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Asymptotic Disturbance Rejection for Hammerstein Positive Real Systems
Harshad S. Sane and Dennis S. Bernstein

Abstract—In this paper, we present control algorithms for sta-
bilization and asymptotic disturbance rejection for Hammerstein
systems with positive real linear dynamics. To do this, we extend
the nonlinear controller modification technique of Bernstein and
Haddad to include matched plant disturbances. The controller
is based on a novel Lyapunov function that estimates the distur-
bance bound. These estimates are then used to construct high-gain
switching controllers that guarantee convergence of the plant
output while accounting for input nonlinearities.

Index Terms—Adaptive, disturbance rejection, Hammerstein,
nonlinear, passivity, positive real.

I. INTRODUCTION

WHILE many plants are nonlinear, it is often the case that
the plant dynamics are inherently linear with a nonlinear

input map. A linear system with an input nonlinearity is known
as a Hammerstein system [4], [21], [22]. The present paper is
motivated by the desire to control the response of a Hammer-
stein system with a matched exogenous disturbance. Our in-
terest includes systems that have parameters, control inputs, or
states that are constrained to operate in a limited region. Such
constraints may arise from practical limitations such as satura-
tion, positive-only control inputs, and constrained movement in
predetermined physical gaps. For example, systems with elec-
trostatic and electromagnetic actuators have quadratic (positive-
only) control inputs, and the movement of the electrodes or the
electromagnetic plates are limited by the gap between the plates.

Examples of such systems include microelectromechanical
systems (MEMS) including micromachined accelerometers and
gyros [5], [16], [28], electrostatically actuated micromirrors [3],
[18], precision-controlled MEMS hard drive read–write heads
[6], [11], [13] and electromagnetically levitated systems [24].
Most MEMS are modeled as second-order systems actuated by
electromagnetic, electrostatic, and magnetic sensing and actu-
ation techniques, which renders the controlled dynamics ex-
tremely nonlinear [20], [23]. Linear controllers designed by lin-
earizing these systems around an operating point may be desta-
bilizing outside of the linear operating range.
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In several applications, such as control of flexible structures,
active noise control, and control of spring-mass-damper sys-
tems, the plant transfer function is known to be positive real.
This property arises if the sensor and actuator are colocated
and also dual, for example, force actuator and velocity sensor,
torque actuator and angular rate sensor, or pressure actuator
and volume velocity sensor [9]. In practice, the prospects for
controlling such systems are quite good since, if the sensor and
actuator dynamics are negligible, stability is unconditionally
guaranteed as long as the controller is strictly positive real. For
the case of positive real linear part, the stabilization problem
was considered in [2], where a positive real controller was
modified to account for the plant input nonlinearity. These
results were extended in [8] to the case of dissipative systems.
The objective of the present paper is to extend the results of
[2] to include asymptotic rejection of matched but unknown
disturbances. To do this, we develop a variation of the con-
troller modification technique of [2] to include bounds on
the disturbance. The controller includes states that estimate
the disturbance bound. These estimates are then used by a
high-gain switching controller to guarantee convergence of the
plant output while accounting for the input nonlinearity. This
approach is distinct from the switching controller obtained
from the Lyapunov redesign technique [17, ch. 13], since our
control algorithm is adaptive and does not require knowledge
of the plant parameters and disturbance bound.

The contents of this paper are as follows. In Section II, we
review the well-known result on the asymptotic stability of the
feedback connection of a positive real (PR) plant and a strictly
positive real (SPR) controller. In Section III, we consider a linear
strictly proper PR plant with a matched but unknown distur-
bance. We augment the SPR controller of [2] with a switching
term involving estimates of the disturbance bound which guar-
antees convergence of the plant output (Theorem 2). In Sec-
tion IV, we consider the feedback interconnection of a Hammer-
stein plant with PR linear dynamics and a Hammerstein con-
troller with SPR linear dynamics. Theorem 3 proposes a struc-
ture for the controller input nonlinearity to guarantee Lyapunov
stability of the origin of the closed-loop system.

In Section V, we consider a Hammerstein plant with PR linear
dynamics and quadratic input nonlinearity with a matched but
unknown bounded disturbance. This case is of special impor-
tance since it models electrostatically and magnetically actuated
systems. For this case, we construct a nonlinear controller that
guarantees (Theorem 4) stability and asymptotic rejection of the
unknown disturbance. In Section VI, we consider the most com-
monly found Hammerstein system, namely, a linear plant with
control input saturation and bounded disturbance. For this case,
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we present a controller (Theorem 5) that guarantees stability and
asymptotic disturbance rejection.

In Section VII, we provide illustrative numerical examples.
In particular, we consider a quadratic input nonlinearity arising
in problems of electromagnetic and electrostatic actuation [10].
First, we apply Theorem 4 to this problem and achieve asymp-
totic disturbance rejection. As an application of this result,
in Section VII-C we consider a constant command tracking
problem for an electromagnetically controlled oscillator [10].
We then apply the controller presented in Section V to this
problem and achieve asymptotic tracking performance for
constant and time-varying command inputs.

A. Notation

We use the following notation. For , define

... (1)

where if , if , and
if . For and , define

(2)

where is the saturation level. For , define the -norm of
by .

II. STABILIZATION OF PR PLANT WITH SPR CONTROLLER

Consider a minimal realization of the positive real plant

(3)

(4)

with control input and measurement . Next, let
be minimal and strictly positive real, and consider

the controller

(5)

(6)

in feedback with the system (3) and (4) with .
Although the following result is standard [7], [25], [26], we

provide a proof to serve as a baseline for deriving later results.
Theorem 1: The equilibrium solution of

the closed-loop system (3)–(6) is globally asymptotically stable.
Proof: Since is positive real, the positive

real lemma [1], [14], [25], [26] implies that there exist a
positive-definite matrix and matrices
and such that

(7)

(8)

(9)

Since is strictly positive real, there exists a posi-
tive-definite matrix , a matrix , and
a real number such that

(10)

(11)

Next, consider the Lyapunov candidate

(12)

Then along the closed-loop system trajectory is given by

(13)

Hence, the equilibrium solution is Lyapunov stable. Let
. Using (13) and , it follows that

. Let denote the largest invariant
set contained in and let be a solution
of (3)–(6) in . Substituting in (5) yields ,
which implies that . Since the system (5), (6) is
strictly positive real, it follows from [19] that rank

for all . Hence, rank ,
which implies . Using (3) and (4), and noting that ,
it follows that for . Since
is observable, , and therefore . By the invariant
set theorem [17, Th. 3.4, p. 115], every trajectory converges to

as .

III. D ISTURBANCE REJECTION FORPR PLANT WITH

HIGH-GAIN SPR CONTROLLER

Consider a minimal realization of the strictly proper plant

(14)

(15)

with control input , measurement , and distur-
bance . We assume that is positive real.

Assumption 1:There exist a known continuous function
and positive constants such that

(16)

Note that Assumption 1 requires that the functionbe
known. However, the constants and need not be known.
Next, let be minimal and strictly positive real and
consider the controller

(17)

(18)

(19)

(20)

where , , and , are positive constants.
Note that if is bounded, then it suffices to let and omit
(18).

Theorem 2: The equilibrium solution
of the closed-loop system (14), (15), (17)–(20) is

Lyapunov stable, and as . Moreover,
, , and and

exist.
Proof: Using the positive real lemma, there exist a posi-

tive-definite matrix and a matrix sat-
isfying (7) and (8). Furthermore, there exist a positive-definite
matrix , a matrix and a real number

satisfying (10) and (11). Let
and .
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Consider the positive-definite function
defined by

(21)

Note that is minimized at with .
Suppose that either or vanishes on and let

or . Therefore, for
, we have

Using (18) and (19) and noting that
and , it follows that for

(22)

Therefore, is nonincreasing and thus bounded on
. This implies that for , 2, and are

bounded on . Therefore, for , 2, there exists
such that for all . However, and

are continuous, which contradicts or
. Therefore, both and are nonzero on , and thus

(22) is valid for all . Hence, is nonincreasing
and thus bounded on . Consequently, for , 2,
is bounded on and .

Let . Using (22), it follows that
. Let denote the largest invariant set contained in

and let be a solu-
tion of (14) and (15) and (17)–(20) in . Using similar argu-
ment as in the proof of Theorem 1, it can be shown that ,

on . By the invariant set theorem, every tra-
jectory converges to as . Therefore,
as . Furthermore, noting that for all

, as and using the fact that
and are bounded, it follows that and

exist.
Remark 1: The closed-loop system (14) and (15) and

(17)–(20) is a differential equation with right-hand side discon-
tinuity at . The closed-loop system can be regularized
into a differential inclusion with replaced by a
set-valued-map , where if ,
if , and if . The sufficient

conditions of [27] for the existence and continuity of solutions
are satisfied, and the closed-loop differential inclusion has an
absolutely continuous solution. Noting continuous dependence
on the initial conditions and using Theorem 2.2 in [12], we
conclude that the solution set of the closed-loop differential
inclusion equals the solution set of the closed-loop system
(14) and (15) and (17)–(20). Since the solutions are absolutely
continuous, the invariant set theorem applies.

Remark 2: The presence of in (20) signifies
high-gain control, which is necessary to achieve complete dis-
turbance rejection. In practice, one can approximate in
(20)with , where is the maximum allowable
gain.

As an application of Theorem 2, we consider the tracking
problem in which the output of the system

is required to follow a known bounded reference
signal . Assume that and let

so that . Letting
and we obtain

(23)

(24)

We assume that there exists such that
, . Furthermore, we as-

sume that there exist constants and a continuous
function such that (16) is satisfied with replaced by

. Consider the closed-loop system consisting of the plant
(23) and (24) and the controller (17)–(20) with . Theorem
2 applied to this closed-loop system yields asymptotic tracking
performance, namely, as .

Next, we consider the case in which the disturbance
is constant. As above, we assume that is strictly
positive real. The following result presents a simplified con-
troller in this case.

Proposition 1: Consider the controller

(25)

(26)

(27)

where , , and is positive defi-
nite. Then the zero solution of the closed-loop system (14) and
(15) and (25)–(27) is Lyapunov stable. Moreover,

as , and exists.
Proof: The proof is similar to that of Theorem 2 with

given by
The requirement on the controller that be SPR

can be weakened to marginally strictly positive real (MSPR)
[15]. It is shown in [15] that the negative feedback intercon-
nection of a PR and MSPR system is asymptotically stable. The
positive real lemma, in this case, is applicable with the exception
that is of the form , where are the
number of controller poles on the imaginary axis. Theorem 1,
Theorem 2, and Proposition 1 remain unchanged if
is MSPR. The proofs, however have to be modified as in [15].
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In fact, the controller in Proposition 1 (with integrator state)
is a MSPR controller in negative feedback with a PR plant.

IV. STABILIZATION OF HAMMERSTEIN PR PLANT WITH

HAMMERSTEIN SPR CONTROLLER

Consider the Hammerstein plant

(28)

(29)

with control input , measurement , and input
nonlinearity . In this section, we gener-
alize the results in [2] to input nonlinearitiesthat depend on
both and . The main contribution of [2] is that the feedback
interconnection results are not based on absolute stability cri-
teria (circle or Popov conditions), which require a gain or phase
constraint on the linear portion of the loop transfer function. The
idea is to modify the controller in Theorem 1 when the plant
possesses an arbitrary input nonlinearity. We assume that the
linear system is minimal and positive real. In addi-
tion, we assume that is continuous with for all

and we write .
Next, let be minimal and strictly positive real,

and consider the nonlinear controller

(30)

(31)

where , in feedback with the plant (28), (29). Here, the
continuous function is constructed
to satisfy

(32)

for all , where and
is a nonnegative-definite matrix for all .

Setting in (32), it follows that for all
. For example, we can choose ,

where .
In particular, letting , (32) can be satisfied by

choosing

... (33)

where, for

(34)

assuming that the indicated limit exists. Here
and is the th unit coordinate vector.

Let .
Theorem 3: The zero solution of the closed-loop system

(28)–(31) is Lyapunov stable. Furthermore, if det
for all or if is strictly positive real, then the
zero solution is globally asymptotically stable.

Proof: By assumption, there exist a positive-definite ma-
trix and matrices satisfying (7)–(9)
with . Furthermore, there exist a positive-definite matrix

, a matrix and a real number
such that (10) and (11) are satisfied.

Consider the Lyapunov candidate

Then

(35)

Hence, is Lyapunov stable. Let . Using
(35), it follows that . Let
denote the largest invariant set contained inand let

be a solution of (28)–(31) in . Substituting
in (30) yields , which implies that

. Since is strictly posi-
tive real, it follows that rank , which implies

.
Now assume that det for all . Then

. Using (28) and (29), and noting that , it follows that
for . Therefore, , where is

defined in the proof of Theorem 1. Since is observable,
rank . Hence, and therefore, . By the
invariant set theorem, every trajectory converges to
as .

Alternatively, assume that is strictly positive real.
Then

Therefore, and the result
follows.

V. DISTURBANCE REJECTION FORHAMMERSTEIN SPR PLANT

WITH QUADRATIC INPUT NONLINEARITY

Many electromechanically and electrostatically controlled
systems are modeled as second-order systems with state-de-
pendent quadratic control inputs. In order to address the
problem of controlling such systems we consider a class of
Hammerstein systems with quadratic input nonlinearity and
matched disturbance.

Consider the SISO plant

(36)

(37)

with scalar control input , scalar measurement ,
and bounded disturbance satisfying for all

. Here, the piecewise continuous function
is bounded and satisfies for all . Assume that

is minimal and strictly positive real. Next, consider
the controller shown in (38)–(40) at the bottom of the next page,
where and . Assume that is minimal
and strictly positive real.

Theorem 4: The equilibrium solution of
the system (36)–(40) is Lyapunov stable and
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Fig. 1. Response of the system (53), (54) with the controller (17)–(20) and sinusoidal disturbanced(t) = 3 sin(3t).

as . Furthermore, is bounded for all and
.

Proof: Let satisfy for all . Let
and consider the positive-definite function

defined by

It can be shown that for all . The result fol-
lows using the invariant set theorem as in the proof of Theorem
2.

Remark 3: Theorem 4 can be extended to plants with
more general nonlinearities satisfying
or . Consider the plant (36), (37) with
replaced by in feedback with the controller (38), (39), and

(41)

Then the closed-loop system yields as .

VI. DISTURBANCE REJECTION FORHAMMERSTEIN PR PLANT

WITH INPUT SATURATION

Consider the single-input–single-output (SISO) plant

(42)

(43)

with scalar control input and scalar measurement
. The disturbance is matched and bounded so that

. Assume that is minimal and pos-
itive real.

Next, consider the controller

(44)

(45)

(46)

where , , and

(47)

Assume that is minimal and positive real.
Theorem 5: The equilibrium solution of

the system (42)–(46) is Lyapunov stable and as
. Furthermore, and .

Proof: Since , there exists such
that for all . Let so that

for all . Next, noting that

(38)

if sign
if sign

(39)

(40)
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Fig. 2. (a) Controlu and (b) parameter̂� corresponding to the response in Fig. 1. Note the chattering of the control inputu(t).

for all and using (46), it follows that (42) can
be written as

(48)

where

By the positive real lemma, there exist a positive-definite ma-
trix , and a matrix satisfying (7), (8)
with . Furthermore, there exist a positive-definite matrix

, a matrix , and real number
satisfying (10), (11).

Next, let and consider the Lyapunov can-
didate defined by

(49)

Note that is radially unbounded and has its minimum at
. Let or . Then, for all

Using (47) and noting that and
, we obtain, for all [see (50) at the bottom of

the page]. Therefore, is nonincreasing and bounded
on , which implies that both and are
bounded on . Therefore, there exist such that

for all . Since is continuous,
this contradicts and . Therefore, (50) is
valid for all , and thus is nonincreasing and
bounded on . Therefore, for all .

(50)
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Fig. 3. Response of the system (53), (54) and the controller (17)–(20) withsign(y) replaced by10sat (y). Hered(t) = 3 sin(3t).

Fig. 4. (a) controlu and (b) parameter̂� corresponding to the response in Fig. 3.

Let . Then it follows that
. Let denote the largest invariant set contained

in . Let be a solution
of (42)–(46) on . Substituting in (44) yields

, which implies that .
Noting that for all it follows that
and for all . Therefore,

for all . Since is strictly positive
real, it follows that rank , which implies
on . Using (45), it follows that . By the invariant set
theorem, every trajectory converges toas . Therefore,

as . Furthermore, since , and
is bounded, it follows that exists.

VII. N UMERICAL EXAMPLES

For the following numerical examples, let

(51)
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Fig. 5. Hammerstein plant with quadratic input nonlinearity. The closed-loop response of (36)–(40) is shown for the disturbanced(t) = �1:0� sin(3t).

Fig. 6. (a) Controlu and (b) parameter̂a for the response in Fig. 5.

and

(52)

Here, is PR and is SPR. The matrix
has an eigenvalue at zero.

A. Linear Plant With Disturbance

To illustrate Theorem 2, consider the plant

(53)

(54)

where . Since is bounded (but otherwise
unknown), (16) is satisfied with and, thus, can be
ignored in controller (17)–(20). Figs. 1 and 2 show that the con-
troller converges sufficiently fast to reject and that
converges.
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Fig. 7. Hammerstein PR system with input saturation and disturbance. (a) Random bounded disturbanced(t) and (b) response of the closed-loop system (55),
(56) and (44)–(46).

Fig. 8. Control parameter̂a(t) and the control inputtanh(u(t)) corresponding to the response in Fig. 7.

However, thecontrol inputchatters (seeFig.2) forsmall values
of the output due to the presence of the term in (20).
As in Remark 2 we approximate by , hence
effectively limiting the gain of that term to ten. Figs. 3 and 4 show
that the controller is able to attenuate the sinusoidal disturbance
although asymptotic disturbance is no longer guaranteed.

B. Hammerstein PR Plant With Disturbance

To illustrate Theorem 4, consider the Hammerstein PR plant
with a quadratic nonlinearity given by (36), (37) with
and nonlinear controller (38)–(40) with . We consider
the bounded disturbance . It can be seen
from Figs. 5 and 6 that the controller rejects the disturbance, andFig. 9. Schematic of the electromagnetically controlled oscillator.
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Fig. 10. Mass position of an electromagnetically controlled oscillator for the constant position commandr = 1:0.

Fig. 11. Mass position of the electromagnetically controlled oscillator for the square wave position commandr (t) with period 12.5 s.

it is observed that the controller stateconverges [Fig. 6(a)].
The open-loop response (dashed-line in Fig. 5) of the system
diverges due to the eigenvalue at the origin.

To illustrate Theorem 5, we consider the Hammerstein PR
plant with saturated control input

(55)

(56)

where is a random bounded disturbance, and the nonlinear
controller (44)–(46) with and approximated

by . It can be seen from Figs. 7 and 8 that the con-
troller recovers from an initial saturation and rejects the random
disturbance.

C. Electromagnetically Controlled Oscillator

Consider the electromagnetically controlled oscillator shown
in Fig. 9. The dynamics of the oscillator [10] are given by

(57)
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where is the input current to the electromagnet, is
the damping constant, and is the spring constant. Here

corresponds to the position of the mass when the spring
is relaxed, and is the location of the electromagnet. Several
electrostatically or electromagnetically actuated systems such
as MEMS can be modeled by (57). It can be shown that the lin-
earized system around an operating point is unstable if

. With , we have

(58)

where , and . Assume that the state
is available for feedback and let with

so that the system is SPR. Note that

with , (58) has the same form as (36) with
. Next, we choose the controller (38)–(40) in Theorem 4

with and approximated by . For a
constant command input , it can be seen in Fig. 10
that the controller stabilizes the plant and follows the command
input. For a square wave command switching between 0.8 and
1.6 with a period of 12.5 s, Fig. 11 shows that the controller
attenuates the tracking error. The tracking performance im-
proves with better approximation (higherin ) of
the function. Note that both the command inputs are
beyond the one-third gap and need to be stabilized.
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