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Brief Papers

Asymptotic Disturbance Rejection for Hammerstein Positive Real Systems

Harshad S. Sane and Dennis S. Bernstein

Abstract—In this paper, we present control algorithms for sta- In several applications, such as control of flexible structures,
bilization and asymptotic disturbance rejection for Hammerstein  active noise control, and control of spring-mass-damper sys-

systems with positive real linear dynamics. To do this, we extend temg the plant transfer function is known to be positive real.
the nonlinear controller modification technique of Bernstein and

Haddad to include matched plant disturbances. The controller This property arises if the sensor and actuator are_colocated
is based on a novel Lyapunov function that estimates the distur- @nd @lso dual, for example, force actuator and velocity sensor,
bance bound. These estimates are then used to construct high-gaintorque actuator and angular rate sensor, or pressure actuator
switching controllers that guarantee convergence of the plant and volume velocity sensor [9]. In practice, the prospects for

output while accounting for input nonlinearities. controlling such systems are quite good since, if the sensor and
Index Terms—Adaptive, disturbance rejection, Hammerstein, actuator dynamics are negligible, stability is unconditionally
nonlinear, passivity, positive real. guaranteed as long as the controller is strictly positive real. For

the case of positive real linear part, the stabilization problem
was considered in [2], where a positive real controller was
modified to account for the plant input nonlinearity. These

HILE many plants are nonlinear, it is often the case thagsults were extended in [8] to the case of dissipative systems.

the plant dynamics are inherently linear with a nonlinearhe objective of the present paper is to extend the results of
input map. A linear system with an input nonlinearity is knowf2] to include asymptotic rejection of matched but unknown
as a Hammerstein system [4], [21], [22]. The present paperdisturbances. To do this, we develop a variation of the con-
motivated by the desire to control the response of a Hamméeller modification technique of [2] to include bounds on
stein system with a matched exogenous disturbance. Our tipe disturbance. The controller includes states that estimate
terest includes systems that have parameters, control inputsthér disturbance bound. These estimates are then used by a
states that are constrained to operate in a limited region. Stit@h-gain switching controller to guarantee convergence of the
constraints may arise from practical limitations such as satuR§@nt output while accounting for the input nonlinearity. This
tion, positive-only control inputs, and constrained movement fPProach is distinct from the switching controller obtained
predetermined physical gaps. For example, systems with elf@M the Lyapunov redesign technique [17, ch. 13], since our
trostatic and electromagnetic actuators have quadratic (positig@ntro!l algorithm is adaptive and does not require knowledge
only) control inputs, and the movement of the electrodes or tRbe Plant parameters and disturbance bound.
electromagnetic plates are limited by the gap between the plates-l:he contents of this paper are as follows. -In Seclt|_on I, we

Examples of such systems include microelectromechani gytew the WeII-knpwn result on the asymptotic stability of t.he
systems (MEMS) including micromachined accelerometers a (?c_il_)ack connection of a positive re_al (PR) plant a_nd a s_tnctly
gyros [5], [16], [28], electrostatically actuated micromirrors [3]po§|t|ve real (SPR) controllgr. In Section Ill, we consider a Illnear
[18], precision-controlled MEMS hard drive read—write hea stnctly proper PR plant with a matched but un_known .O“St!”'
[6], [11], [13] and electromagnetically levitated systems [24 ance. We_augm(_ent the SPR con troller of [2] with & sywtchmg
’ ’ erm involving estimates of the disturbance bound which guar-

Most MEMS are modeled as second-order systems actuate %

. ! . . ees convergence of the plant output (Theorem 2). In Sec-
electromagnetic, electrostatic, and magnetic sensing and Gk IV, we consider the feedback interconnection of a Hammer-

ation techniques, which renders the controlled dynamics ain plant with PR linear dynamics and a Hammerstein con-

tremely nonlinear [20], [23]. Linear controllers designed by ling oy with SPR linear dynamics. Theorem 3 proposes a struc-

earizing these systems around an operating point may be deg{gs for the controller input nonlinearity to guarantee Lyapunov
bilizing outside of the linear operating range. stability of the origin of the closed-loop system.

In Section V, we consider a Hammerstein plant with PR linear
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we present a controller (Theorem 5) that guarantees stability andNext, consider the Lyapunov candidate
asymptotic disturbance rejection. .
Iyn Spection VII, we provijde illustrative numerical examples. V(#) = a" Po+al P, (12)
In particular, we consider a quadratic input nonlinearity aI’iSiI’Tg']enV(j;) along the closed-loop system trajectory is given by
in problems of electromagnetic and electrostatic actuation [10]. - - r
First, we apply Theorem 4 to this problem and achieve asympy. (&) = = [Lz + Wu]" [La + Wu] — ag (ecPe + L Le) e
totic disturbance rejection. As an application of this result, <0. (13)
in Section VII-C we consider a constant command tracki
roblem for an electromagnetically controlled oscillator [10], "x =" . .
\SVe then apply the controglller presyented in Section V to[ thig~: V=1(0). Using (13) andi = —Cl, it follows th{atE -
problem and achieve asymptotic tracking performance fof @ L% = 0, e = 0}. Let.M dfnoteTthe ITargest invariant
constant and time-varying command inputs. set contalr_led i and I_et:c(t) = [ (t_) x! (t)]_ be a solution
of (3)—(6) in M. Substitutingz. = 0 in (5) yieldsB.y = 0,
A. Notation which implies thatl.. A, ! B.y = 0. Since the system (5), (6) is
strictly positive real, it follows from [19] that rankL.(ywl —
A.)7'B.) = mforallw € R. Hence, ranKL. A B.) = m,
sign(y1) which impliesy = 0. Using (3) and (4), and noting thét: = 0,

ence, the equilibrium solution = 0 is Lyapunov stable. Let

We use the following notation. Fgre IR™, define

sign(y) £ : (1) itfollows thatCA'z = 0fori = 1,...,n — 1. Since(4, O)
sign () is observabler = 0, and therefore\t = {0}. By the invariant
m set theorem [17, Th. 3.4, p. 115], every trajectory converges to
wheresign(y;) = 1if y; > 0,sign(y;) = —1if y; < 0, and M = {0} ast — oc. O
sign(y;) = 01if y; = 0. Foru € IR anda > 0, define
s [, lu| < a [ll. DISTURBANCE REJECTION FORPR RANT WITH
sata(u) = {usign(u), lu| > @) HIGH-GAIN SPR ®NTROLLER

wheret is the saturation level. Fgr> 1, define thep -normof ~ Consider a minimal realization of the strictly proper plant
z € R™ by [|zll, 2 (|z1]P + - + |2m[P)1/7. i =Az + B(u + d) (14)

Il. STABILIZATION OF PR RANT WITH SPR (NTROLLER y=Cuz (19)

Consider a minimal realization of the positive real plant ~ With control inputu € IR™, measurement ¢ IR™, and distur-
banced € R". We assume thdt4, B, C) is positive real.

& =Ax + Bu 3) Assumption 1:There exist a known continuous functign
y =Cz + Du (4) [0,00) — IR and positive constants;, a such that
with controlinputu € IR™ and measuremepte IR™. Next, let ld)|l2 < a1 f(t) + @z, t>0. (16)

(A, B., C.) be minimal and strictly positive real, and consider

the controller Note that Assumption 1 requires that the functignbe

known. However, the constants anda, need not be known.

Ze =Acxe + Bey (5 Next, let(A., B.,C.) be minimal and strictly positive real and
u=—C.x. (6) consider the controller
in feedback with the system (3) and (4) with € R™~. T, =Aczc+ Bey (17)
Although the following result is standard [7], [25], [26], we &y =k fllylliad?, @1(0) > 0 (18)

provide a proof to serve as a baseline for deriving later results. A — 432 4a(0) > 0 19
Theorem 1: The equilibrium solutior: = [z7 21T = 0 of a2 =kzllyll1 & " Ga( A) >_ (19)
the closed-loop system (3)—(6) is globally asymptotically stable. u=—=Cexe = (G f + Ga)sign(y) (20)

Proof: Since (4, B,C, D) is positive real, the positive wherez, € R", 41, &» € IR, andky, k- are positive constants.

real lemma [1], [14], [25], [26] implies that there exXist ayote that ifd is bounded, then it suffices to lgt= 0 and omit
positive-definite matrix”> € IR"*" and matrices, € R"*" (18).

andW € RP*™ such that Theorem 2:The equilibrium solution[z, z., &1, &s] =
ATP+PA=—ITL @) [0,0, a1, ao] Of the closed-loop system (14), (15), (17)—(20) is

Lyapunov stable, ang(t), z.(t) — 0 ast — oo. Moreover,

T _ _ T b ’
B 1;’_0 . WL (®) infy>0 G1(t) > 0, infy>0 Go(t) > 0, andlim,—. &1 (t) and
D+D" =W"W. 9) limy—, o Go(t) exist.

Since(A,, B, C.) is strictly positive real, there exists a posi- ~ Proof: Using the positive real lemma, there exist a posi-

tive-definite matrix?. € IR™< " a matrixL, € R"*?: and tive-definite matrix” € R"*" and a matrixL. € IR"*" sat-
a real number, > 0 such that isfying (7) and (8). Furthermore, there exist a positive-definite

'T - matrix P. € R™ %", a matrixL. € IR"<*?< and a real number
Ac P.+ PcAc = - Lc Le—e P (10) €.>0 SatiSfying (10) and (11) Let = [LL‘T .Z‘Z a1 Qo ]T

BTP, =C.. (11) andio=[0 0 o o],
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Consider the positive-definite functiolh : IR™ x IR™ x conditions of [27] for the existence and continuity of solutions

(0,00) x (0,00) — R defined by are satisfied, and the closed-loop differential inclusion has an
4 o1 absolutely continuous solution. Noting continuous dependence

V(z) = 2" Pr + 2l Pox. + T (\/ ap + \/d_> on the initial conditions and using Theorem 2.2 in [12], we
1 1

4 3 3 conclude that the solution set of the closed-loop differential
+ (Mo}z + \;‘i) SV BV 59y inclusion equals the solution set of the closed-loop system
2 (0%)

ki ko (14) and (15) and (17)—(20). Since the solutions are absolutely
Note thatV'(z) is minimized atz = &, with V(z¢) = 0. continuous, the invariant set theorem applies.
Suppose that eithe¥; or &, vanishes or{0, co) and lett; = Remark 2:The presence ofsign(y) in (20) signifies
min{t > 0 : &;(t) = 0oray(t) = 0}. Therefore, fort € high-gain control, which is necessary to achieve complete dis-
[0,%1), we have turbance rejection. In practice, one can approximate(y) in
V(g}(t), PR o R (6CPC n LZLC) z, ((Jza(i)r)]wnh ysaty/,(y), wherey > 1 is the maximum allowable
+22]Cly + 29" As an application of Theorem 2, we consider the tracking
X [-Cexe — (a1 f + Go)sign(y) + d] problem in which the output of the system
2 . .
+ — 756 = aa)é i =Ax + Bu
k1a21 Y =Czx
+ W(dz — ap)ds. is required to follow a knownC' bounded reference
ko b signal y,.(t). Assume thatank(C) = m and letz,(t) =
Using (18) and (19) and noting thet d < ||y|2||d||2 < (en f+ CT(CCT)~ty,.(t) € R"™ so thaty.(t) = Cuz,(t). Letting
as)|yll2 andsign® (y)y = |lylli > |lyll2, it follows that for # £ z — x, ande £ y — y, we obtain
t 0,1 .
€0.t) 5 =Ai + Bu+ (Aw, + i) (23)

V(#(t),t) < — 2T L La — «T (ecP.+ LEL.) x. e —Ci. (24)

2 AT _
+ 3 &3/2(‘“_0‘1) (0‘1_ 12 ||y||1f) We assume that there exists;(t) € R™ such that
1 By, (t) = Az, (t) + @.(t), t > 0. Furthermore, we as-

+ %(&2 — a2) (&2 - d§/2k2||y||1) sume that there exist constanis, «; > 0 and a continuous
ko function f such that (16) is satisfied with(¢) replaced by
— (arf + a2)(lylls = llvll2) 1h5(t). Consider the closed-loop system consisting of the plant

< —a"L"Ly — 2T (e.P. + L' L)z, < 0. (22) (23)and (24) and the controller (17)—(20) with= e. Theorem
2 applied to this closed-loop system yields asymptotic tracking
performance, namely(t) — 0 ast — oo.

Next, we consider the case in which the disturbaheeR™
is constant. As above, we assume that, B., C.) is strictly
positive real. The following result presents a simplified con-
troller in this case.

Proposition 1: Consider the controller

Therefore,V(z(t)) is nonincreasing and thus boundedtoa
[0,¢1). Thisimplies thatfoi = 1, 2,\/&;(¢) andl/+/&;(t) are
bounded or{0, ¢1). Therefore, fori = 1, 2, there exists; > 0
such thata;(t) > ¢; for all t € [0,¢1). However,&,(t) and
&2 (t) are continuous, which contradieis(¢1) = 0 or&a(t1) =
0. Therefore, bothy; anddas are nonzero o, o), and thus
(22) is valid for allt € [0, 00). Hence V (z(t)) is nonincreasing
and thus bounded df, o). Consequently, foi = 1, 2, &;(t) Ze =Acxc + Bey (25)
is bounded orf0, 0o) andinfy>q &;(t) > 0. ) =Ky (26)
LetE £ V—1(0). Using (22), it follows tha€ C {# : Lz = w=— Ctry— 1 27)
0, . = 0}. Let M denote the largest invariant set contained in o
£andleti(t) = [2T(t) «T(t) @i(t) a(t)]" be asolu- wherez, € R™, 4 € R™, andK € R™*™ is positive defi-
tion of (14) and (15) and (17)—(20) in. Using similar argu- nite. Then the zero solution of the closed-loop system (14) and
ment as in the proof of Theorem 1, it can be shown that0, (15) and (25)—(27) is Lyapunov stable. Moreovgt,), z..(t) —
&1 = &y = 0 on M. By the invariant set theorem, every tra0 ast — oo, andlim;_,, ¥ (t) exists.
jectory converges td1 ast — oo. Thereforey(t), z.(t) — 0 Proof: The proofis similar to that of Theorem 2 with(z)
ast — oo. Furthermore, noting that: (t), a2(t) > 0 for all givenbyV (&) = 2” Pz + 2! Poac + (Y —d)" K~ (¢ — d) O
t > 0, &1(t),a2(t) — 0 ast — oo and using the fact that The requirement on the controller that., B., C.) be SPR
&1(t) andae(t) are bounded, it follows thatm;_. ., &;(¢) and can be weakened to marginally strictly positive real (MSPR)
lim;_, o Go(t) exist. O [15]. It is shown in [15] that the negative feedback intercon-
Remark 1:The closed-loop system (14) and (15) andection of a PR and MSPR system is asymptotically stable. The
(17)—(20) is a differential equation with right-hand side discompositive real lemma, in this case, is applicable with the exception
tinuity at y = 0. The closed-loop system can be regularizethat L. € IR"*?< is of the form[0,,,x», L.], Wheren, are the
into a differential inclusion withsign(y;) replaced by a number of controller poles on the imaginary axis. Theorem 1,
set-valued-map (y;), whereS(y;) = 1if y; > 0, S(y;) = —1 Theorem 2, and Proposition 1 remain unchangédif B.., C.)
if y; < 0, andS(y;) € [-1,1] if y; = 0. The sufficient is MSPR. The proofs, however have to be modified as in [15].
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In fact, the controller in Proposition 1 (with integrator stefe Proof: By assumption, there exist a positive-definite ma-
is a MSPR controller in negative feedback with a PR plant. trix P € RR™*™ and matrices, € IRP*" satisfying (7)—(9)
with W = 0. Furthermore, there exist a positive-definite matrix
IV. STABILIZATION OF HAMMERSTEIN PR RANT WITH P, € R"*", amatrixL. € IR"<*?P< and areal number, > 0
HAMMERSTEIN SPR (WNTROLLER such that (10) and (11) are satisfied.
Consider the Lyapunov candidate

V(%) = 2" Pz + 2 P.x..

Consider the Hammerstein plant

& =Az + Bo(u,y) (28)
y =Ca (29) Then
_ ) ) V(@)= —a' L' Lo — a¥ (e P. + LY L) we — 29" F(u,y)y
with control inputu. € IR™, measuremenj € IR™, and input
nonlinearitys : R™ x R™ — IR™. In this section, we gener- <0. (35)

alize the results in [2] to input nonlinearitiesthat depend on Hence,i = 0 is Lyapunov stable. Lef £ V—l(o)_ Using
bothw andy. The main contribution of [2] is that the feedback3s), it follows that€ = {# : Lz = 0, z. = 0}. Let M

interconnection results are not based on absolute stability efenote the largest invariant set contained iand letz(t) =

teria (circle or Popov conditions), which require a gain or phasg” (¢) 27 (¢)]” be a solution of (28)—(31) itM. Substituting
constraint on the linear portion of the loop transfer function. The. = 0 in (30) yields B.5(0,y)y = 0, which implies that
idea is to modify the controller in Theorem 1 when the plant_ A= B.3(0,y)y = 0. Since(A,, B.,C.) is strictly posi-
possesses an arbitrary input nonlineasityve assume that the tive real, it follows that rank L. A-'B..) = m, which implies
linear system( A, B, C) is minimal and positive real. In addi- B(0,y)y = 0.

tion, we assume that is continuous withs(0,y) = 0 for all Now assume that det(0,y) # 0 for ally € R™. Theny =

y € R™ and we writer(u,y) = [o1(u,y) -+ owm(u,y)]". 0. Using (28) and (29), and noting théts = 0, it follows that
Next, let(A., B., C.) be minimal and strictly positive real, CA’z = 0fori =1,...,n—1. Therefore@z = 0, where® is

and consider the nonlinear controller defined in the proof of Theorem 1. Sin¢€', A) is observable,

) rank (O) = n. Hencex = 0 and thereforeM = {0}. By the

e =Acte + Befiu,y)y (30) invariant set theorem, every trajectory convergedto= {0}
U =—- chc (31) ast — oo.

Alternatively, assume that4, B, C) is strictly positive real.

wherez,. € IR"<, in feedback with the plant (28), (29). Here, therhen

continuous functio? : R™ x R™ — R™*™ is constructed
to satisfy V(i) = —2T(ePx+ LTL)x
T T 9, T
B, = () + Pl )y 2) ro (Sl oLz =20 o)
ThereforeE = M = {z : z = 0, z. = 0} and the result

for all u,y € R™, whereF' : R™ x R™ — R™*™ and follows. O
F(u,y) is a nonnegative-definite matrix for all,y € R™.
Settingu. = 0 in (32), it follows thatF(0,y)y = 0 for all V. DISTURBANCE REJECTION FORHAMMERSTEIN SPR RANT

y € R™. For example, we can choo$&u,y) = aylyuu?, WITH QUADRATIC INPUT NONLINEARITY
wherea > 0. Many electromechanically and electrostatically controlled
In particular, lettingF'(u,y) = 0, (32) can be satisfied by y y Y
choosing systems are modgled as sepond-order systems with state-de-
pendent quadratic control inputs. In order to address the
B1(u,y) 0 problem of controlling such systems we consider a class of
Blu,y) & . (33) Hammerstein systems with quadratic input nonlinearity and
' ' matched disturbance.
0 P (1, y) Consider the SISO plant
where, fori = 1,....m & =Az + Bg(y)(u? + d) (36)
Bi(u,y) =0; (x y)7 ust # 0 y=Ce 37)
i with scalar control inputt € IR, scalar measuremepte R,
=lim giw_/ u =0 (34) and bounded disturbanek € R satisfyingd(t) < 0 for all
e=0 € t > 0. Here, the piecewise continuous functipn R — R
assuming that the indicated limit exists. Here = is bounded and satisfiegy) # 0 for all y € IR. Assume that
[u1 ... unm]’ ande; is the ith unit coordinate vector. (A, B,C) is minimal and strictly positive real. Next, consider
Letz & [T af ]T. the controller shown in (38)—(40) at the bottom of the next page,

Theorem 3:The zero solution of the closed-loop systemvhered € R andK > 0. Assume thatA., B., C..) is minimal
(28)—(31) is Lyapunov stable. Furthermore, if d&b,y) # 0 and strictly positive real.
forally € R™ orif (A, B, C) is strictly positive real, then the  Theorem 4: The equilibrium solutiorjz . @] = [0 0 a] of
zero solution is globally asymptotically stable. the system (36)—(40) is Lyapunov stable ar{d), z.(t) — 0
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Fig. 1. Response of the system (53), (54) with the controller (17)—(20) and sinusoidal distufb@nee3 sin(3t).
ast — oo. Furthermore(t) is bounded for alk > 0 and y=Cx (43)
inftzo &(t) > 0.

Proof: Leta > 0 satisfy|d(t)|] < a forallt > 0. Let with scalar control input: € IR and scalar measuremente
= [2T 2T a]T and consider the positive-definite functionR. The disturbancel € IR is matched and bounded so that

T
V:R" x R" x (0,00) — IR defined by sup;>o |d(t)| < u. Assume thatA, B, C) is minimal and pos-
1 u 2./ itive real.
V(%) = 2T Pz + 2T Pox. + e <\/5+ ﬁ) T Next, consider the controller

It can be shown that (z(t), ) < 0 forall £ > 0. The result fol- Te =Acxe + Bef(zc,0)y (44)
lows using the invariant set theorem as in the proof of Theorem & :K&3/2(1 —a)ly|, a(0) e (0,1) (45)
2. - Ceze . 1

Remark 3:Theorem 4 can be extended to plants with u =~ utanh | —— +sign(y) tanh '(a) (46)

more general nonlinearities(u) satisfyinge(IR) = [0, 00)

or o(R) = (—o0,0]. Consider the plant (36), (37) with® \heres, € R™, 4 € R, K > 0 and

replaced by (u) in feedback with the controller (38), (39), and

d(lfsizgn(y)) + (Cox.)?
9(y)

Then the closed-loop system yield&), z.(t) — 0 ast — co. Assume tha{A., B., C.) is minimal and positive real.

Theorem 5: The equilibrium solutiorjz z. a] = [0 0 a] of
VI. DISTURBANCE REJECTION FORHAMMERSTEIN PR RANT  the system (42)—(46) is Lyapunov stable aft), z.(t) — 0 as

.. tanh (%) 1—a?
(41) Alac,d) = Cefe 1 +sign(y)atanh (€ee)

ueo Su

(47)

WITH INPUT SATURATION t — oo. Furthermoreinf;>o a(t) > 0 andsup,q a(t) < 1.
: : . . Proof: Sincesup,, |d(t)| < @, there existsy > 0 such
Consider the single-input—single-output (SISO) plant that|d(t)] < o < @forallt > 0. Leta £ o/ < 1 so that
& =Ax + B(satg(u) + d) (42) |d(t)| < au forall ¢ > 0. Next, noting thataty (@ tanh(u)) =
a;:(', :A(‘xc + B(’(_C(’xr)y (38)

i { —sign(g(y)) Kya®> if sign (g(y))y < 0
0 if sign (g(y))y 20’

! :W a) (T ey 40)

a(0) > 0 (39)
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Fig. 2. (a) Controk and (b) parametet. corresponding to the response in Fig. 1. Note the chattering of the controkitut

wtanh(u) for all w € R and using (46), it follows that (42) can Note thatV” is radially unbounded and has its minimuniat=
be written as [00a]". Lett; = min{t : a(t) = 0 ora(t) = 1}. Then, for all
t € [0,t)

V(E(t), 1)

where =o'l Lx — 27 (&:(,Pc + L(TLC) ZTe+ 2yd

_ tanh (€<2<) 4 sign(y)a
"1 + sign(y)a tanh (ete)

& = Az + Butanh(u.) + d (48)

A OC:EC

w. 2 — + 2y ﬂ(a;cvd)ccwc_

— sign(y) tanh ™! (a).

20 a—a
By the positive real lemma, there exist a positive-definite ma-  + fma.
trix P € R™*", and a matrixL,. € IRP*" satisfying (7), (8)

with W = 0. Furthermore, there exist a positive-definite matrixJsing (47) and noting thatd < aal|y||2 andsign(y)y = |y| >

P, € R™*"™  amatrixL, € IR"*P<, and real number, > 0
satisfying (10), (11).

llyll2, we obtain, for alt € [0,1) [see (50) at the bottom of
the page]. Thereforel (z(¢)) is nonincreasing and bounded

Next, letz 2 [+7 22 )" and consider the Lyapunov can-on [0, 1), which implies that botitanh ™" (v/a) and 1/a are

didateV : R" x R™ x (0,1) — R defined by

V(z) = ' Px 42X P.x..
44

+— ((1 — a) tanh ™} (Va) + %) - %

- (49)

bounded or{0, ¢;). Therefore, there exigy, 6> > 0 such that
61 < a(t) < 62 < 1forall ¢ € [0,t1). Sinced is continuous,
this contradictsi(¢1) = 0 anda(¢;) = 1. Therefore, (50) is
valid for all t € [0, c0), and thusV/ (Z(t)) is nonincreasing and
bounded or0, c0). Thereforea(t) € (0,1) forall ¢ € [0, c0).

V(@(t),t) < — 2T LT Lo — af (ecPe + LT Le)we — 2a(ly| — [|yll2)

y tanh (Ccmc) + aly|

u

+ aly

1 + sign(y)a tanh (k<)

C((’ c
+2a |yB(z., a) 7;1: —
m
2a(a — a) a
20 [

(1—ayad2 K“"]

<—2TLTLx — xCT(ecpc + LCTLC)JJC

<0.

(50)
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plant output y(t)

time in seconds

Fig. 3. Response of the system (53), (54) and the controller (17)—(20¥iuiilly) replaced byl Osat, 1 (v). Hered(t) = 3 sin(3t).

control input u(t)

[
T

(=]
T

IS
T

parameter &a(t)

N
T

o

(b)

time in seconds

Fig. 4. (a) controlkt and (b) parametek, corresponding to the response in Fig. 3.

Let& £ V-1(0). Then it follows thatt = {i : Lz = y(t),z.(t) — 0ast — oo. Furthermore, since(t) — 0, and
0, z. = 0}. Let M denote the largest invariant set contained(¢) is bounded, it follows thalim;_, .. a(t) exists. O
in & Let#(t) = [#7() 2T(t) a(t)T]" be a solution
of (42)—(46) on M. Substitutingiz. = 0 in (44) yields
B.f(u,, a)y = 0, which implies thatL. A- 1 B,B(u., a)y = 0. VIl NUMERICAL EXAMPLES

Noting thata(t) € (0,1)forallt > 0itfollows thatl — 4 > 0 For the following numerical examples, let
and1 — sign(y)atanh(u.) > 0 forall¢ > 0. Therefore,

B(u.,a) > 0forallt > 0. Since(A., B., C.) is strictly positive —7 10 0 1
real, it follows that ranKLCAC—lBC) = m, whichimpliesy = 0 A= 1 0 0|, B=|0|, C=[1 4 3]
on M. Using (45), it follows that: = 0. By the invariant set 0 1 0 0

theorem, every trajectory convergesWbast — oo. Therefore, (51)
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Fig. 5. Hammerstein plant with quadratic input nonlinearity. The closed-loop response of (36)—(40) is shown for the disfijthbancel.0 — sin(3¢).
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Fig. 6. (a) Controk: and (b) parametet for the response in Fig. 5.

and A. Linear Plant With Disturbance
(195 —405 —36 To illustrate Theorem 2, consider the plant
Ade=1| 1 0 0 i =Az + B(u + d) (53)
- y=Cz (54)
B.=|0|, C.=[1 65 9]. (52) whered(t) = 3.0sin(3t). Sinced is bounded (but otherwise
1 0 unknown), (16) is satisfied with.; = 0 and, thussé; can be

ignored in controller (17)—(20). Figs. 1 and 2 show that the con-

Here,(A, B,C) is PR and 4., B., C,.) is SPR. The matrix troller converges sufficiently fast to rejedtt) and thatas(t)

has an eigenvalue at zero.

converges.
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Fig. 7. Hammerstein PR system with input saturation and disturbance. (a) Random bounded disti(f)zame (b) response of the closed-loop system (55),
(56) and (44)—(46).
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Fig. 8. Control parametei(t) and the control inputanh(w(t)) corresponding to the response in Fig. 7.

=

However, the controlinput chatters (see Fig. 2) for small valut
of the outputy(¢) due to the presence of the tesign(y) in (20).
As in Remark 2 we approximatégn(y) by 10satg 1 (y), hence k

effectively limiting the gain of thatterm to ten. Figs. 3and 4 sho : :
that the controller is able to attenuate the sinusoidal disturbar ////

although asymptotic disturbance is no longer guaranteed. a m

B. Hammerstein PR Plant With Disturbance l—l

To illustrate Theorem 4, consider the Hammerstein PR pla ¢ :
with a quadratic nonlinearity given by (36), (37) wigly) = 1 : r(t) o
and nonlinear controller (38)—(40) with = 10. We consider r=0 i(t)
the bounded disturbanekt) = —1.0 — sin(3t). It can be seen
from Figs. 5 and 6 that the controller rejects the disturbance, angl 9. schematic of the electromagnetically controlled oscillator.
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Fig. 10. Mass position of an electromagnetically controlled oscillator for the constant position command!.0.
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Fig. 11. Mass position of the electromagnetically controlled oscillator for the square wave position comgi{ahevith period 12.5 s.

it is observed that the controller staieconverges [Fig. 6(a)]. by 10satg 1(y). It can be seen from Figs. 7 and 8 that the con-
The open-loop response (dashed-line in Fig. 5) of the systémller recovers from an initial saturation and rejects the random
diverges due to the eigenvalue at the origin. disturbance.

To illustrate Theorem 5, we consider the Hammerstein PR

plant with saturated control input C. Electromagnetically Controlled Oscillator

& =Ax + B (saty(u) + d) (55)  Consider the electromagnetically controlled oscillator shown
y =Cx (56) in Fig. 9. The dynamics of the oscillator [10] are given by
whered is a random bounded disturbance, and the nonlinear i2

. . 1
controller (44)—(46) withk = 1 andsign(y) approximated Ftorthr= (F—r)2 (57)
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wherei is the input current to the electromagnet,> 0 is
the damping constant, arid > 0 is the spring constant. Here
r = 0 corresponds to the position of the mass when the sprin
is relaxed, and' is the location of the electromagnet. Several
electrostatically or electromagnetically actuated systems such
as MEMS can be modeled by (57). It can be shown that the linl11]
earized system around an operating poist r.q is unstable if
Teq > (1/3)7. With & = r — roq, We have

§1_[o 1][¢ 0o . 0
M_{—k’ —c} _éh{ﬁyu{—kreq

wherer = 2, k = 16 andc = 4. Assume that the state =

[¢ €T is available for feedback and lgt= Cz with C' = [4 1] (15
_Ok _16 , (1) .C') is SPR. Note that
with i = u(7—req — &), (58) has the same form as (36) with=
—kreq. Next, we choose the controller (38)—(40) in Theorem 4[17]
with K = 1 andsign(y) approximated bylOsatg 1(y). For a
constant command input, = 1.0, it can be seen in Fig. 10
that the controller stabilizes the plant and follows the command
input. For a square wave command switching between 0.8 ari¢®]
1.6 with a period of 12.5 s, Fig. 11 shows that the controller
attenuates the tracking errér The tracking performance im- [20]
proves with better approximation (higherin ysat, /. (y)) of
the sign(y) function. Note that both the command inputs are
beyond the one-third gap and need to be stabilized.

(9]

[12]

[13]

} (58)

[14]

so that the syste

[16]

(18]

[21]
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