

We investigated a new IM problem, Competitive Bidding
Influence Maximization (CBIM) in this work. The goal of
CBIM is to achieve a win-win situation both between the
platform and the competitors and among competitors on the
premise of fairness through multi-round bidding. We showed
that the CBIM problem is proven to be NP-hard. We put for-
ward a novel Fairness-aware Multi-agent Competitive Bidding
Influence Maximization (FMCBIM) framework to address the
CBIM problem. In FMCBIM framework, we built a Multi-
agent Bidding Particle Environment (MBE) to capture the
interactions among competitors during the dynamic bidding
process. Furthermore, we proposed a practical Multi-agent
Competitive Bidding Influence Maximization (MCBIM) algo-
rithm by leveraging the MARL technique to safeguard rewards
and fairness for competitors. A large number of experiments
were conducted on five real-world datasets, which proved the
effectiveness of our proposed framework and the superiority
of the MCBIM algorithm over four comparison algorithms.
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